纳米材料在杂化聚氨酯中的效应

纳米材料在杂化聚氨酯中的效应
纳米材料在杂化聚氨酯中的效应

纳米材料在杂化聚氨酯中的效应

收稿日期:2013-06-20

近年UV固化水性聚氨酯(WPU)或聚氨酯丙烯酸酯(WPUA)纳米复合材料的特性受到众多研究者的关注,并进行了多项研究。采用的纳米材料包括SiO2、Al2O3、TiO2、ZnO、POSS、碳纳米管、碳纳米纤维等。重点综述了WPU 和WPUA低聚物(预聚物)的制备、纳米材料的改性处理、WPU/纳米颗粒和WPUA/纳米颗粒杂化复合材料的制备以及所得制品的表征、性能等。

标签:水性聚氨酯(WPU);水性聚氨酯丙烯酸酯(WPUA);纳米材料;杂化纳米复合材料;制备;性能

1 前言

聚氨酯(PU)因具有优异的性能而发展较快。据中国聚氨酯工业协会统计[1],近年我国PU CASE(涂料、胶粘剂、密封剂和弹性体)生产状况如表1所示。

但现阶段大多数PU涂料和胶粘剂均属溶剂型,污染环境,有损健康。

PU水分散体(WPU)以水为介质,污染性比溶剂型低得多,被誉为环境友好型制品。自上世纪70年代已成为重要工业品。2010年全球消费量约37.5万t,我国已突破11.8万t[2]。

WPU胶膜具有优良弹性和韧性,但WPU对基体的润湿性较差,为完全固化需严格控制环境温度和湿度;粘接强度和刚度,耐水、耐溶剂和耐化学品性,热稳定性和力学性能等方面均逊于大多溶剂型产品。因此,其应用领域受到一定限制。科学家们曾采用多种方法进行改善,如以杂化分散体、可交联分散体和纳米复合材料分散体来增强WPU性能。其中,向WPU中掺入纳米级无机填料形成复合材料结构膜,已成为有效改性途径之一。

2 有机-无机杂化材料

近10多年,有机-无机杂化WPU技术已广受关注。因纳米颗粒可强化WPU 材料,能改善纳米复合物的力学性能及耐磨、耐溶剂、耐化学品、耐UV和热稳定性等性能。这些材料还表现出低光学传导损失以及与不同表面的良好相容性[3~6]。

最常用的纳米材料包括Al2O3、SiO2、TiO2、ZnO、CaCO3、多面体低聚(笼型)倍半硅氧烷(POSS)、粘土、蒙脱土(MMT)以及碳纳米管(CNT)、纳米纤维结晶体等[3~6]。其中SiO2纳米颗粒具有诸如高硬度、相对低折射率、易采购等优点,可将纳米SiO2制成水中或有机溶剂中的溶胶分散体。加之SiO2

纳米材料的表面界面问题

纳米材料的表面、界面问题 目录 摘要 (2) 1 纳米粒子和纳米固体的表面、界面问题 (3) 纳米微粒的表面效应 (3) 纳米固体的界面效应 (3) 纳米材料尺度效应导致的热学性能问题 (4) 纳米材料尺度效应导致的力学性能问题 (4) 纳米材料尺度效应导致的相变问题 (4) 2. 金属纳米材料的表面、界面问题 (5) 高性能铜(银)合金中的高强高导机理问题 (5) 金属复合材料的强化模型和物理机制问题 (5) 原子尺度上的Cu/X界面研究 (6) 3 纳米材料表面、界面效应的研究成果综述 (9) 参考文献 (11)

摘要 纳米材料包含纳米微粒和纳米固体两部分,纳米微粒的粒子直径与电子的德布罗意波长相当,并且具有巨大的比表面;由纳米微粒构成的纳米固体又存在庞大的界面成分。强大的表面和界面效应使纳米材料体现出许多异常的特性和新的规律,这些特性和规律使其展现出广阔的应用前景。其中,在宏观尺度上制造出具有纳米结构和纳米效应的高性能金属材料,并揭示这些材料的组织演化特征以实现功能调控,是金属材料学科面临的重大科学问题和需要解决的核心关键技术。本文将对纳米材料的表面、界面效应进行介绍并重点阐述金属纳米材料界面、尺度与材料塑变、强化关系的研究进展。 关键词:纳米材料;表面效应;复合材料 、

1 纳米粒子和纳米固体的表面、界面问题 纳米粒子是指颗粒尺度在范围的超细粒子,它的尺度小于通常的微粉,接近于原子簇。是肉眼和一般显微镜看不见的微小粒子[1]。只能用高倍的电子显微镜进行观察。最早日本名古屋大学上田良二教授给纳米微粒下了一个定义:用电子显微镜能看到的微粒被称为纳米微粒[2]。 纳米固体是由纳米微粒压制活特殊加工而成的新型固体材料,它可以是单一材料,也可以是复合材料。纳米固体最早是由联邦德国萨尔兰大学格莱特等人在80年代初首先制成的。他们用气相冷凝发制得具有清洁表面的纳米级超级微粒子,在超高真空下加压形成固体材料。 纳米微粒的表面效应 随着微粒粒径的减小,其比表面积大大增加,位于表面的原子数目将占相当大的比例。例如粒径为5nm时,表面原子的比例达到50%;粒径为2nm时,表面原子的比例数猛增到80%;粒径为1nm时,表面原子比例数达到99%,几乎所有原子都处于表面状态。庞大的表面使纳米微粒的表面自由能,剩余价和剩余键力大大增加。键态严重失配、出现了许多活性中心,表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价,导致了纳米微粒的化学性质与化学平衡体系有很大差别,我们把这些差别及其作用叫做纳米微粒的表面效应[3]。 从电镜研究中也可以看出,由于强烈的表面效应使得纳米微粒的微观结构处于不断地变化之中。 纳米固体的界面效应 由纳米微粒制成的纳米固体,不同于长程有序的晶态固体,也不同于长程无序短程有序的非晶态固体,而是处于一种无序状态更高的状态。格莱特认为,这类固体的晶界有“类气体”的结构,具有很高的活性和可移动性。从结构组成上看它是由两种组元构成,一是具有不同取向的晶粒构成的颗粒组元,二是完全无序结构各不相同的晶界构成的界面组元。由于颗粒尺寸小,界面组元占据了可以与颗粒组元相比拟的体积百分数。例如当颗粒粒径为5-50nm时构成的纳米固体,

纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater.2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. ),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet .2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem.2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

无机纳米相_纳米纤维素杂化纳米材料的研究进展

第48卷第1期 2014年1月生物质化学工程Biomass Chemical Engineering Vol.48No.1 Jan.2014 doi :10.3969/j.issn.1673-5854.2014.01.006 ·综述评论———生物质材料· 无机纳米相-纳米纤维素杂化纳米材料的研究进展 收稿日期:2013-09-16 基金项目:国家自然科学基金(31000276);福建省高校杰出青年人才基金(JA11071);福建省高校新世纪优秀人才基金(JA12088); 福建农林大学杰出青年人才基金(xjq201208) 作者简介:吴巧妹(1987—),女,福建三明人, 硕士生,主要从事植物纳米纤维素复合材料的研究*通讯作者:陈燕丹,博士,副教授,硕士生导师,主要研究方向是生物质材料的制备与功能化设计;E- mail :fjaucyd@163.com 。吴巧妹,陈燕丹*,黄彪,陈学榕 (福建农林大学材料工程学院,福建福州350002) 摘要:分别介绍了近年来利用贵金属纳米粒子、无机陶瓷纳米相(包括金属氧化物、金属硫化物、黏土类、纳米羟基磷灰石和纳米碳酸钙)、磁性纳米纤维素、 碳纳米相与纳米纤维素进行复合的研究进展,并建议加强对纳米纤维素基杂化材料的基础理论研究,改进现有制备方法并开发出更加节能减耗的新方法,以及更多极具应用前景的无机纳米材料实现优势互补的分子级复合,定向设计合成出适用不同场合、满足不同需求的高性能、多功能新型先进复合材料。 关键词:纳米纤维素;杂化纳米材料;无机纳米粒子;碳纳米相 中图分类号:TQ35;O636.1文献标识码:A 文章编号:1673- 5854(2014)01-0028-09Advances in Inorganic-nanocellulose Hybrid Nanomaterials WU Qiao-mei ,CHEN Yan-dan ,HUANG Biao ,CHEN Xue-rong (College of Materials Engineering ,Fujian Agriculture and Forestry University ,Fuzhou 350002,China ) Abstract :This paper summarized the recent R&D progresses on nanocellulose hybrid composites incorporated with noble metal nanoparticles ,nano ceramic compounds (including metal oxides ,metal sulfides ,nano-clay ,nano-hydroxyapatite ,nano-calcium carbonate ),magnetic nanoparticles and nano-carbon materials ,respectively.An overview on the challenge and development prospects of the nanocellulose-based hybrid composites was discussed ,too. Key words :nanocellulose ;hybrid nanocomposites ;inorganic nanoparticles ;nano-carbon materials 无机-有机杂化纳米材料是继单组分材料、复合材料和梯度功能材料之后的第四代新材料[1]。纳米纤维素是一种新型的生物纳米材料,具有特殊的结构特点和优良的性能。无机纳米相-纳米纤维素杂化纳米材料因兼具或超越了纳米纤维素和无机纳米材料单一组分的性能优点,而成为纳米纤维素复合材料的研究热点。利用物理、化学、生物方法制备获得的天然纳米纤维素依次为微纤丝化纤维素(MFC )或纳纤丝化纤维素(NFC )、纳米晶体纤维素(NCC )和细菌纳米纤维素(BNC )。以纳米纤维素作为结构增强相和兼具生物大分子模板效应的天然高分子基体,在绿色高性能纳米复合材料的设计组装中日益扮演重要角色。在过去的十几年里,国内外针对纳米纤维素的制备、表征、表面修饰及其复合材料开展了较多的研究工作[2-4]。目前,交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科,利用共混法、溶胶-凝胶法、插层法、模板组装法、非共价弱相互作用复合法和仿生矿化等方法,进一步将纳米纤维素优越的机械性能与功能性无机纳米材料进行优势互补,构筑结构可塑、稳定,集轻质和强韧于一身的新型无机纳米相-纳米纤维素杂化纳米材料,正在成为国内外科学家竞相开展的研究课题。本文主要针对国内外纳米纤维素与各种无机纳米相杂化复合,制备功能型纳米纤维素新材料的研究进展进行综述。

杂化纳米材料

材料的制备与技术 姓名:李菁 学号:20134209204

杂化纳米复合材料的介绍及研究进展 摘要:有机-无机杂化纳米材料由于小尺寸和兼具有机、无机材料的各种优良性质, 在许多领域都有巨大的应用潜质。本文对杂化纳米复合材料的简介,制备方法,表征方法以及研究进展进行了说明。 有机一无机杂化材料(OIHMs)是20世纪80年代中期以来迅速发展的新的边缘研究领域。它是无机化学、有机化学、介观物理与材料科学等多学科渗透交叉的结果,这种杂化材料综合了无机材料、有机材料和纳米材料的优良特性,已在高技术领域如纤维光学、波导、非线性光学、微电子印刷电路等方面得到应用,也将在低密度、高强度、高韧性材料,光电传感材料,磁性材料等领域得到应用。OIHMs系指有机和无机材料在纳米级的杂化。包括在有机基质上分散无机纳米粒子和在无机材料中添加(通常为纳米材料)纳米级有机物。该种材料综合了无机、有机和纳米材料的特性,正成为一个新兴的极富生命力的研究领域,吸引着众多的研究者[1]。这种材料的优势主要表现在:①无机网络中引入有机相增加其柔韧性,赋予无机材料新的性能;②在有机聚合物中引入无机相提高其强度、模量、耐磨性等;③制备性能独特的新型材料,如热塑性材料等。[2]1.杂化纳米材料的基本简介 杂化纳米材料是通过溶胶-凝胶技术制造的。溶胶-凝胶技术是指有机或无机化合物经过溶液、溶胶、凝胶固化,再经热处理而得到氧化物或其它化合物的方法。 呈玻璃态。20世纪30~70年代,化19世纪中叶,正硅酸乙酯水解形成的SiO 2 学家、矿物学家、陶瓷学家、玻璃学家等分别通过溶胶-凝胶技术制备出了各自的研究对象,核化学家利用溶胶-凝胶技术制备了核燃料,避免了危险粉尘的产生。 20世纪80年代是溶胶-凝胶技术发展的高峰时期,发展了胶体溶胶-凝胶过程、无机聚合物溶胶-凝胶过程、复合溶胶-凝胶过程等3种主要溶胶-凝胶技术,合成了许多可工业化的溶胶-凝胶前驱体,不仅有无机前驱体,也有大量的有机前驱体。主要用于制备粉体材料、薄膜材料、块体材料、纤维材料等。用溶胶-凝胶技术将有机功能分子或聚合物掺入到无机网络中,可克服陶瓷、玻璃的缺陷,

纳米杂化材料的研究与进展

纳米杂化材料的研究与进展 【摘要】有机.无机杂化纳米材料由于小尺寸和兼具有机、无机材料的各种优良性质,在许多领域都有巨大的应用潜质。本文介绍了模板法、嵌段聚合物自组装、含特殊官能团的乙烯基单体直接聚合法等制备纳米有机一无机杂化材料的方法,并对各自的特点进行了说明。 【前言】纳米材料由于其大比表面积的特殊性质,使之在纳米和分子水平范围内具有特殊的应用性能,已成为材料科学中最为热门和前沿的研究领域。有机.无机杂化材料兼具聚合物的低密度、高韧性、可塑性以及无机材料的透明性、高折射率、表面坚硬性等诸多优良性质,同时容易剪裁成具有特殊结构的材料,如微胶囊、核.壳型颗粒、毛细管等等,所以有机一无机杂化纳米材料在光学、催化、微电子、包装、生物、制药等行业内都有巨大的潜在应用。 【正文】 1 在无机粒子外包覆聚合物 为了增加有机.无机间的亲和力,偶联剂在此类制备过程中被广泛应用,Carris等利用有机钛偶联剂,在二氧化钛胶粒表面通过化学键作用或物理缠结作用包覆了一层聚甲基丙烯酸甲酯聚合物。Espiard等用类似的方法,用甲基丙烯酸一3.三甲氧基硅丙酯(MPS)作为偶联剂,在硅胶体外包裹一层甲基丙烯酸乙酯聚合物,这种杂化胶体颗粒可形成完全透明的膜,且具有与硫化橡胶类似的优良的力学性能。Carris等对用憎水基团改性过的钛胶体颗粒,使十二烷基硫酸钠吸附于其表面,然后引发聚合反应形成有机层。带有正电荷的氧化铁胶

体颗粒表面,可成功吸附双层十二烷基硫酸钠乳化剂而保存胶体稳定,在吸附过程中利用超声分散,避免聚并。后来,Quaroni等利用油酸在银胶体粒子表面的吸附,形成聚苯乙烯/聚丙烯酸甲酯共聚物壳n ,同样,油酸也可以在磁性胶体颗粒外吸附,进而制备杂化粒子。单体同样能够先吸附于无机粒子表面,然后再引发聚合。主要是选用带有酸性或碱性的单体,利用酸碱作用机理进行吸附,然后与苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸丁酯在粒子表面进行共聚,由此合成的杂化粒子制成的膜具有高玻璃化、高透明度等特点。Armes 等利用碱性的4.乙烯基吡啶与表面为酸性的二氧化硅胶体颗粒之问的吸附,然后引发聚合形成杂化纳米粒子。Mafikanos等用类似的方法,使用相应的单体聚合形成聚吡咯和聚Ⅳ.甲基吡咯/金杂化颗粒。另外,使用可聚合的表面活性剂(如甲基丙烯酸二甲基乙基氨盐),其兼具表面活性剂和单体的作用,它的吸附提高了包覆的效率。 另外一种路线是在无机粒子表面利用与粒子表面电荷相反的引发剂进行吸附,后引发聚合反应,其吸附过程可由介质的pH值控制17]。AIBA与合适的表面活性剂一起吸附后,可在二氧化硅胶体颗粒表面引发聚合并在其表面杂凝聚,形成杂化粒子。根据二氧化硅胶体颗粒的大小,这种杂化粒子分别呈现出草莓状结构和规整的核.壳结构。最近,利用微乳液聚合方法制备杂化纳米粒子也被广泛研究,这种方法是在无机粒子外吸附憎水物,后分散于憎水单体中,然后加入到含有表面活性剂的水溶液中,高速搅拌后形成单体包裹于无机粒子外的胶束,引发聚合后即形成杂化纳米粒子,其关键是无机粒子在单体中的分散。Erdem等利用聚异丁烯琥珀酰胺良好的稳定作用,在二氧化钛胶体颗粒外成功进行了聚合。

聚合物纳米粒子杂化材料的制备与性能研究

聚合物纳米粒子杂化材料的制备与性能研究 韩荣敏 摘要:聚合物纳米粒子杂化材料由于能够同时表现聚合物与纳米粒子两个方面的特性 而受到广泛关注。本文介绍了聚合物纳米粒子杂化材料的概念,综述了聚合物纳米粒子杂化 材料的一些常用的制备方法,总结了由于纳米粒子的存在杂化材料在力学、光学、电、磁等 方面呈现出常规材料不具备的特性,并对其进行展望。 关键词:聚合物纳米粒子杂化材料制备性能 引言 聚合物材料在现代生活中应用广泛,具有各种各样的性能,如导电性聚合可以像金属材料一样应用于电学的各行各业,但是一些导电性聚合物如聚苯胺、聚吡咯等聚合物虽合成方法较简单,具有较高的导电率,但是很难像其他高分子聚合物那样易加工成型,且在高温和潮湿环境下不能长期使用[1],聚酯和聚酯纤维虽具有高模量、高强度、耐酸,耐热性等优点,但其因其可燃性而应用受到限制[2]。聚氯乙烯等一些树脂类聚合物在橡胶方面应用广泛,但其脆性大、热稳定性差,在热、氧气、光等环境下性能下降[3]。为了提高、优化各种聚合物的各种性能,用纳米粒子对其进行掺杂,得到聚合物纳米粒子杂化材料,这种材料能够充分体现聚合物的一些性能如密度小、强度高、耐腐蚀、易加工等特点,也能够体现纳米粒子所具有得体积效应、表面效应、量子尺寸效应、小尺寸效应,特别是还能够产生一些常规材料所不具备的新的性能,使其在生物、医药、化工、材料、电子、催化剂、传感器、生物等方面有着广阔的应用前景[4-6]。目前国内外许多科研工作者都通过高科技手段,采用纳米新技术以及先进的制造工艺,将纳米粒子用于聚合物和杂化材料的改性中,以提高其各种性能,并取得了许多可喜的研究成果。本文主要综述近年来聚合物纳米粒子杂化材料的几种主要的制备方法以及各种性能和应用情况。 1聚合物纳米粒子杂化材料的制备方法 聚合物纳米杂化材料的制备是探索高性能杂化材料的一条重要途径,材料的制备是性能研究的基础,因此,纳米杂化材料的制备是材料科学领域中重要研究的课题也是目前研究的一个热点。近年来发展建立起来的制备方法也多种多样,各种制备方法并非截然分开,有可能互相渗透,这些制备方法主要有溶胶凝胶法、共混法、自组装法、原位生成法、超声波法等。 1.1共混法 该方法是首先合成出各种形态的纳米粒子,再通过各种方式将其与有机聚合物混合[7]。此种方法的优点是,纳米粒子与聚合物的合成分步进行,可控制纳米粒子的形态、尺寸,方法简便经济、易于实现工业化,缺点是纳米粒子的比表面积和表面能极大,粒子之间存在较强的相互作用,极易产生团聚,失去纳米粒子的特殊性质;而聚合物本身粘度又较高,纳米粒子与聚合物很难达到理想的纳米尺度杂化。通常采用表面活性剂、偶联剂、表面覆盖、机

纳米材料在杂化聚氨酯中的效应

纳米材料在杂化聚氨酯中的效应 收稿日期:2013-06-20 近年UV固化水性聚氨酯(WPU)或聚氨酯丙烯酸酯(WPUA)纳米复合材料的特性受到众多研究者的关注,并进行了多项研究。采用的纳米材料包括SiO2、Al2O3、TiO2、ZnO、POSS、碳纳米管、碳纳米纤维等。重点综述了WPU 和WPUA低聚物(预聚物)的制备、纳米材料的改性处理、WPU/纳米颗粒和WPUA/纳米颗粒杂化复合材料的制备以及所得制品的表征、性能等。 标签:水性聚氨酯(WPU);水性聚氨酯丙烯酸酯(WPUA);纳米材料;杂化纳米复合材料;制备;性能 1 前言 聚氨酯(PU)因具有优异的性能而发展较快。据中国聚氨酯工业协会统计[1],近年我国PU CASE(涂料、胶粘剂、密封剂和弹性体)生产状况如表1所示。 但现阶段大多数PU涂料和胶粘剂均属溶剂型,污染环境,有损健康。 PU水分散体(WPU)以水为介质,污染性比溶剂型低得多,被誉为环境友好型制品。自上世纪70年代已成为重要工业品。2010年全球消费量约37.5万t,我国已突破11.8万t[2]。 WPU胶膜具有优良弹性和韧性,但WPU对基体的润湿性较差,为完全固化需严格控制环境温度和湿度;粘接强度和刚度,耐水、耐溶剂和耐化学品性,热稳定性和力学性能等方面均逊于大多溶剂型产品。因此,其应用领域受到一定限制。科学家们曾采用多种方法进行改善,如以杂化分散体、可交联分散体和纳米复合材料分散体来增强WPU性能。其中,向WPU中掺入纳米级无机填料形成复合材料结构膜,已成为有效改性途径之一。 2 有机-无机杂化材料 近10多年,有机-无机杂化WPU技术已广受关注。因纳米颗粒可强化WPU 材料,能改善纳米复合物的力学性能及耐磨、耐溶剂、耐化学品、耐UV和热稳定性等性能。这些材料还表现出低光学传导损失以及与不同表面的良好相容性[3~6]。 最常用的纳米材料包括Al2O3、SiO2、TiO2、ZnO、CaCO3、多面体低聚(笼型)倍半硅氧烷(POSS)、粘土、蒙脱土(MMT)以及碳纳米管(CNT)、纳米纤维结晶体等[3~6]。其中SiO2纳米颗粒具有诸如高硬度、相对低折射率、易采购等优点,可将纳米SiO2制成水中或有机溶剂中的溶胶分散体。加之SiO2

纳米材料表面效应

纳米材料的表面效应 材料0701 李愿 学号:1002070101 参考文献: 1、卢柯、卢磊金属纳米材料力学性能的研究进展 金属学报 2000年8月第36卷第8期:785—789 摘要 金属纳米按体材料具有独特的力学性能如高强度、超高延展性等。近年来得到广泛深入的研究。在对其新进展进行简要评述的基础上,讨论了它的强度、塑性、弹性模量、应变强化、超塑性、蠕变及变形机理等相关问题。 2、吴锦雷纳米材料的电学、光学和光电性能及应用前景 真空电子学术 2002年第4期:23—27 摘要: 简要介绍了纳米材料的电学性能以及单电子器件的基本原理和应用;纳米材料的光学性能和光电性能,高的光吸收系数和光致荧光现象可使其应用于敏感元件,由于其光电特性具有超快响应速度,可望在超快光电子器件中得到应用。 3、齐卫宏、汪明朴纳米金属微粒表征量的基本关系 材料导报 2002年9月第16卷第9期:76—77 摘要: 在假定纳米微粒近似成球形的前提下,推导出了粒径、微粒原子数、表面原子百分数及比表面积之间的相互关系式,这些关系式对实验将会有一些指导作用。 4、梁海弋、倪向贵、王秀喜表面效应对纳米铜杆拉伸性能影响的原子模拟 金属学报 2001年8月第37卷第8期 833—836 摘要: 采用EAM势对纳米铜杆的拉伸力学性能进行零温分子动力学模拟。研究表面效应对原子能量、截面应力分布的影响模拟结果表明,表面原子弛豫降低了纳米杆初始阶段的拉伸弹性模量。表面效应明显影响截面应力的发展与分布。 5、黄丹、陶伟明、郭乙木分子动力学模拟纳米镍单晶的表面效应 固体力学学报 2005年6月第26卷第2期:241—244 摘要: 对单晶镍纳米丝、纳米薄膜零温准静态拉伸破坏过程进行了分子动力学模拟。模拟表明表面效应对单晶纳米材料的原子运动及整体力学行为有显著影响。自由表面增加纳米材料的塑

相关文档
最新文档