北航惯性导航综合实验一实验报告

北航惯性导航综合实验一实验报告
北航惯性导航综合实验一实验报告

实验一

陀螺仪关键参数测试与分析实验加速度计关键参数测试与分析实验

二零一三年五月十二日

实验一 陀螺仪关键参数测试与分析实验

一、 实验目的

通过在速率转台上的测试实验,增强动手能力和对惯性测试设备的感性认识;通过对陀螺仪测试数据的分析,对陀螺漂移等参数的物理意义有清晰的认识,同时为在实际工程中应用陀螺仪和对陀螺仪进行误差建模与补偿奠定基础。

二、 实验内容

利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验和陀螺仪标度因数与零偏建模、误差补偿实验。 三、 实验系统组成

单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。 四、 实验原理

1. 陀螺仪原理

陀螺仪是角速率传感器,用来测量载体相对惯性空间的角速度,通常输出与角速率对应的电压信号。也有的陀螺输出频率信号(如激光陀螺)和数字信号(把模拟电压数字化)。以电压表示的陀螺输出信号可表示为:

()()0()G G G G G G G

U U k k f a k ωωε=+++

(1-1)

式中()G f a 是与比力有关的陀螺输出误差项,反映了陀螺输出受比力的影响,本实验不考虑此项误差。因此,式(1-1)简化为

()()0G G G G G

U U k k ωωε=++

(1-2)

由(1-2)式得陀螺输出值所对应的角速度测量值:

(0)

G G G

G

U U k ωε-=-测量

(1-3)

对于数字输出的陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即:

0G

ωωωε=++测量真值

(1-4)

0ω是是陀螺仪的零偏,物理意义是输入角速度为零时,陀螺仪输出值所对

应的角速度。且

0(0)G G U k ω= (1-5)

ω测量精度受陀螺仪标度因数G k 、随机漂移G ε、陀螺输出信号G U 的检测精

度和(0)G U 的影响。通常G k 和(0)G U 表现为有规律性,可通过建模与补偿方法消除,G ε表现为随机特性,可通过信号滤波方法抵制。因此,准确标定G k 和

(0)G U 是实现角速度准确测量的基础。 五、 陀螺仪测试实验步骤 1) 标度因数和零偏测试实验

a. 接通电源,预热一定时间;

b. 陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

c. 转台正转,测试陀螺仪输出,停转;转台反转,测试陀螺仪输出,停转。在正转和反转时测试陀螺仪输出量,并分别保存数据;

d. 改变转台输入角速率重复步骤c ,正负角速率的速率档分别不少于5 个(按军标要求是11 个);

e. 转速结束后,当转台静止时,采集陀螺仪输出数据,并保存。

f.根据最小二乘法公式

1

112

2

111

1M

M M

ij j ij

j

j j j G M

M

ij

ij j j F F

M K M =====Ω-Ω=

?

?Ω-Ω ???

∑∑∑∑∑ (1-6)

01

1

1M

M

G

G j

ij

j j K F F M M ===

∑∑ (1-7)

计算陀螺标度因数和零偏。 2) 零漂测试(零偏稳定性)

在静止下采集陀螺仪数据,并由测试数计算陀螺仪零偏稳定性。军标中通常的测试时间是1 小时,并对所采集的数据进行1 秒、10 秒及100秒等不同时间的平滑。本实验中可采集数据10 分钟左右,并分别进行1 秒、10 秒及100 秒平滑。

按如下公式

()

1/2

21111n

s i i G B F F K n =??=-??-??

∑ (1-8)

计算陀螺仪零偏稳定性,并进行比较。 3) 零偏重复性测试

a. 令转台某角速度200/s ?下进行正转,转速平稳后,采集陀螺输出数据,并保存。

b. 令转台某角速度-200/s ?下进行反转,转速平稳后,采集陀螺输出数据,并保存。

c. 按计算陀螺零偏;

d. 关掉陀螺电源,并重新启动,重复步骤a 、b ;

e. 重复步骤d 进行3-5 次,共得到陀螺零偏5-7 个;

f. 对5-7个陀螺零偏按下式(1-9)

()

1/2

200111Q r i i B B B Q =??=-??

-??

∑ (1-9) 求均方差,得零偏重复性指标。

六、实验结果

1.数据处理

将原始数据剔除后绘图如下

2.计算陀螺标度因数和零偏

根据陀螺在10°/s,20°/s,40°/s,60°/s,80°/s角速率下正反转的输出,分别求得正转下陀螺的标度因数和零偏,及反转下陀螺的标度因数和零偏,然后求的均值。

K= 0.9901

G

F= 0.0358

G

3.零偏稳定性对所采集的数据进行1 秒、10 秒及100秒等不同时间的平

滑,如下图。

零漂计算结果(1000s平滑):Bs= 0.0144

4.零偏重复性

以角速度40°/s正反转,共采集5组数据

七,实验小结

由零漂平滑后的结果可知,对采集的数据平滑时间长可以提高零偏的稳定性。八,源程序

%%%%加载数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Gyro_0end=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_0end.txt');

Gyro_0start=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_0start.txt');

Gyro_10n=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_10n.txt');

Gyro_10p=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_10p.txt');

Gyro_20n=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_20n.txt');

Gyro_20p=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_20p.txt');

Gyro_40n=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_40n.txt');

Gyro_40p=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_40p.txt');

Gyro_60n=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_60n.txt');

Gyro_60p=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_60p.txt');

Gyro_80n=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_80n.txt');

Gyro_80p=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\1 标度因数和零偏测试\Gyro_80p.txt');

%%%%%%%%%%%%剔除不合格数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Gyro_10p=Gyro_10p(find((Gyro_10p>9)&(Gyro_10p<11)));

Gyro_20p=Gyro_20p(find((Gyro_20p>15)&(Gyro_20p<25)));

Gyro_40n=Gyro_40n(find((Gyro_40n>-50)&(Gyro_40n<0)));

Gyro_40p=Gyro_40p(find((Gyro_40p>35)&(Gyro_40p<45)));

Gyro_60p=Gyro_60p(find((Gyro_60p>50)&(Gyro_60p<70)));

Gyro_80p=Gyro_80p(find((Gyro_80p>70)&(Gyro_80p<90)));

for i=1:11145

k(i)=i;

end

plot(k,Gyro_0end(1:11145,1),'r',k,Gyro_0start(1:11145,1),'r',k,Gyro_10n(1:11145,1),'r',k,Gyro_10p(1:11 145,1),'r',k,Gyro_20n(1:11145,1),'r',k,Gyro_20p(1:11145,1),'r',k,Gyro_40n(1:11145,1),'r',k,Gyro_40p(1: 11145,1),'r',k,Gyro_40n(1:11145,1),'r',k,Gyro_60n(1:11145,1),'r',k,Gyro_60p(1:11145,1),'r',k,Gyro_80n( 1:11145,1),'r',k,Gyro_80p(1:11145,1),'r');

title('剔除数据后','fontsize',12);

xlabel('时间t(s)','fontsize',12);

ylabel('度/秒','fontsize',12);

%%%%%%%%%%%%%5555计算标度因数%%%%%%%%%%%%%%%%%%%%%%%%5

Gyro_0end1=mean(Gyro_0end);

Gyro_0start1=mean(Gyro_0start);

Gyro_10n1=mean(Gyro_10n);

Gyro_10p1=mean(Gyro_10p);

Gyro_20n1=mean(Gyro_20n);

Gyro_20p1=mean(Gyro_20p);

Gyro_40n1=mean(Gyro_40n);

Gyro_40p1=mean(Gyro_40p);

Gyro_60n1=mean(Gyro_60n);

Gyro_60p1=mean(Gyro_60p);

Gyro_80p1=mean(Gyro_80p);

Gyro_80n1=mean(Gyro_80n);

%%%%%%%%求正转标度因数%%%%%%

F=[Gyro_10p1 Gyro_20p1 Gyro_40p1 Gyro_60p1 Gyro_80p1];

W=[10 20 40 60 80];

J=[Gyro_10p1*10 Gyro_20p1*20 Gyro_40p1*40 Gyro_60p1*60 Gyro_80p1*80];

KG0=(sum(J)-(sum(F)*sum(W))/5)/(sum(W.^2)-(sum(W)*sum(W))/5); %%%%0.9905

%%%%%%求反转标度因数%%%%%%%%%%%

F1=[Gyro_10n1 Gyro_20n1 Gyro_40n1 Gyro_60n1 Gyro_80n1];

W1=[10 20 40 60 80];

J1=[Gyro_10n1*(10) Gyro_20n1*(20) Gyro_40n1*(40) Gyro_60n1*(60) Gyro_80n1*(80)];

KG1=-(sum(J1)-(sum(F1)*sum(W1))/5)/(sum(W1.^2)-(sum(W1)*sum(W1))/5); %%%%%0.9895 KG=(KG0+KG1)/2; %%%%%0.9901

%%%%%%%%%%%%%%%%%%%%%%%%%%求零偏%%%%%%%%%%%%%%%%%%%%55

F0=-(sum(F1)/5+KG*sum(W1)/5);

F01=sum(F)/5-KG*sum(W)/5;

F0=(F0+F01)/2; %%%%%%%%%%%%%%%%%% F0=0.3580 %%%%%%%%%%%加载静止时的数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Gyro_result=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\2 零偏稳定性测试\Gyro_result.txt');

Gyro_result=Gyro_result(find((Gyro_result>-0.8)&(Gyro_result<0.8))); %%%%%%%%%%剔除数据Gyro_result=smooth(Gyro_result,128000);%利用移动平均法做平滑处理1000s

Gyro_result1=smooth(Gyro_result,1280); %利用移动平均法做平滑处理10s

Gyro_result2=smooth(Gyro_result,12800);%利用移动平均法做平滑处理100s

for i=1:206224

u(i)=i;

end

figure; %新建一个图形窗口

plot(u,Gyro_result,'g'); %绘制加噪波形图hold on;

plot(u,Gyro_result1,'r'); %绘制平滑后波形图

hold on;

plot(u,Gyro_result2,'k');

xlabel('时间t(s)','fontsize',12);

ylabel('零漂平滑后结果','fontsize',12);

legend('1000s平滑','100s平滑','10s平滑');

b0=mean(Gyro_result); %%%

b1=mean(Gyro_result1); %%% -0.0479

b2=mean(Gyro_result2); %%%% -0.0482

c0=sum((Gyro_result-b0).^2)/206223;

B0=sum(c0.^0.5)/KG; %%%%B0= 0.0144

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%零偏重复性测试

Gyro_result11=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\3 零偏重复性测试\1_40n.txt');

Gyro_result22=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\3 零偏重复性测试\2_40p.txt');

Gyro_result33=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\3 零偏重复性测试\3_40p.txt');

Gyro_result44=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\3 零偏重复性测试\4_40n.txt');

Gyro_result55=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Gyro_data\3 零偏重复性测试\5_40n.txt');

Gyro1=Gyro_result11(1:5000,:);

Gyro2=Gyro_result22(1:5000,:);

Gyro3=Gyro_result33(1:5000,:);

Gyro4=Gyro_result44(1:5000,:);

Gyro5=Gyro_result55(1:5000,:);

Gyro1=Gyro1(find((Gyro1>-50)&(Gyro1<0))); %%%%%%%%%%剔除数据

Gyro3=Gyro3(find((Gyro3>35)&(Gyro3<50)));

b1=mean(Gyro1); %%%

b2=mean(Gyro2); %%% -0.0479

b3=mean(Gyro2);%%%% -0.0482

b4=mean(Gyro4); %%% -0.0479

b5=mean(Gyro5);%%%% -0.0482

c1=sum((Gyro1-b1).^2)/4959;

BS1=sum(c1.^0.5)/KG; %%%%B0= 0.0144

c2=sum((Gyro2-b2).^2)/4959;

BS2=sum(c2.^0.5)/KG;

c3=sum((Gyro3-b3).^2)/4959;

BS3=sum(c3.^0.5)/KG;

c4=sum((Gyro4-b4).^2)/4959;

BS4=sum(c4.^0.5)/KG;

c5=sum((Gyro5-b5).^2)/4959;

BS5=sum(c5.^0.5)/KG;

BSS=[BS1 BS2 BS3 BS4 BS5]; h0=mean(BSS); Br=sum((BSS-h0).^2)/4

Br=sum(Br.^0.5); %%%Br = 8.6662e-005

实验一加速度计关键参数测试与分析实验

一、 实验目的

通过在位置转台上的测试实验,增强学生的动手能力和对惯性测试设备的感性认识;通过对加速度计测试数据的分析,让学生对比力、加速度计标度因数和偏置等参数的物理意义有清晰的认识。为在实际工程中应用加速度计和对加速度计进行误差建模与补偿奠定基础。 二、 实验内容

利用双轴位置转台,进行加速度计标度因数测试、偏置测试、偏置重复性测试和加速度计标度因数与偏置建模、误差补偿实验。 三、 实验原理

加计的误差模型与陀螺仪类似,不在赘述。不同之处在于,加计的输出包含了运动加速度和引力加速度两项。当加计静止或匀速运动时,运动加速度为零,加计输出的是引力加速度。可根据其输出信号与重力矢量的投影间的关系对加速度计的指标参数进行标定。依据公式为

0sin A

f g f θε=++测量

实际操作时,调整的是加计的输入轴与垂直方向的角度,故

0cos A

f k

g f θε=++测量

加计的单位为(g )的话,

0cos A f f k g g g ε

θ=++测量

实验目的是标定k 和f0. 1) 标度因数和偏置测试实验

a. 把俯仰现调到90 度位置;

b. 调节方位轴,使加速度计敏感轴近似指向地心;

c. 设当然角位置为0°,加速度计通电,记录数据并求出平均值;

d. 在0 到360 度范围内改变输入角度值j θ,记录输出电压数据,并求出平均值jpF 。

通常采取等间隔采样方法,即每次变化角度60 度、30 度或更小间隔。 e.按最小二乘公式

1

11

2

21

11

1M

M M

ij j ij j

j j j A M

M

ij ij j j A F A F

M K A A M =====-=

?

?-

???

∑∑∑∑∑g g

(1-10)

01

1

1M

M

A j ij

j j K F F M

M

===

-

Ω

∑∑ (1-11)

计算加速度计标度因数和偏置 2) 偏置测试实验

a. 把俯仰现调到近水平位置(任意角度α);

b. 采集加速度计输出数据,保存数据,并计算均值

c. 将位置转台方位轴旋转180 度;

d. 采集加速度计输出数据,保存数据,并计算均值;

e.按(1-12)式

()01

*2f f f αα+-=+

(1-12)

计算加速度计偏置。 3) 偏置重复性测试

a. 可按以上两种方法这一计算加速度计偏置

b. 重复步骤a4 到6 次,并保存数据;

c. 按(1-13)式

__21/2001

1[()]1Q

r i i B B B Q ==--∑ (1-13) 计算加速度计偏置重复性。 四、 实验结果

1. 零偏和标度因数

将原始数据剔除异常后绘图如下:以指向地心为0度;

数据记录:

j θ与平均值jp F 在0到360 度范围内变化数据

计算结果:

标度因数: -1.0159 零偏: 0.0366

2、偏置测试实验

把俯仰现调到近水平位置;采集加速度计输出数据,保存数据,并计算均值将位置转台方位轴旋转180 度;采集加速度计输出数据,保存数据,并计算均值; 按式

Bias ∑=+=n

i i a i a n 1

)(2)(1*21)

(计算加速度计偏置。 有实验数据可求Bias= -0.0112

3零偏重复性计算

在同一条件下计算得4组数据的零偏分别为:

相应的重复性为:Br= 0.0448

五,实验结果分析

加速度计采用旋转180°计算均值求零偏,方法简单,但是结果变化大,不精确,应当多组求平均,或采用最小二乘法。

六,实验源程序:

%%%%%%%%%加载数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A0=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\0.txt');

A30=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\30.txt');

A60=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\60.txt');

A90=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\90.txt');

A120=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\120.txt');

A150=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\150.txt');

A180=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\180.txt');

A210=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\210.txt');

A240=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\240.txt');

A270=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\270.txt');

A300=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\300.txt');

A330=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\1 标度因数和偏置测试\330.txt');

%%%%%%%%%%%%%%%%%%%剔除不合格数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A0=A0(find((A0>-2)&(A0<0)));

A60=A60(find((A60>-1)&(A60<0)));

A90=A90(find((A90>0)&(A90<0.5)));

A120=A120(find((A120>0)&(A120<1)));

A180=A180(find((A180>0)&(A180<2)));

A270=A270(find((A270>0)&(A270<0.5)));

A300=A300(find((A300>-1)&(A300<1.5)));

plot (A120, 'DisplayName', 'A120', 'YDataSource', 'A120'); hold all; plot (A150, 'DisplayName', 'A150',

'YDataSource', 'A150'); plot (A180, 'DisplayName', 'A180', 'YDataSource', 'A180'); plot (A210, 'DisplayName',

'A210', 'YDataSource', 'A210'); plot (A240, 'DisplayName', 'A240', 'YDataSource', 'A240'); plot (A270,

'DisplayName', 'A270', 'YDataSource', 'A270'); plot (A30, 'DisplayName', 'A30', 'YDataSource', 'A30'); plot (A300, 'DisplayName', 'A300', 'YDataSource', 'A300'); plot (A330, 'DisplayName', 'A330', 'YDataSource', 'A330'); plot (A60, 'DisplayName', 'A60', 'YDataSource', 'A60'); plot (A90, 'DisplayName', 'A90', 'YDataSource', 'A90'); hold off; figure(gcf)

title('剔除数据后','fontsize',12);

%%%%%%%%%%%%%%%%%%%%%%%%%%%5555计算标度因数%%%%%%%%%%%%%%%%%%%%%%%%5

f0=mean(A0);

f30=mean(A30);

f60=mean(A60);

f90=mean(A90);

f120=mean(A120);

f150=mean(A150);

f180=mean(A180);

f210=mean(A210);

f240=mean(A240);

f270=mean(A270);

f300=mean(A300);

f330=mean(A330);

%%%%%%%%求正转标度因数%%%%%%

F=[ f0 f30 f60 f90 f120 f150 f180 f210 f240 f270 f300 f330]; %%%%%%%%以指向地心为初始零度

A=[ 1 1*cos(pi/6) 1*cos(pi/3) 1*cos(pi/2) 1*cos(pi*2/3) 1*cos(pi*5/6) 1*cos(pi) 1*cos(pi*7/6) 1*cos(pi*4/3)

1*cos(pi*3/2) 1*cos(5/3*pi) 1*cos(22/12*pi)];

J=[1*f0 1*cos(pi/6)*f30 1*cos(pi/3)*f60 1*cos(pi/2)*f90 1*cos(pi*2/3)*f120 1*cos(pi*5/6)*f150

1*cos(pi)*f180 1*cos(pi*7/6)*f210 1*cos(pi*4/3)*f240 1*cos(pi*3/2)*f270 1*cos(5/3*pi)*f300

1*cos(22/12*pi)*f330 ];

KG0=(sum(J)-(sum(F)*sum(A))/12)/(sum(A.^2)-(sum(A)*sum(F))/12); %%%%KG0=-1.0159

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%求零偏%%%%%%%%%%%%%%%%%%%%55

F01=sum(F)/12-KG0*sum(A)/12;%%%%%%%%%F01=-0.036595

%%%%%%%%%%%%%%加载静止时的数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S1=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\2 偏置稳定性测试\偏置测试0度.txt');

S2=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\2 偏置稳定性测试\偏置测试180度.txt');

ff0=(mean(S1)+mean(S2))/2; %%ff0=-0.011212g

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%零偏重复性测试

D10=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\1_0.txt');

D11=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\1_180.txt');

D20=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\2_0.txt');

D21=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\2_180.txt');

D30=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\3_0.txt');

D31=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\3_180.txt');

D50=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\5_0.txt');

D51=load('E:\惯性器件综合实验\惯性导航试验数据\1\惯导实验1实验数据\Acc_data\3 加计偏置重复测试\5_180.txt');

d1=(mean(D10)+mean(D11))/2;

d2=(mean(D20)+mean(D21))/2;

d3=(mean(D30)+mean(D31))/2;

d5=(mean(D50)+mean(D51))/2;

d=[d1 d2 d3 d5];

h0=mean(d);

Br=sum((d-h0).^2)/3

Br1=sum(Br.^0.5);

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

北航电子电路设计数字部分实验报告

电子电路设计数字部分实验报告 学院: 姓名:

实验一简单组合逻辑设计 实验内容 描述一个可综合的数据比较器,比较数据a 、b的大小,若相同,则给出结果1,否则给出结果0。 实验仿真结果 实验代码 主程序 module compare(equal,a,b); input[7:0] a,b; output equal; assign equal=(a>b)1:0; endmodule 测试程序

module t; reg[7:0] a,b; reg clock,k; wire equal; initial begin a=0; b=0; clock=0; k=0; end always #50 clock = ~clock; always @ (posedge clock) begin a[0]={$random}%2; a[1]={$random}%2; a[2]={$random}%2; a[3]={$random}%2; a[4]={$random}%2; a[5]={$random}%2; a[6]={$random}%2; a[7]={$random}%2; b[0]={$random}%2; b[1]={$random}%2; b[2]={$random}%2; b[3]={$random}%2; b[4]={$random}%2;

b[5]={$random}%2; b[6]={$random}%2; b[7]={$random}%2; end initial begin #100000 $stop;end compare m(.equal(equal),.a(a),.b(b)); endmodule 实验二简单分频时序逻辑电路的设计 实验内容 用always块和@(posedge clk)或@(negedge clk)的结构表述一个1/2分频器的可综合模型,观察时序仿真结果。 实验仿真结果

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

北航航空工程大型通用软件应用大作业样本

航空科学与工程学院 《航空工程大型通用软件应用》大作业 机翼结构设计与分析 组号第3组 小组成员11051090 赵雅甜 11051093 廉佳 11051100 王守财 11051108 刘哲 11051135 张雄健 11051136 姜南 6月

目录 一 CATIA部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、三维模型图................................... 错误!未定义书签。 2、工程图....................................... 错误!未定义书签。 二 FLUENT部分...................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、计算方法和流程............................... 错误!未定义书签。 2、网格分布图................................... 错误!未定义书签。 3、气动力系数................................... 错误!未定义书签。 4、翼型表面压力曲线............................. 错误!未定义书签。 5、翼型周围压力云图............................. 错误!未定义书签。 6、翼型周围x方向速度云图....................... 错误!未定义书签。 7、翼型周围y方向速度云图....................... 错误!未定义书签。 8、翼型周围x方向速度矢量图..................... 错误!未定义书签。 9、翼型周围y方向速度矢量图..................... 错误!未定义书签。 10、流线图...................................... 错误!未定义书签。 三 ANSYS部分....................................... 错误!未定义书签。( 一) 作业要求..................................... 错误!未定义书签。( 二) 作业报告..................................... 错误!未定义书签。 1、机翼按第一强度理论计算的应力云图............. 错误!未定义书签。 2、机翼按第二强度理论计算的应力云图............. 错误!未定义书签。 3、机翼按第三强度理论计算的应力云图............. 错误!未定义书签。 4、机翼按第四强度理论计算的应力云图............. 错误!未定义书签。

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

北航涡轮泵大作业

学号姓名成绩 《冲击式涡轮和反力式涡轮的设计计算》 总结:对冲击式涡轮和反力式涡轮进行设计计算,得到计算结果,具体见表1 和表2。 表1 反力式涡轮的计算结果 表2 冲击式涡轮的计算结果

根据计算结果,我们对比可以得到冲击式涡轮和反力式涡轮的相同点 是: 冲击式涡轮和反力式涡轮在计算功率时,均由泵的功率决定,由 T P N N =∑ 计算。 不同点具体见表3. 表3 反力式涡轮和冲击式涡轮的比较 1. 冲击式涡轮出口压力值取决于涡轮排气是直接排入周围环境还是导入辅助喷管,但两种情况下出口压强和反力式相比均很小。而反力式涡轮通常用于补燃式的液体火箭发动机中的涡轮泵中,所

以在不记喷注器压降的条件下,涡轮的出口压力等于燃烧室的压力。 2.在计算反力式涡轮的参数时,由于反力度容易确定,在分析过程 中广泛采用热力反力度。

反力式涡轮的设计计算 一.反力式涡轮参数的选择 在具有冲击式涡轮的供应系统(无补燃发动机系统)中,由燃气发生器产生的富燃燃气驱动涡轮,涡轮不冷却,富燃燃气的温度在1000~1200K 的范围内,比富氧燃气的允许温度(600~800K)高得多。另外,富燃燃气的气体常数比富氧燃气的气体常数大一些,这些都有利于减小需通过涡轮的燃气流量。 涡轮流量m t q 是具有冲击式涡轮的供应系统的主要参数之一。m t q 值越小,发动机的比冲就越高。涡轮流量m t q 可由泵和涡轮的功率平衡: T Pf Po N N N =+ 泵的需用功率降低,可减小通过涡轮的燃气流量,因此应尽量提高泵的效率。选定泵的结构并确定其效率后,可根据功率平衡求出所需的涡轮燃气流量,由此确定涡轮的效率。 涡轮入口压力(燃气发生器压力)取决于氧化剂泵的出口压力。当用燃料冷却推力室时,燃料泵出口压力比氧化剂泵的出口压力高。 涡轮出口压力之值取决于涡轮排气是直接排入周围环境还是导入辅助喷管。 冲击式涡轮计算的原始数据为: (1)涡轮的设计功率:涡轮功率T N 由泵所需的功率决定,由涡轮泵装置设计任务给定: 其中,T N —涡轮的设计功率,又称涡轮的轴功率; Pf N —燃料泵的轴功率; Pf N —氧化剂泵的轴功率。 (2)涡轮的设计角速度:涡轮的设计转速ω由泵不发生汽蚀时允许的最大角速度确定; (3)涡轮工质的物理常数和温度:涡轮进口总压*0P 、进口总温*0T 、和出口静压2P ;涡轮工质的绝热指数k 和气体常数R 。 二.反力式涡轮参数的选择

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 GAGGAGAGGAFFFFAFAF

二零一三年六月十日 实验4.1 惯性导航系统运动轨迹规划与设计实验一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 GAGGAGAGGAFFFFAFAF

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。 GAGGAGAGGAFFFFAFAF

图4-1-1USB_PCL6045B 评估板原理框图如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 GAGGAGAGGAFFFFAFAF

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

FPGA实验报告北航电气技术实验

FPGA电气技术实践 实验报告 院(系)名称宇航学院 专业名称飞行器设计与工程(航天)学生学号XXXXXXXX 学生姓名XXXXXX 指导教师XXXX 2017年11月XX日

实验一四位二进制加法计数器与一位半加器的设计实验时间:2017.11.08(周三)晚实验编号20 一、实验目的 1、熟悉QuartusII的VHDL的文本编程及图形编程流程全过程。 2、掌握简单逻辑电路的设计方法与功能仿真技巧。 3、学习并掌握VHDL语言、语法规则。 4、参照指导书实例实现四位二进制加法计数器及一位半加器的设计。 二、实验原理 .略 三、实验设备 1可编程逻辑实验箱EP3C55F484C8 一台(包含若干LED指示灯,拨码开关等)2计算机及开发软件QuartusII 一台套 四、调试步骤 1四位二进制加法计数器 (1)参照指导书实例1进行工程建立与命名。 (2)VHDL源文件编辑 由于实验箱上LED指示灯的显示性质为“高电平灭,低电平亮”,为实现预期显示效果应将原参考程序改写为减法器,且”q1<= q1+1”对应改为”q1<= q1-1”,以实现每输入一个脉冲“亮为1,灭为0”。 由于参考程序中的rst清零输入作用并未实现,所以应将程序主体部分的最外部嵌套关于rst输入是否为1的判断,且当rst为1时,给四位指示灯置数”1111”实现全灭,当rst为0时,运行原计数部分。 (3)参照指导书进行波形仿真与管脚绑定等操作,链接实验箱并生成下载文件 (4)将文件下载至实验箱运行,观察计数器工作现象,调试拨动开关查看是否清零。 可以通过改变与PIN_P20(工程中绑定为clk输入的I/O接口)相连导线的另一端所选择的实验箱频率时钟的输出口位置,改变LED灯显示变化频率。 并且对照指导书上对实验箱自带时钟频率的介绍,可以通过改变导线接口转换输入快慢,排查由于clk输入管脚损坏而可能引起的故障。

北航_现代控制理论结课大作业

1. 控制系统任务的物理描述 为了满足飞机品质的要求,飞机的纵向运动和横侧向运动都需要有能够连续工作的阻尼器,以用来调整飞机的飞行姿态,避免其出现不必要的俯仰和倾斜。维持飞机纵向运动的阻尼器称为俯仰阻尼器,维持飞机横侧向运动的阻尼器称为偏航阻尼器。本次课程大作业旨在通过运用Matlab 的经典控制系统设计工具对某型飞机偏航阻尼器进行控制系统的设计。 2. 控制系统对象的数学模型 巡航状态下,某型飞机侧向运动的状态空间模型为: 111 12131411122212223242122131 3233343132234142434441424()1()()()()2()()()3()()4t x t a a a a b b t x t a a a a b b u t a a a a b b u t x t t a a a a b b x t t x x x x ??????????????????????????????????=+???????????????????????? ?????????? 111121314122122 2324234()()()()()()x t c c c c y t x t c c c c y t x t x t ??????????=?????????????? 式中: 1()x t :侧滑角(单位为rad ) 2()x t :偏航角速度(单位为/rad s ) 3()x t :滚转角速度(单位为/rad s ) 4()x t :倾斜角(单位为rad ) 输入向量及输出向量分别为: 1()u t :方向舵偏角(单位为rad ) 2()u t :副翼偏角(单位为rad )

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

北航17系光电子实验报告实验5讲解

光电子技术实验报告

实验五光电池特性实验 一.实验目的: 1.学习掌握硅光电池的工作原理。 2.学习掌握硅光电池的基本特性。 3.掌握硅光电池基本特性测试方法。 二.实验原理: 光电池是一种不需要加偏置电压就能把光能直接转换成电能的PN结光电器件,按光电池的功用可将其分为两大类:即太阳能光电池和测量光电池,本仪器用的是测量用的硅光电池,其主要功能是作为光电探测,即在不加偏置的情况下将光信号转换成电信号。 图(20)图(21)如图(20)所示为2DR型硅光电池的结构,它是以P型硅为衬底(即在本征型硅材料中掺入三价元素硼或镓等),然后在衬底上扩散磷而形成N型层并将其作为受光面。如图(21)所示当光作用于PN结时,耗尽区内的光生电子与空穴在内建电场力的作用下分别向N区和P区运动,在闭合电路中将产生输出电流IL,且负载电阻RL上产生电压降为U。显然,PN结获得的偏置电压U与光电池输出电流IL与负载电阻RL有关,即U=IL?RL,当以输出电流的IL为电流和电压的正方向时,可以得到如图(22)所示的伏安特性曲线。

图(22)图(23)光电池在不同的光强照射下可以产生不同的光电流和光生电动势,硅光电池的光照特性曲线如图(23)所示,短路电流在很大范围内与光强成线性关系,开路电压随光强变化是非线性的,并且当照度在2000lx时就趋于饱和,因此,把光电池作为测量元件时,应把它当作电流源来使用,不宜用作电压源。 硒光电池和硅光电池的光谱特性曲线如图(25)所示,不同的光电池其光谱峰值的位置不同,硅光电池的在800nm附近,硒光电池的在540nm附近,硅光电池的光谱范围很广,在450~1100nm之间,硒光电池的光谱范围为340~750nm。 图(24)图(25)光电池的温度特性主要描述光电池的开路电压和短路电流随温度变化的情况,由于它关系到应用光电池设备的温度漂移,影响到测量精度或控制精度等主要指标,光电池的温度特性如图(24)所示。开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加,因此,当使用光电池作为测量元件时,在系统设计中应考虑到温度的漂移,并采取相应的措施进行补偿。 三.实验所需部件: 两种光电池、各类光源、实验选配单元、数字电压表(4 1/2位)自备、微安表(毫安表)、激光器、照度计(用户选配)。

相关文档
最新文档