关于应力应变状态问题资料.doc

关于应力应变状态问题资料.doc
关于应力应变状态问题资料.doc

关于应力应变状态问题(含组合变形)

2009年10月29日星期四

应力应变状态重点公式: 基本公式:ατασσσσσα2sin 2cos 2

2xy y

x y

x --++= ατασσσσσα2sin 2cos 2290xy y

x y x +--+=+ο

ατασστα2cos 2sin 2xy y

x +-=

y

x xy

σστα--=22tan ()22max 42

1

2xy y x y x τσσσσσ+-++= ()22

min 421

2xy y x y

x τσσσσσ+--+= 应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。

广义胡可定律及其公式:

(){}z y x x E

σσμσε+-=1 G xy xy τγ= (){}x z y y E

σσμσε+-=1 G yz yz τγ= (){}y x z z E σσμσε+-=

1 G zx zx τγ= (){}32111σσμσε+-=E ;(){}13221σσμσε+-=E ;(){}21331σσμσε+-=E

习题:P255 7.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、

四种常用强度理论:

最大拉应力理论(第一强度理论)[]σσ≤1

最大伸长线应变理论(第二强度理论)()[]σσσμσ≤+-321

最大切应力理论(第三强度理论)[]σσσ≤-31

畸变能密度理论(第四强度理论)()()()[]

[]σσσσσσσ≤-+-+-21323222121 01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即:ο90++=+αασσσσy x 或min max σσσσ+=+y x 。(7分)(2009吉大)

02、4、已知平面应力状态如图(应力单位MPa ),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大)

题二.4图

03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+=

30MPa ,试校核该点处的强度。(15分)(2008华南理工)

04、5、(20分)如图所示的平面应力状态,求主应力并画出主单元体,应力单位为MPa 。(2009燕山大学)

题5图

05、五、(15分)木制的构件中的某一微元应力如图所示,图中所示的角度为木纹方向与铅垂方向的夹角。试求:(1)面内平行于木纹方向的剪应力;(2)垂直木纹方向的正应力;(3)该点的三个主应力和最大剪应力。(2008南航)

(答案:

MPa 615=-τ,MPa 4.3815-=-σ,01=σ,MPa 162-=σ,MPa 403-=σ,MPa 20max =τ

题五图

06、4、如图所示,直角三角形单元体,已知其斜边上无应力。则该应力状态为_____向应力状态,且应力分量σx与σy之间的大小关系为__________。(6分)(2007武汉理工)

题一4图

07、三、某点的两个方向面的应力如图,求其主应力、最大切应力及主平面的方位。(15分)

(答案:σ1=500MPa,σ2=100MPa,σ3=0MPa,τmax=250MPa。以A方向面的法线为基准,顺时针方向旋转60°即为作用着σ1的主方向;逆时针旋转30°即为作用着σ2的主方向)(2006南航)

题三图

08、四、(20分)一点处(平面应力状态)两相交平面上的应力如图3所示。求σ值以及该点的主应力和最大剪应力。(2006华东理工)

图3

09、6、已知A点应力状态如图所示,求斜面上的剪应力τ及A点的主应力1σ,2σ和3σ。(20分)(2008湖南大学)

10、6.自平面受力物体内取出一微体,其上受应力 及3/στ=如图示。求此点的三个主应力及画出其主单元体。(15分)(2006华南理工) 606000ττ

σ

a

b

c 题三、6图

11

、5.如图示单元体,试证明切应力互等定理仍然成立。即τ=τ′。(5分)(2008华南理工)(提示:对Z 轴求矩即可)

12、10、单元体的应力状态如图所示,已知材料常数E =200GPa ,μ=0.3,试求:(1)画出其三向应力圆;(2)求出三个主应力及其对应的主平面方向;(3)计算最大的线应变,最大的切应力和最大切应变(角应变)(15分)(2008西交)

题10图

13、5、某构件危险点应力状态如图所示,材料的许用应力为[]MPa 170=σ,试按第三强度理论校核该构件。(20分)(2009湖南大学)

14、6、试求图示应力状态的主应力值和最大切应力值(图中应力单位为MPa )(13分)(2009江苏大学)

15、3、(10分)单元体各面上的应力如图所示,求该微分单元体上的最大剪应力值。(2009燕山大学)

题3图

16、五、(15分)某结构危险点的应力状态如图所示,已知E=200GPa,μ=0.3,α=45°,试求图示单元体:(1)主应力;(2)最大切应力;(3)最大线应变;(4)画出相应的三向应力圆草图;(5)在三向应力圆上标出指定斜截面上应力所对应的点D。(2008吉大)

题五图

17、二、(15分)某构件危险点的应力状态如图。材料的E=200GPa,μ=0.3,σs=240MPa,σb=400MPa,试求:1、主应力;2、最大切应力;3、最大线应变;4、画出应力圆草图;

5、设n=1.6,校核其强度。(2007吉大)

题二图

18、四、已知某钢结构危险点处的应力状态如图所示,E=200GPa,μ=0.25。试求:(1)图示单元体的主应力;(2)最大剪应力;(3)最大线应变;(4)画出相应的三向应力圆

草图。(15分)(2005吉大)

题四图

19、6、(15分)现测的如图所示的矩形截面梁表面K 点处的应变6

451050--?=οε。已

知材料的弹性模量E =200GPa ,泊松比μ=0.25,a =0.5m ,b =60mm ,h =100mm 。试求作用在梁上的载荷M 。(2009燕山大学)

题6图

20、四、(20分)图示纯弯曲梁,已知外力偶矩M e ,截面对中性轴的惯性矩I z ,材料的弹性常数E 、v ,AB 线段与梁轴线夹角为45°,其长度为a 。求线段AB 的长度改变量。(2005西南交大)

题四图

21、5、图示矩形截面钢梁受两个集中力作用,材料的弹性模量E =200GPa ,泊松比υ=0.32,梁长l =2m ,a =400mm ,b =60mm ,h =120mm 。在距中性层h /4的点m 处测得与x 轴成45°方向的线应变,6

4510300-?=οε,试求力F 大小。(15分)(2008北工大)

题二、5图

22、三、(20分)图示简支梁,由№18工字形铸铁梁构成,许用拉应力为[]MPa t 35=σ,许用压应力为[]MPa c 100=σ。在外载荷作用下,测得横截面A 底边的纵向正应变4100.3-?=ε。已知梁的弹性模量E =100GPa ,a =1m 。试校核梁的强度。(2008北科大)(提示:①求q 值;②确定max M 值;③强度校核。)

题三图

23、四、(15分)为了监测受扭空心圆杆的扭矩大小,在圆杆内表面沿45°方向粘贴应变片,已知材料为45钢,切变模量G =80GPa ,泊松比μ=0.3。杆件外径D =100mm ,内径d =80mm ,材料的许用切应力为[τ]=100MPa ,今测得应变片的应变读数为590×10-6,试问:(1)杆件承受的扭矩有多大?(2)材料强度是否足够?(2008南航) (答案:Nm T M e 6832==,MPa 118max =τ>[τ] 强度不够)

题四图

24、六、(15分)直径D =100mm 的圆杆,自由端有集中力F P 和集中力偶M 作用,测得

沿母线1方向的线应变ε1=5×10-

4,沿与母线方向成45°的2方向的线应变ε2=3×10-4,圆杆材料弹性模量E =200GPa ,泊松比μ=0.3,许用应力[σ]=150MPa ,设圆杆变形在弹性范围内,试求:(1)集中力F P 和集中力偶M 的大小;(2)用单元体表示危险点的应力状态;(3)用第三强度理论校核该杆的强度。(2008南航)

(答案:kN F p 785=,m kN M ?=73.3,MPa r 1073=σ<[σ] 安全)

题六图

25、7、某主轴受轴向拉伸与扭转联合作用,为了用实验方法测定拉力F p 及外力偶M e ,在主轴上沿轴线方向及与轴向45°夹角方向各贴一枚电阻应变片,今测得轴在等速旋转时

轴向应变平均值与45°方向应变平均值分别为ε0°=500×10-6,ε45°=80×10-6。若轴的直

径d =300mm ,材料的弹性模量E =210GPa ,泊松比ν=0.28,材料的许用应力[σ]=120MPa 。

求:(1)、轴向力F p 和外加力偶矩M e ,(2)、用第三强度理论校核该轴强度。(15分) (答案 :F p =7422kN ;M e =87kNm,σr3=110MPa ≤[σ])(2007南航)

题7图

26、四、(计算题,15分)已知图示圆轴的直径为d ,材料弹性模量为E ,泊松比为ν,两端受扭转力偶矩M e 作用。求:圆轴表面点A 处沿与水平线成顺时针45°夹角方向的线应变ε。(华东理工2007)

题四图

27、5、图示圆轴的直径为d =40mm ,受轴向拉力F 和力偶e M 作用,ν=0.23,

[]MPa 130=σ。测得表面上点K 处的线应变44510146-?-=οε,41351046.4-?=οε。MPa E 5

102?=。试用第三强度理论校核轴的强度,并计算力F 和力偶e M 。(20分)(2009北工大) (提示:①由ο45σ和ο135σ公式计算出σ和τ值;②由σ和τ进行强度校核;③确定F 和

M e 值。)

题二.5图

28、五、(20分)已知,材料为A3钢,E=200GPa ,ν=0.25,圆筒外径D=120mm ,内径d=80mm 。已测得空心筒表面上Ⅰ、Ⅱ两方向的线应变绝对值之和为611110400-?=+εε。求外扭矩T 之值。(2004西南交大)

题五图

29、七.用电阻应变仪测得图示受扭圆轴表面上一点的任意两个相互成45度方向的应变值为ε′=3. 75×10-4,ε′′=5×10-4已知E =2×105 MPa 。ν=0. 25,D =10 cm 。

试求扭转外力偶矩M e 。(20分)(2009华南理工)

30、10、已知拉伸与扭转组合变形的空心圆管外径D =150mm ,内径d =130mm ,拉力F

=150kN,扭矩T=15kN·m。(1)设许用应力[σ]=100MP,按第三或第四强度理论校核其强度;(2)欲用电测法测量其外表面的最大线应变,应在哪个方向布置电阻片?设材料E=200GPa,μ=0.3,最大线应变应为多少?(16分)(2007西交)

题10图

31、14、螺旋桨主轴为外径D=140mm,内径d=100mm的厚壁圆筒,已知F=200kN 的轴向推力,[σ]=100MPa。(1)用第三强度理论求主轴所能承受的最大扭矩T;(2)设弹性模量E=200GPa,泊松比μ=0.3,求轴内的最大线应变和最大切应力。(20分)(2006西交)

题14图

32、七、(15分)如图9所示闭口薄壁圆筒受内压p和弯曲力偶M的联合作用。今测得A点轴向应变ε0=4×10—4,B点沿圆周线方向的正应变ε90=2×10—4。已知薄壁圆筒的外径D=60mm,壁厚δ=2mm,E=200GPa,μ=0.25,[σ]=150MPa。(1)画出A点的微体受力状态图。(2)求出弯曲力偶矩M和内压p的大小。(3)试用第三强度理论校核筒的强度。(2006北航)

33、4.如图2-4所示薄壁长圆筒,长度为L,壁厚为δ,平均直径为D,已知材料的弹性模量为E;泊松比为v;许用正应力为[σ]。现承受内压p和扭转外力偶矩m e=πD3p/4的同时作用。薄壁圆筒的抗扭截面模量可取W t=πD2δ/2,试求:(1)按第三强度理论建立强度条件。(2)筒体的轴向变形△L。(20分)(2005武汉理工)

图2-4

34、5、如图3-5所示,端截面密封的曲管的外径为100 mm,壁厚t=5 mm,内压p=8 MPa。集中力P=3 kN。A、B两点在管的外表面上,一为截面垂直直径的端点,一为水平直径的端点。试确定两点的应力状态。(20分)(2009华南理工)

关于应力应变状态问题

关于应力应变状态问题(含组合变形) 2009年10月29日星期四 应力应变状态重点公式: 基本公式:ατασσσσσα2sin 2cos 22 xy y x y x --+ += ατασσσσσα2sin 2cos 2 2 90xy y x y x +-- += +ο ατασστα2cos 2sin 2 xy y x +-= y x xy σστα-- =22tan ()2 2 max 4212 xy y x y x τσσσσσ+-++= ()22 min 42 12 xy y x y x τσσ σσσ+-- += 应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面 对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。 广义胡可定律及其公式: (){}z y x x E σσμσε+-=1 G xy xy τγ= (){}x z y y E σσμσε+-=1 G yz yz τγ= (){}y x z z E σσμσε+-= 1 G zx zx τγ= (){}32111 σσμσε+-= E ;(){}13221σσμσε+-=E ;(){}21331σσμσε+-=E 习题:P255 7.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、

四种常用强度理论: 最大拉应力理论(第一强度理论)[]σσ≤1 最大伸长线应变理论(第二强度理论)()[]σσσμσ≤+-321 最大切应力理论(第三强度理论)[]σσσ≤-31 畸变能密度理论(第四强度理论) ()()()[] []σσσσσσσ≤-+-+-2132322212 1 01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即:ο90++=+αασσσσy x 或min max σσσσ+=+y x 。(7分)(2009吉大) 02、4、已知平面应力状态如图(应力单位MPa ),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大) 题二.4图 03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+= 30MPa ,试校核该点处的强度。(15分)(2008华南理工)

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

ch8 应力应变状态分析(3rd)

第八章 应力、应变状态分析 8-2 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的正 应力与切应力。 题8-2图 (a)解:由题图所示应力状态可知, 45MPa 20MPa 10MPa 30=-===αηζζx y x ,,, 将上列数据代入平面应力状态斜截面应力公式,得 MPa 0.10)MPa 90sin 2 1030( MPa 0.40)MPa 90sin 202 10 30( =-==++= ααηζ (b)解:由题图所示应力状态可知, 5.22MPa 20MPa 10MPa 30===-=αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 )MPa cos4520sin452 1030( MPa 3.38)MPa sin4520cos452 10 3021030( =+--=-=---++-= ααηζ (c)解:由题图所示应力状态可知, 60MPa 15MPa 20MPa 10-==-==αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 MPa 5.20)]MPa 120cos(15)120sin(2 2010[ MPa 490.0)]MPa 120sin(15)120cos(2 20 1022010[ -=-+-+==---++-= ααηζ 8-3 试用图解法(应力圆)解题8-1。 解:题8-1图所示应力状态的应力圆如图8-3所示。

图8-3 由图a 可以量得指定截面上的正应力和切应力分别为 MPa 0.15MPa 0.104545=== ηηζζαα,= 由图b 可以量得指定截面上的正应力和切应力分别为 MPa 3.7MPa 3.473030-===-- ηηζζαα,= 8-6 图示双向拉伸应力状态,应力σσσ ==y x 。试证明任意斜截面上的正应力均等 于σ,而切应力则为零。 题8-6图 证明:由题设条件可知, 0===x y x ηζζζ, 将上述数据代入平面应力状态斜截面应力公式,则有 02sin 2 02cos 2 2=+-==--++= αζ ζηζαζ ζζζζαα 由于式中α为任意值,故原命题得证。 8-7 已知某点A 处截面AB 与AC 的应力如图所示(应力单位为MPa ),试用图解法 求主应力的大小及所在截面的方位。

如何用Origin画应力应变曲线

如何用Origin画应力应变曲线 edited by: jsphnee,2011-11-22 本文是作者从小白开始一步一步学着用excel和origin作应力应变曲线的经验分享,只适于初学者,有不对的地方还请高手多多指教。在此也一并感谢网上提供origin及excel相关技巧解答的同志们。 一、数据导出 1.用Access打开数据库,并将OriginalData导出到excel中(97-03版,否则ori打不 开); 2.打开导出的OriginalData.xls文件和试验报告文件(实验结果中另一个以日期命名的 excel文件,Tip:为方便统一打开与存放,可将试验报告文件复制到OriginalData的新工作表sheet中,可命名为report); 3.保存,并更改文件名,(Tip:每次更改后都点一下保存,以免程序卡死时丢失数 据。) 4.新建以试样编号命名的sheet,有几组试样就建几个sheet;

二、数据处理 1.筛选各个试样的拉伸数据 在OriginalData中,选中TestNo列,再点数据工具栏中的筛选。 点击列标题旁的下拉箭头,出现下面左图中的对话框。 取消全选,依次选中一个TestNo后确定,便能筛选出各次拉伸试验的数据,如上图中右边的对话框所示。(一个试样对应一个TestNo)

(虽然一组试样对应多个TestNo,但为后续处理的方便,个人认为此处还是一个一个筛选比较好。) 2、复制LoadValue及ExtendValue值 选中LoadValue及ExtendValue列,并将其复制到相应试验组的sheet中。 然后按照相同的步骤依次筛选该组的各个拉伸试样的数据拷贝到该sheet中。如下图:

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

应力状态与应变状态分析

第8章典型习题解析 1. 试画出下图所示简支梁A 点处的原始单元体。 图8.1 解:(1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图(d)所示。 (2)分析单元体各面上的应力: A 点偏右横截面的正应力和切应力如图(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为: z M y I σ= b I QS z z *= τ 由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图(d)。 2.图(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解:(1)求斜截面上的正应力 ?30-σ和切应力?30-τ

由公式 MPa 5.64)60sin()60()60cos(2100 5021005030-=?---?---++-= ?-σ MPa 95.34)60cos()60()60sin(2100 5030=?--+?---= ?-τ (2)求主方向及主应力 8 .010050120 22tan -=----=-- =y x x σστα ?-=66.382α ?=? -=67.7033.1921αα 最大主应力在第一象限中,对应的角度为 070.67α=?,主应力的大小为 1 5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ= ??--??=-+--+ 由 y x σσσσαα+=+2 1 可解出 2 1 (50)100(121.0)71.0MPa x y ασσσσ=+=-+-=-- 因有一个为零的主应力,因此 )33.19(MPa 0.7133?--=第三主方向=ασ 画出主单元体如图8.2(b)。 (3)主切应力作用面的法线方向 25 .1120100 502tan =---= 'α ?='34.512α ?='? ='67.11567.2521αα 主切应力为 ' 2 ' 1 MPa 04.96)34.51cos()60()34.51sin(2100 50ααττ-=-=?-+?--= 此两截面上的正应力为 MPa 0.25)34.51sin()60()34.51cos(2100 502100501 =?--?--++-= 'ασ MPa 0.25)34.231sin()60()34.231cos(2100 502100502 =?--?--++-= 'ασ 主切应力单元体如图所示。

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d 20 (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2τ τσ==; (C )AC AC /2,/2τ τσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关

于它们的正确性,现有四种答案,正确答案是( D )。 (b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)( a)和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45o的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料;

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。

许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结 机床的位置 应力 应变 位移 油缸 27 5号顶尖 10 固定支撑钉 在分析中发现油缸所受的应力最大,油缸使用的是35钢,5号顶尖使用的材料是45钢,固定支撑钉使用的是T8,查《机械设计》三者都小于其许用应力,故设计满足要求。它们的主要力学性能参数如表,查《机械设计师手册》。 表4主要力学性能参数 材料名称 屈服强度( ) 抗拉强度 35钢 315 600 45钢 355 598 T8 900 采用安全系数法判断零件危险截面处的安全程度是疲劳强度计算中应用广泛的一种方法,其强度条件是:危险截面处的安全系数S 应大于等于许用安全系数 ,即 查《机械设计》S ,所以

相关文档
最新文档