平面向量的基本概念及运算

平面向量的基本概念及运算
平面向量的基本概念及运算

第11讲 平面向量的基本概念及运算

基本概念: 1.给出下列命题:

①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →

相等.则所有正确命题的序号是________.

2.D 是△ABC 的边AB 上的中点,则向量CD →

=______________.

3.若2(y -13a )-1

2(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________.

4.已知实数m ,n 和向量a ,b ,给出下列命题: ①m (a -b )=m a -m b ; ②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ; ④若m a =n a (a ≠0),则m =n . 其中正确的命题是________.

5.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →

,则λ=______.

坐标运算:

1.如果e 1,e 2是平面α内所有向量的一组基底,λ,μ是实数,则下列说法中正确的有______.(填序号) ①若λ,μ满足λe 1+μe 2=0,则λ=μ=0;

②对于平面α内任意一个向量a ,使得a =λe 1+μe 2成立的实数λ,μ有无数对; ③线性组合λe 1+μe 2可以表示平面α内的所有向量; ④当λ,μ取不同的值时,向量λe 1+μe 2可能表示同一向量.

2.给出下面几种说法: ①相等向量的坐标相同;

②平面上一个向量对应于平面上唯一的坐标; ③一个坐标对应于唯一的一个向量;

④平面上一个点与以原点为始点,该点为终点的向量一一对应.

其中正确说法的个数是________.

3.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →

=________.

4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m

n =________.

5.已知?ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.

【考纲解读】

平面向量的线性运算是高考中的非常容易考的内容,题型多为填空题,难度适中,属中档题.

【考点分析】

1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向,不能盲目转化.

2.在用三角形加法法则时要保证“首尾相接”,和向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,减向量的方向是指向被减向量.

3.向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.

【知识梳理】

1.向量的有关概念

三角形法则

平行四边形法则

三角形法则 (1)|λa |=|λ||a |; 例1.给出下列四个命题: ①若|a |=|b |,则a =b ;

②若A ,B ,C ,D 是不共线的四点,则AB →=DC →

是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________.

.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③

若a 与a 0平行且|a |=1,则a =a 0. 上述命题中,假命题的个数是________.

题型二 平面向量的线性运算 命题点1 向量的线性运算

例2.(1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →

=__________. (2)设D 为△ABC 所在平面内一点,BC →=3CD →,则AD →

=____________.

命题点2 根据向量线性运算求参数

例3.(1)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →

(m ,n ∈R ),则m -n =________.

(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →

=xAB →+(1-x )AC →

,则x 的取值范围是______________.

.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于

点K ,其中,AE →=25AB →,AF →=12

AD →,AK →=λAC →

,则λ的值为________.

题型三 共线定理的应用

例4.设两个非零向量a 与b 不共线.

(1)若AB →=a +b ,BC →=2a +8b ,CD →

=3(a -b ), 求证:A ,B ,D 三点共线;

(2)试确定实数k ,使k a +b 和a +k b 共线.

.设两个向量a 与b 不共线.

(1)试证:起点相同的三个向量a ,b,3a -2b 的终点在同一条直线上(a ≠b ); (2)求实数k ,使得k a +b 与2a +k b 共线.

1.平面向量基本定理

如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.

其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算

(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则

a +

b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),

λa =(λx 1,λy 1),|a | (2)向量坐标的求法:

①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),

|AB | 3.平面向量共线的坐标表示

设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0. a ∥b ?x 1y 2-x 2y 1=0.

题型一 平面向量基本定理的应用

例1.(1)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →

=______________.

(2)如图,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD →∥AG →,若AD →=15AB →+λAC →

(λ∈R ),则λ的

值为________.

.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211

AC →

,则实数m 的值为________.

题型二 平面向量的坐标运算

例2.(1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =__________. (2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b =________.

.(1)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λ

μ

=______.

(2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →

,则顶点D 的坐标为__________.

题型三 向量共线的坐标表示

命题点1 利用向量共线求向量或点的坐标

例3.已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________.

命题点2 利用向量共线求参数

例4.已知向量a =(1-sin θ,1),b =(1

2,1+sin θ),若a ∥b ,则锐角θ=________.

.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的

坐标为________.

(2)设OA →=(-2,4),OB →=(-a,2),OC →

=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的

最小值为________. 【真题拾遗】

(江苏高考T12)(5 分)如图,在平行四边形中,已知,,,2

=?BP AP ,

则AP AD ?的值是 ▲

.

(江苏高考T6)(5分)已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则n m -的值为______.

(江苏高考T13) (5分)如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ?=,

1BF CF ?=-,

则BE CE ?的值是 .

(江苏高考T12) (5分)如图,在同一个平面内,向量,,的模分别为2,1,1,与的夹角为α,且tan α=7,OB 与OC 的夹角为45°。若OB n OA m OC +=(R n m ∈,), 则n m +=

(江苏高考T12) (5分)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,

以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ?=,则点A 的横坐标为 .

ABCD 8=AB 5=AD PD CP 3=

【模拟演练】

1.已知a ,b 是两个非零向量,且|a +b |=|a |+|b |,则下列说法正确的是________. ①a +b =0 ②a =b

③a 与b 共线反向 ④存在正实数λ,使a =λb

2.对于非零向量a ,b ,“a ∥b ”是“a +b =0成立”的____________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

3.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =________.

4.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →

=b ,给出下列命题: ①AD →

=-12a -b ;

②BE →

=a +12b ;

③CF →

=-12a +12

b ;

④AD →+BE →+CF →

=0.

其中正确的命题是________.(填序号)

5.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →

,则m +n 的值为________.

6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →

,则r +s =________.

7.在?ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →

的坐标为__________.

8.设0<θ<π

2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.

9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →

,其中λ,μ∈R ,则λ+μ=______.

10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →

=mOA →+nOB →

,则m +n 的取值范围是________.

【要点总结】

向量有关概念的5个关键点

(1)向量:方向、长度.

(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.

用几个基本向量表示某个向量问题的4个步骤

(1)观察各向量的位置; (2)寻找相应的三角形或多边形; (3)运用法则找关系; (4)化简结果.

共线向量定理的3个应用

(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB =λAC ,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.

用平面向量基本定理解决问题的一般思路

(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性

质定理

平面向量坐标运算的技巧

(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.

(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.

1.设x ,y ∈R ,向量a =(x,1),b =(2,y ),且a +2b =(5,-3),则x +y =________.

2.已知点M (5,-6)和向量a =(1,-2),若MN →

=-3a ,则点N 的坐标为__________.

3.已知向量a =(1,2),b =(m,4),且a ∥(2a +b ),则实数m 的值为________.

4.已知a =(1,1),b =(1,-1),c =(-1,2),则c =______.(用a ,b 表示)

5.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →

,则实数a =________.

6.设P 为锐角△ABC 的外心(三角形外接圆的圆心),AP →=k (AB →+AC →

)(k ∈R ),若cos ∠BAC =25,则k =________.

7.在△ABC 中,D 在线段BC 上,BD →=2DC →.若AD →=mAB →+nAC →

,则m n =________.

8.如图,网格纸上小正方形的边长为1,若起点和终点均在格点的向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),则x +y =________.

9.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →

=a -2b ,若A ,B ,D 三点共线,则实数p 的值是________. 答案 -1

10.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →

成立,则m =______. 答案 3

11.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →

,m ,n ∈R ,则1n +1

m

的值为________.

41平面向量的概念及线性运算

6. (2010浙江杭州调研)设a 、b 是两个不共线向量, AB = 2a + pb , BC = a + b , CD = a — 2b , 第四单元 平面向量 4.1 平面向量的概念及线性运算 、选择题 1.在厶 ABC 中,AB = c , AC = b ,若点 D 满足 BD = 2DC ,则 AD =( ) 2 1 A ?3b + 3c 5 2 B ?3c — 3b C.2b -3c 3 3 1 2 D ?1b + 3c …AD = AB + BD = c + 3( b — c) = §b + 3c 答案:A 2. (2010广东中山调研)已知a 、b 是两个不共线的向量,AB =入a b, AC = a +讥入 此R ), 那么 A 、B 、C 三点共线的充要条, 件是 ( ) A . ?+尸 2 B .入一 (i= 1 C . 入=—1 D . 入=1 解析 由 AB =入 a b, AC = a + 3 b 人 卩€ R )及 A 、B 、 C 三点共线得AB = tAC (t € R), 入=t 所以 入 t+ b^ t(a + ub ta +1 3, 「所以 1 ,即入 =1. 1 = t 3 答案 :D 3. (2009 ?东)设P 是厶ABC 所在平面内的一点, BC + BA = 2BP ,则( ) A . PA + PB = 0 C . PB + PC =0 B . P C + PA = 0 D . PA + PB + PC = 0 V ----------- 」 解析:如上图,根据向量加法的几何意义 Be + B A = 2B P ? P 是AC 的中点, 故 PA + PC = 0. 答案:B 4.已知平面内有一点 P 及一个△ ABC ,若PA + PB + PC = AB ,则( ) A .点P 在厶ABC 外部 B .点P 在线段 AB 上 C .点P 在线段BC 上 D .点P 在线段AC 上 解析:?/ PA + PB + PC = AB , ??? PA + PB + PC = PB — PA ??? PC = — 2PA.A 2PA = CP ,?点 P 在线段 AC 上. 答案:D 、填空题 5. (2009宁夏银川模拟)若AB = 3% CD = — 5e i ,且AD 与CB 的模相等,则四边形 ABCD 是 解析:?/ AB = — 3CD , ??? AB // CD ,且 |AB|M |CD|. 5 答案:等腰梯形 解析: D C =AC — AB = b- c , B D = 2BC = 2(b — c),

第一节平面向量的概念及运算性质

第一节平面向量的概念及其线性运算 [知识能否忆起] 一、向量的有关概念 1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模. 2.零向量:长度等于0的向量,其方向是任意的. 3.单位向量:长度等于1个单位的向量. 4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. 5.相等向量:长度相等且方向相同的向量. 6.相反向量:长度相等且方向相反的向量. 二、向量的线性运算 平行四边形法则 1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=|λ||a|; ②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0. 2.运算律:设λ,μ是两个实数,则: ①λ(μa)=(λμ)a;②(λ+μ)a=λ a+μ a;③λ(a+b)=λa+λb. 四、共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.

[小题能否全取] 1.下列命题正确的是( ) A .不平行的向量一定不相等 B .平面内的单位向量有且仅有一个 C .a 与b 是共线向量,b 与c 是平行向量,则a 与c 是方向相同的向量 D .若a 与b 平行,则b 与a 方向相同或相反 解析:选A 对于B ,单位向量不是仅有一个,故B 错;对于C ,a 与c 的方向也可能相反,故C 错;对于D ,若b =0,则b 的方向是任意的,故D 错,综上可知选A. 2.如右图所示,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 2 解析:选C 由题图可得a -b =BA =e 1-3e 2. 3.(教材习题改编)设a ,b 为不共线向量,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,则下列关系式中正确的是( ) A .AD =BC B .AD =2B C C .A D =-BC D .AD =-2BC 解析:选B AD =AB +BC +CD =a +2b +(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b )=2BC . 4.若菱形ABCD 的边长为2,则|AB -CB +CD |=________. 解析:|AB -CB +CD |=|AB +BC +CD |=|AD |=2. 答案:2 5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )], 所以????? λ=-k , 1=3k ,解得??? k =1 3 ,λ=-13. 答案:-1 3 共线向量定理应用时的注意点 (1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两 向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所

平面向量及其加减运算课后训练

数学《平面向量》复习卷 一、填空题 1、向量的两个要素是: 和 。 2、A 、B 、C 是⊙O 上的三点,则向量OA 、OB 、OC 的关系是 . 3、下列命题:①若两个向量相等则起点相同,终点相同; ②若AB =DC ,则ABCD 是平行四边形;③若ABCD 是平行四边形,则 AB =DC ; ④a =b ,b =c 则a =c ;其中正确的序号是 . 4、如图所示,四边形ABCD 与ABDE 都是平行四边形,则 ①与向量AB 平行的向量有 ; ②若|AB |=1.5,则|CE |= . 5、 如图,四边形ABCD 与ABDE 都是平行四边形 ①与向量AB 相等的向量有 ; ②若|AB |=3,则向量EC 的模等于 。 6、已知正方形ABCD 的边长为1,AB =a ,AC =c , BC =b ,则|a +b +c |为 7、在四边形ABCD 中,AC =AB +AD ,则ABCD 是 形。 8、化简(AB -CD )+(BE -DE )的结果是 。 9、化简:OM -ON +MN . 10、一架飞机向西飞行100km,然后改变方向向南飞行100km,飞机两次位移的和为 。 二、选择题 1、在四边形ABCD 中,AB =DC ,且|AB |=|BC |,那么四边形ABCD 为( ) A .平行四边形 B .菱形 C .长方形 D .正方形 2、等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰 AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A.AD =BC B.AC =BD C.PE =PF D.EP =PF E C A B

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

第1讲 平面向量的概念及线性表示

第1讲平面向量的概念及线性表示◆高考导航·顺风启程◆ [知识梳理] 1.向量的有关概念 2.向量的线性运算

求两个向量和的 交换律:结合律:的相反向 |λa |= |λ||a | ,当λ>0时,λa 与a 3.平行向量基本定理 如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使a =λb . [知识感悟] 1.三点共线的等价转化 A ,P , B 三点共线?AP →=λAB →(λ≠0)?OP →=(1-t )·OA →+tOB → (O 为平面内异于A ,P ,B 的任一点,t ∈R )?OP →=xOA →+yOB → (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 2.向量的中线公式 若P 为线段AB 的中点,O 为平面内一点,则OP →=12(OA →+OB → ). 3.三角形的重心 已知平面内不共线的三点A ,B ,C ,PG →=13(P A →+PB →+PC → )?G 是△ABC 的重心.特别 地,P A →+PB →+PC → =0?P 为△ABC 的重心. [知识自测] 1.(思考辨析)判断下列结论是否正确(请在括号中打“√”或“×”) (1)若向量a ,b 共线,则向量a ,b 的方向相同.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( ) (3)向量与有向线段是一样的,因此可以用有向线段来表示向量.( )

(4)|a |与|b |是否相等与a ,b 的方向无关.( ) (5)已知两向量a ,b ,若|a |=1,|b |=1,则|a +b |=2.( ) (6)向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (7)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) [答案] (1)× (2)× (3)× (4)√ (5)× (6)× (7)√ 2.已知a ,b 是不共线的向量,AB →=λa +b ,AC → =a +μb (λ,μ∈R ),那么A ,B ,C 三点共线的充要条件是( ) A .λ+μ=2 B .λ-μ=1 C .λμ=-1 D .λμ=1 [解析] 由AB →=λa +b ,AC →=a +μb (λ,μ∈R )及A ,B ,C 三点共线得AB →=tAC → ,所以λa +b =t (a +μb )=t a +tμb ,即可得? ???? λ=t , 1=tμ,所以λμ=1,故选D. [答案] D 3.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的______条件. [解析] 若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ?q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ?/ p . ∴p 是q 的充分不必要条件. [答案] 充分不必要 题型一 平面向量的概念(基础保分题,自主练透) (1)给出下列命题: ①若|a |=|b |,则a =b ; ②若A ,B ,C ,D 是不共线的四点, 则AB →=DC → 是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .①④ [解析] ①不正确.两个向量的长度相等,但它们的方向不一定相同.

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

32总复习:平面向量的概念及线性运算知识梳理

平面向量的概念、线性运算及坐标运算 编稿:李霞 审稿:孙永钊 【考纲要求】 1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示. 2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义. 3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件. 【知识网络】 【考点梳理】 【高清课堂:平面向量的概念与线性运算401193知识要点】 考点一、向量的概念 1.向量:既有大小又有方向的量.通常用有向线段AB 表示,其中A 为起点,B 为终点. 向量AB 的长度|AB | 又称为向量的模; 长度为0的向量叫做零向量,长度为1的向量叫做单位向量. 2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行. 平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量. 3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等. 4. 与a 长度相等,方向相反的向量叫做a 的相反向量,规定零向量的相反向量是零向量. 要点诠释: 平面向量 平面向量的概念 平面向量的坐标表示 平面向量的基本定理 平面向量的线性运算

①有向线段的起、终点决定向量的方向,AB 与BA 表示不同方向的向量; ②有向线段的长度决定向量的大小,用|AB | 表示,|AB||BA |= . ③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关. 考点二、向量的加法、减法 1.向量加法的平行四边形法则 平行四边形ABCD 中(如图), 向量AD 与AB 的和为AC ,记作:AD AB AC += .(起点相同) 2.向量加法的三角形法则 根据向量相等的定义有:AB DC = ,即在ΔADC 中,AD DC AC += . 首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点. 规定:零向量与向量AB 的和等于AB . 3. 向量的减法 向量AB 与向量BA 叫做相反向量.记作:AB BA =- . 则AB CD AB DC -=+ . 要点诠释: ①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用. ②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”. 要点三、实数与向量的积 1.定义: 一般地,实数λ与向量 a 的积是一个向量,记作λ a ,它的长与方向规定如下: (1)||||||λ=λ? a a ; (2)当λ>0时,λ a 的方向与 a 的方向相同;当λ<0时,λ a 的方向与 a 的方向相反; 当λ=0时,0λ= a ; 2.运算律 设λ,μ为实数,则 (1)()()λμ=λμ a a ; (2)()λ+μ=λ+μ a a a ;

平面向量的基本概念

平面向量得实际背景及基本概念 1、向量得概念:我们把既有大小又有方向得量叫向量。 2、数量得概念:只有大小没有方向得量叫做数量。 数量与向量得区别: 数量只有大小,就就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 3.有向线段:带有方向得线段叫做有向线段。 4.有向线段得三要素:起点,大小,方向 5、有向线段与向量得区别; (1)相同点:都有大小与方向 (2)不同点:①有向线段有起点,方向与长度,只要起点不同就就就是不同得有向线段 比如:上面两个有向线段就就是不同得有向线段。 ②向量只有大小与方向,并且就就是可以平移得,比如:在①中得两个有向线 段表示相同(等)得向量。 ③向量就就是用有向线段来表示得,可以认为向量就就是由多个有向线段连接而成 6、向量得表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段得起点与终点字母:; 7、向量得模:向量得大小(长度)称为向量得模,记作||、 8、零向量、单位向量概念: 长度为零得向量称为零向量,记为:0。长度为1得向量称为单位向量。 9、平行向量定义: ①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、即:0 ∥a 。 说明:(1)综合①、②才就就是平行向量得完整定义; (2)向量a、b、c 平行,记作a∥b ∥c 、 10、相等向量 长度相等且方向相同得向量叫相等向量、 说明:(1)向量a与b相等,记作a =b ;(2)零向量与零向量相等; (3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有.. A(起点) B (终点) a

平面向量的概念练习(学生版)

1、下列说法正确的是( ) A 、数量可以比较大小,向量也可以比较大小. B 、方向不同的向量不能比较大小,但同向的可以比较大小. C 、向量的大小与方向有关. D 、向量的模可以比较大小. 2、给出下列六个命题: ①两个向量相等,则它们的起点相同,终点相同; ②若||||a b =,则a b =; ③若AB DC =,则四边形ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB DC =; ⑤若m n =,n k =,则m k =; ⑥a b ,b c ,则a c . 其中不正确的命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD 是( ) A 、相等的向量 B 、平行的向量 C 、有相同起点的向量 D 、模相等的向量 4、判断下列各命题的真假: (1)向量AB 的长度与向量BA 的长度相等; (2)向量a 与向量b 平行,则a 与b 的方向相同或相反; (3)两个有共同起点的而且相等的向量,其终点必相同; (4)两个有共同终点的向量,一定是共线向量; (5)向量AB 和向量CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上; (6)有向线段就是向量,向量就是有向线段. 其中假命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 5、若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b | ②a ∥b ③|a |>0 ④|b |=±1,其中正确的是( ) A 、①④ B 、③ C 、①②③ D 、②③

6、下列命中,正确的是( ) A 、|a |=|b |?a =b B 、|a |>|b |?a >b C 、a =b ?a ∥b D 、|a |=0?a =0 7、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( ) A 、2个 B 、3个 C 、4个 D 、5个 8、平行向量是否一定方向相同? 9、不相等的向量是否一定不平行? 10、与零向量相等的向量必定是什么向量? 11、与任意向量都平行的向量是什么向量? 12、若两个向量在同一直线上,则这两个向量一定是什么向量? 14、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形, (1)找出图中与AB 共线的向量; (2)找出图中与AB 相等的向量; (3)找出图中与|AB |相等的向量; (4)找出图中与EC 相等的向量. A B E C D

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

向量及向量的基本运算

向量及向量的基本运算 一、教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量的积、向 量的数量积及其运算法则,理解向量共线的充要条件. 2.会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识. 二、教学重点:向量的概念和向量的加法和减法法则. 三、教学过程: (一)主要知识: 1)向量的有关概念 ①向量:既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:。向量的大小即向量的模(长度),记作||。 ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行。<注意与0的 区别> ③单位向量:模为1个单位长度的向量。 ④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一 直线上。相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 ⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合,记为b a =。 2)向量加法 ①求两个向量和的运算叫做向量的加法。设b a ==,,则a +b =+=。 向量加法有“三角形法则”与“平行四边形法则”。 说明:(1)a a a =+=+00; (2)向量加法满足交换律与结合律; 3)向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a -,零向量的 相反向量仍是零向量。关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 。 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:)(b a b a -+=-。求 两个向量差的运算,叫做向量的减法。 b a -的作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)。 注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。 4)实数与向量的积 ①实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:

第1讲平面向量的概念及线性运算 (1)

第1讲 平面向量的概念及线性运算 一、选择题 1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+ CO →;④AB →-AC →+BD →-CD →.其中结果为零向量的个数为( ) A.1 B.2 C.3 D.4 解析 由题知结果为零向量的是①④,故选B. 答案 B 2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|·a 解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 B 3.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( ) A.0 B.BE → C.AD → D.CF → 解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →. 答案 D 4.设a 0为单位向量,下述命题中:①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( ) A.0 B.1 C.2 D.3 解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二

平面向量的概念教案

1 平面向量基本概念 教学目标 1.从生活实例和物理素材中感受向量以及研究向量的必要性. 2.理解平面向量的含义、向量的几何表示,向量的模. 3.理解零向量、单位向量、平行向量、相等向量、共线向量的含义,能在 图形中辨认相等向量和共线向量. 4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两 个要素及向量可以平移的特点. 教学重点:向量、相等向量、共线向量的含义及向量的几何表示. 教学难点:向量的含义. 教学过程 (一)情境创设 1.南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!” 结果 原因 2.如图1,在同一时刻,老鼠由A 向西北方向的C 处逃窜,猫由B 向正东方向的D 处追去,猫能否抓到老鼠? 结果 原因 思考:上述情景中,描绘了物理学中的那些量? 咱们还认识类似于上面的量,你能举出来吗? 这些量的共同特征是什么? (二)概念形成 观察:如图2中的三个量有什么区别? 1.向量的概念——既有大小又有方向的量叫向量. 2.向量的表示方法 思考:物理学中如何画物体所受的力? (1) 几何表示法:常用一条有向线段表示向量. 符号表示:以A 为起点、B 为终点的有向线段, 记作AB .(注意起终点顺序). (2) 字母表示法:可表示AB 为a . 练习. 如图4,小船由A 地向西北方向航行15海里到达 B 地,小船的位移如何表示?(用1cm 表示5海里) (三)理性提升 3.向量的模 向量的大小——向量长度称为向量的模. 记作:||. 强调:数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小;

平面向量的概念及表示教学设计

“平面向量的概念及表示”的教学设计 一、教学内容解析 向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具。以位移、力等物理量为背景,抽象出既有大小又有方向的量---向量,然后介绍了向量的几何表示,向量的长度、零向量、单位向量、平行向量、相等向量与共线向量。 二、教学目标设置 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系. 三、学生学情分析 这个班的学生是高一的,刚刚学完必修一的第一章的内容。 四、教学策略分析 利用已学的集合知识,构建学习新概念的学习体系。借助原有的位移、力等物理概念来学习向量的概念

五、教学过程 (一)温故而知新,主要从集合的学习体系来认知学习一个新知识的研究体系,即:定义一表示一特殊元素一特殊关系一运算。 (二)问题情镜引入,从位移等物理量引入既有大小又有方向的量并加以抽象。 问题1:在平面上,如何用点A的位置来确定点B的位置关系? 问题2:你能不能举出其他的既有大小又有方向的量? 问题3:你能不能举出只有大小没有方向的量? (三)新课学习 1、向量的定义:既有大小又有方向的量为向量。 2、向量的表示(1)几何表示:用一个很经典的受力分析图,学生很容易想到用有向线段来表示向量。长度表示向量的大小,箭头所指的方向表示向量的方向。 (2)符号表示:①用有向线段字母表示:(A为起点、B为终点); ②用小写字母表示:a、b、c ;(印刷用a,书写时应加上箭头)(此处向学生介绍数学家们有符号表示向量的过程,让学生对数学史有一定的了解,符号化的过程也不是一蹴而就的) 3、向量的有关概念: (1)大小:

向量有关概念

.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位 向量是); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两 条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有); ④三点共线共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;

3.坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称 为向量的坐标,=叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1+e2。 四.实数与向量的积:实数与向量的积是一个向量,记作,它的长度和 方向规定如下:当>0时,的方向与的方向相同, 当<0时,的方向与的方向相反,当=0时,,注意:≠0。 五.平面向量的数量积: 1.两个向量的夹角:对于非零向量,,作, 称为向量,的夹角,当=0时,,同向,当=时,, 反向,当=时,,垂直。 2.平面向量的数量积:如果两个非零向量,,它们的夹角为,我们把 数量叫做与的数量积(或内积或点积),记作:,即= 。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。 3.在上的投影为,它是一个实数,但不一定大于0。 4.的几何意义:数量积等于的模与在上的投影的积。 5.向量数量积的性质:设两个非零向量,,其夹角为,则:

平面向量的概念及线性运算

§5.1平面向量的概念及线性运算 1.向量的有关概念

向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得______. [难点正本 疑点清源] 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线和重合的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 1.化简OP →-QP →+MS →-MQ → 的结果为________. 2.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE → =____________. 3.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量;④相等向量一定共线.其中不正确命题的序号是________. 4.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD → ,则实数λ的值为________. 5.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC → =0,那么( ) A.AO →=OD → B.AO →=2OD → C.AO →=3OD → D.2AO →=OD →

题型一 平面向量的概念辨析 例1 给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________. 探究提高 (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (5)非零向量a 与a |a |的关系是:a |a | 是a 方向上的单位向量. 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ; (2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等. 题型二 向量的线性运算 例2 在△ABC 中,D 、E 分别为BC 、AC 边 上的中点,G 为BE 上一点,且GB =2GE , 设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →. 探究提高 (1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化. (2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.

相关文档
最新文档