南京长江隧道设计与施工

南京长江隧道设计与施工

一.项目背景
南京长江隧道是南京市 “井字加 一环”快速路系统跨江成环的重要 组成部分,是“全面达小康、建设 新南京、实施跨江发展战略”的标 志性基础设施,被江苏省2006年重 点投资计划列为重点工程。 本项目为中铁建投资的BOT项目。 建设期为4年、特许经营期30年。 已于2010年5月1日建成通车

长江隧道的地理位置
南京长江大桥
南京长江二桥
南京长江四桥 纬三路过江隧道 南京长江三桥
南京长江隧道
京沪高速铁路大桥

二、建设环境 建设环境
V V
V
V V
V
V
自然地理:隧址为长江河床及高河漫滩,地形 自然地理 隧址为长江河床及高河漫滩 地形 开阔平坦。 工程地质 上部地层主要为第四系全新统冲积 工程地质:上部地层主要为第四系全新统冲积 层, 深部为白垩系岩层,地层起伏不大。 水文地质:地表水为长江水系,地下水为孔隙 水及裂隙水,对混凝土、钢筋无腐蚀性。 地震基本烈度:V VII度 。 航运航道:长江南京水道为常年主航道,隧 址处航宽480~1000m,水深约11m 。 河床演变:最大冲刷深度约9m,深槽的摆幅 为150~160m。 防洪等级:长江大堤为Ⅰ级堤防。

三. 设计概况
1、主要设计参数:
道路全长:5.853 km 道路等级:城市快速路,双向6车道 车道设置:3.5m×2+3.75m,高4.5m 设计车速:80 km/h 车辆荷载:城-A级 抗震设计:100年一遇超越概率10% 人防等级:6级 防洪设计:按100年一遇水位设计 结构安全等级:一级,重要性系数1.1 设计年限:100年

南京长江隧道盾构施工技术难点分析_pdf

南京长江隧道盾构施工技术难点分析 Abstract Stratu m of the tunnel p r oject of Nanjing Yangtse R iver is very comp lex .The dia meter of boring machine is very big .The p ressure of earth and water in the tunnel is up t o 0.75M Pa .The tunnel is excavated by a boring machine which contr ols and adjusts p ressure by slurry 2bubble 2cushi on .The length of tunnel excavated in only one directi on by boring ma 2chine is 2.9k m.This article intr oduces many engineering difficulties in the constructi on and the selecti on of p r oper boring machines t o excavate the tunnel . Key words shield;tunnel of Nanjing Yangtse R iver;engineering technique 1 工程概况 南京长江隧道设计为双管盾构隧道,隧道江北为起点,进口里程为K3+390m,梅子洲隧道出口里程为K6+900,隧道总长度3510m,其中盾构段自K3+600~K6+532.756,长度为2932.756m 。盾构机选用2台直径约14.9m 的泥水加压式盾构机同向掘进。 隧道左线有1个半径为2500m 的平面曲线,是本工程半径最小的平面曲线;右线有2个半径分别为3700m 和4900m 的平面曲线。盾构工作井处线间距最小,中心距为23.33m ,一般地段左右线线间距为35m 。 隧道覆土厚度最大30m ,最小6.0m (始发段)。江中段按最小覆土厚度不小于1倍盾构直径控制(局部地段不足1倍洞径,江中最小覆土厚度 10.2m )。线路最大纵坡4.5%,最小坡度0.49%, 最大坡长1130m ,最小坡长290m;隧道段共设3个竖曲线,最小竖曲线半径R =7000m 。 隧道衬砌采用外径14.5m 、宽2m 、厚60c m 的C60钢筋混凝土预制管片,抗渗等级为S12。路面 板采用预制、现浇相结合的方式施工。 2 隧道穿越的地层岩性分布 盾构隧道的地层岩性状况是盾构机选型的重要依据,南京长江隧道穿越的主要地层岩性有:①q c =1.48MPa,f s =18.1kPa,主要矿物成分为石英、长 石、云母,局部夹淤泥质粉质黏土层的细砂层:②高压缩性,低强度,渗透性一般,易坍塌,Ⅰ类围岩,可挖性为Ⅰ级的淤泥质粉质黏土夹粉土层;③灰色,饱和,稍密~中密,颗粒级配差,压缩性中等偏低,低强度,渗透性好,液化土,Ⅰ类围岩,可挖性Ⅰ级的层粉

扬子江隧道免费方案

扬子江隧道免费方案 大桥大修 对于南京长江大桥来说,自1968年通车,近半个世纪以来,风雨侵蚀,过桥车辆荷载以及材料老化等因素,对桥梁造成了一定损伤。多年来,长江大桥一直在修修补补,尽管如此,目前桥面、基座等部位出现多处裂缝。此后,长江大桥一直处于“缝缝补补”状态,一直没有进行正式的大修。 “眼下,大桥已经到了必须全面、系统修缮的时候。”一位知情人士告诉现代快报记者,不久前南京市和上海铁路局曾就大桥的维修方案进行讨论,明确提出,大桥的双曲拱病害严重,必须整治加固。值得一提的是,2014年大桥纳入区级“不可移动文物”名录,首次与“文保”挂上钩,这也给大桥的修缮提出了更高的要求。长江大桥将于2016年10月28日22点正式封闭,历时27个月,长江大桥封闭期间行人、非机动车和机动车均无法通行。届时行人和非机动车可通过地铁、公交、轮渡过江,机动车可由扬子江隧道、长江隧道和长江二桥、三桥过江。这将给南京的南北交通带来极大的影响,“要想把影响降到最低,必须有一条替代的过江通道,而且必须是免费的。”知情人士称,虽然目前有长江隧道、长江二桥,但因为这两条通道都是收费的,所以对车辆没有真正起到分流作用。 2016年1月1日,扬子江隧道正式通车,并实行免费通行,大大的缓解了长江大桥的压力。与此同时,原本收费的长江隧道也实行了免费

通行,江北交通的春天就此到来。 南北通道 南京跨江发展战略的指定,尤其是国际级江北新区的申报客观上要求必须解决南北两岸免费通行问题,虽然政府部门着力推动,但因为种种客观原因,一直收效甚微。随着江北新区获批消息的最终确认,跨江免费通道的方案也被提速。 2014年10月,在南京市规划局公布的《2010-2020年南京市总体规划》中明确,南京将规划建设16条过江通道。其中,过江道路8条,过江铁路与轨道交通8条。8条过江道路从西往东依次为:南京长江三桥、南京长江五桥、应天大街过江通道、模范西路过江通道、南京长江大桥、南京长江二桥、南京长江四桥、龙潭过江通道。8条过江铁路与城市轨道分别是:大胜关铁路大桥(既是铁路过江通道,又是轨道S3线即宁和城际过江通道)、轨道十号线过江通道、轨道4号线过江通道、南京长江大桥铁路桥、轨道3号线过江通道、轨道S5线过江通道(都市圈轨道S5线过江通道同时也是宁通城际铁路过江通道)。后在2014年-2030年的过江隧道规划中,又调整增加到19条。 为配合江北新区的建设,目前市政府正在研究过江通道免费的方案。不仅包括纬三路过江隧道,今后三桥和四桥之间所有的主城过江通道都有望实现免费。具体包含南京长江五桥、地铁十号线、纬七路过江隧道、汉中西路过江通道、地铁四号线二期过江线、纬三路过江隧道,建宁西路过江通道、长江大桥、地铁三号线、和燕路过江通道、长江

上海长江隧道项目技术总结最新版

上海长江隧道工程 盾构掘进施工第三方监测 技 术 总 结 报 告

上海长江隧道盾构推进第三方监测总结报告上海海洋地质勘察设计有限公司上海海洋地质勘察设计有限公司 2008年10月

上海长江隧道工程 盾构掘进施工第三方监测总结报告 项目负责: 编写: 审核: 总工程师: 批准:

上海长江隧道盾构推进第三方监测总结报告上海海洋地质勘察设计有限公司 上海海洋地质勘察设计有限公司 2008年10月

目录 第一节工程概况 (1) 1.1概述 (1) 1.2水文工程地质概况 (1) 第二节监测作业依据、目的与意义 (3) 2.1 监测作业依据 (3) 2.2 监测的目的与意义 (4) 2.3 监测方案的编制原则 (4) 2.4 监测内容及监测范围 (4) 第三节监测 (5) 3.1 监测组织实施 (5) 3.2 监测项目的实施 (9) 3.3 野外监测作业实施 (10) 3.4 监测精度 (12) 第四节警戒值的确定 (12) 4.1 警戒值的确定原则 (12) 4.2 警戒值的确定 (13) 第五节监测组织实施 (13) 5.1 监测投入仪器设备 (13) 5.2 监测资料的提交 (14) 第六节监测完成工作量 (14) 第七节监测成果总结与分析 (15) 7.1 陆域地表监测 (15) 7.2 隧道收敛监测 (25) 7.3 江中段江底隆陷监测 (35) 7.4西线盾构推进对东线的影响监测 (38) 第八节结语 (38) 附件:上海长江隧道盾构施工第三方监测变形曲线图册

第一节工程概况 1.1概述 上海长江隧桥工程是连接上海市区和崇明的高速公路通道,工程分两部分,其中外高桥至长兴岛的南港段采用隧道,长兴岛至崇明的北港段采用桥梁。本工程属于隧道部分,本区域隧道工程是长江隧桥工程的重要组成部分。上海长江隧道工程南起自浦东五好沟工作井,穿过长江口水域,北至长兴岛上新开港工作井,全长约7472 m 。工程分东线与西线双线隧道。东线隧道起始里程为SK0+483.14 m,终止里程为SK7+954.79 m,全长7471.65 m,其中江中段(五好沟大堤∽长兴岛大堤)长度为6872.37 m,陆域长度为599.28 m;西线隧道起始里程为SK0+481.87 m,终止里程为SK7+951.23 m,全长7469.36 m,其中江中段(五好沟大堤—长兴岛大堤)长度为6854.91 m,陆域长度为614.45 m。本工程隧道采用盾构法施工,一次掘进完成;隧道外经15000 mm,内经13700 mm;隧道坡度平缓,最大坡度为2.9%,最小平面曲率半径为R4000 m。江底最浅覆土约14.0 m,最深覆土约29.0 m,极端冲刷后8.0 m,隧道内道路采用同步施工工艺,隧道间连接通道采用暗挖法施工。 1.2水文工程地质概况 1.2.1. 地形、地貌 根据区域地质条件,上海地区位于长江三角洲冲积平原的东南前缘,自晚第三纪以来,呈持续缓慢沉积,堆积了厚300m左右的松散地层。本工程陆域部分地貌属上海四大地貌单元中的“河口、砂嘴、砂岛”地貌类型,地面较平坦,标高一般在3.5米左右(吴淞高程)。

超大断面过江盾构隧道总体施工技术方案

复杂地质条件下超大断面过江盾构隧道总体施工技术方案 张焕城 陈健 南京长江隧道工程指挥部 一、工程概况 1、项目简况 南京长江隧道工程是连接南京市浦口区与河西新城区的市内快速通道,是南京市 “井字加一环”快速路系统跨江成环的重要组成部分,也是 “南京市城市总体规划”确定的“五桥一隧”过江通道中的重要项目。该工程位于南京长江大桥和三桥之间,线路总长5.813km ,道路等级为双向6车道城市快速路,车道宽为3.5m ×2+3.75m ,设计时速80 km/h ,总工期48个月,总投资约30个亿。 工程组成主要包括680m 江北接线道路、300m 收费广场、3822m 左汊盾构隧道(盾构掘进2992m )、401m 梅子洲接线道路和610m 右汊夹江独塔悬索桥(主桥67+70+248)。 南京长江隧道工程总平面图 2、右汊盾构隧道概况 南京长江隧道 南京长江二桥 南京长江大桥 南京长江隧道

盾构隧道工程区段属长江河床及高河漫滩,地形开阔平坦。地表主要为农田、水塘、苗圃等。盾构穿越江面宽度约2500m,高水位多年平均值8.37m,最大水深约28.8m 。 隧道通过部位为白垩系及第四系地层,主要分布为第四系冲积、沉积粉细砂、砾砂、圆砾层和强风化砂岩。下穿地层除穿越一级长江防洪大堤外,地面建(构)筑物、管线较少,仅有少量2~3层民房和一条水厂管道。左汊盾构隧道全长3822m,其中盾构段长度为2992m,使用两台ф14.93m的泥水平衡式盾构机施工,满足车道净空限界的盾构隧道内径为13.30m,隧道管片外径14.50m。管片拼装设计为7块标准块、2块相邻块和1块封顶块,设计强度为C60,防水等级为S12。长江隧道纵断面及结构横断面图如下 二、长江盾构隧道的工程特点、难点及面临的风险和挑战 南京长江隧道工程是一项举世瞩目的宏伟工程,第一次在长江下修建江底隧道,且盾构直径之大、地质条件之差、水压之高世界罕见,这些世界级技术难点极具挑战性。因此无论是在隧道设计、盾构机选型,还是盾构施工和管理等方面都面临着严峻的考验。 其工程的特点与技术难点主要表现如下: 1.盾构直径超大 目前世界上已建成的盾构直径最大是荷兰的格林哈特隧道,盾构机直径14.87m。南京长江隧道盾构直径为14.93m,是目前世界上直径最大的盾构隧道之一。 2. 水压力高 目前世界上已实施或计划实施的超大直径盾构项目,水压在6kg/cm2以上的实例尚属空白。而南京长江隧道盾构设计最大水压近6.5kg/cm2,在同等或更大直径的盾构项目中,水压是最高的。 3.地层透水性强 隧道长距离穿越粉细砂层(穿越长度2542m,占隧道总长度的85%),以及部分

南京长江隧道工程简介

南京长江隧道工程项目简介 南京长江隧道建设项目,是南京市在重大基础设施项目投资建设中第一次完全采用市场化方式运作的项目。二00五年一月,中国铁道建筑总公司(出资80%)与南京市交通建设投资控股(集团)有限责任公司(出资10%),南京市浦口区国有资产经营(控股)有限公司(出资10%)共同出资组建南京长江隧道有限责任公司,全权负责长江隧道项目的投资、建设、运营、管理和维护,并在市政府依法授予的特许经营权期满后将长江隧道、附属设施及相关资料无偿、完整地移交给市政府。公司经营期限暂定34年,其中建设期4年,运营管理期30年(经省政府批准后生效)。 南京长江隧道是《南京市城市总体规划》确定的“五桥一隧”过江通道中的重要工程。它的建成将彻底改变目前南京市长江单一的桥梁过江交通方式,对于缓解跨江交通压力,促进沿江经济发展,造福百姓,具有十分重要意义。 南京长江隧道位于南京长江大桥与三桥之间,上距三桥9km,下距大桥10km,连接河西新城区——梅子洲——浦口区。工程由江南滨江快速路与纬七路互通立交过渡段接入点起,至江北收费广场连接快速路K2+200处止,整个工程通道总长约6.2km,按双向6车道快速通道规模建设,设计车速80公里/小时。 南京长江隧道采用“左汊盾构隧道+右汊桥梁”方案,工程主要包括610m江北接线道路、420m收费广场、3837m左汊盾构隧道(其中江北引道明挖始发段370m;左线盾构隧道长2992.34米,右线盾构隧道长2984.95米;梅子洲接收明挖引道段477m),626m梅子洲接线道路和707m右汊夹江自锚式独塔悬索桥,桥跨为10-25m连续梁+(35m+77m+60m+248m+35m)独塔悬索,左汊盾构隧道采用两台ф14.93m复合式泥水盾构机由浦口岸工作井同向掘进施工;右汊夹江桥主塔采用爬模施工,主跨钢箱梁采用岸边焊接,逐节顶推拼装法施工。工程预计在2008年底建成,2009年上半年通车,工程总投资约为33.6亿元。 南京长江隧道工程是一项举世瞩目的宏伟工程。第一次在长江修建江底隧道,且盾构直径之大,地质水文条件之差,水压之高,实属世界罕见。一些世界级技术难题极具挑战性。因此无论是在隧道设计、盾构机选型,还是盾构隧道施工技术和工程管理等方面都面临着严竣的考验。 本工程特点、难点及风险点主要包括:

南京纬三路盾构隧道建设关键技术(技术篇)

南京纬三路过江通道位于长江大桥上游5km,连接江北新区和主城区,自北起于浦珠路与定向河交叉点,终于江南扬子 江大道和定淮门大街,采用双层双管、X型8车道盾构方案:l北线(N线) 隧道总长度4.960km,盾构段长度3.557m; l南线(S线) 隧道总长度5.330km,盾构段长度4.135km 。 南京纬三路过江通道工程平面图

l建设内容:本项目工程主要由浦口接线道路、收费广场、隧 道段(包括浦口明挖段、盾构段、定淮门大街明挖段、扬子江大 道明挖段)、江南接线道路、管理中心、收费站(已取消)组成。 l建设工期:工期计划四年,2010年12月8日正式开工建设,受 复合地层盾构掘进难度大导致工期滞后影响,计划于2015年12 月31日建成通车。 2

地质条件:隧道过江段设计为盾构隧道,盾构隧道大部分处于粉细砂、砂卵石地层中,局部位于淤泥质粉质粘土中,部分地段穿越软硬不均地层。盾构隧道穿越基岩的最大单轴抗压强度为128MPa,基岩石英含量高达65%。 l北线隧道岩层段长度约510m,岩层最大厚度约7.79m; l南线隧道岩层段长度约600m,岩层最大厚度约8.33m。

大、高、薄、长 l大:盾构管片外径14.5m、内径13.3m,属超大直径盾构隧道; 4

5 大、高、薄、长 l 高:管片防水设计水压达0.72MPa ;岩层硬度最高达128Mpa ,石英含量高达65% ;0.72MPa

大、高、薄、长 l薄:江底隧道覆土厚度小,北线隧道局部覆土厚度只有 0.6D ; MIN:0.6盾构直径 N线隧道工程地质纵断面图 6

上海长江隧道

——上海长江隧道工程采用了目前世界上直径最大的盾构机,直径达到15.43米。2006年9月开始掘进以来,盾构维修保养小组的全体人员以饱满的工作热情投入到盾构设备维护保养工作。盾构维修保养小组团队最初接手长江隧道盾构的维修任务时处于新盾构施工磨合期,这一时期存在着人员对盾构机系统不熟悉、图纸与实物不符、设备设计缺陷、施工人员责任心差等诸多困难。盾构维修保养小组组员没有辜负领导的期望,尽快熟悉盾构上的设备,努力学习大型盾构控制技术,把专业学习和工作结合起来,出色的完成领导交给的各项任务,保证了盾构机稳步掘进。 盾构维修保养小组的工作主要是对盾构机中的设备进行维护和保养,由于盾构机长时间的停机会对隧道造成不可预计的后果,所以盾构机的日常检查工作尤其重要,日常检查认真仔细有高度的责任心,尽可能早的发现故障,有利于故障的解决。在检查过程中发现了小的故障和不合理的地方并及时修复或改进才能避免停机故障和安全事故的发生。盾构维修保养小组重点对盾构机设备中较易损坏的部件做每日检查,如各系统的液压动力设备,三部行车的钢丝绳,同步注浆搅拌机的润滑油脂,管片运输行车和口字件行车的供电轨道、拼装机旋转及提升系统的坦克链、拼装机管片真空抓取系统、三号车架船底块吊装系统、接管机设备、喂片机的安全保护系统等等。并利用盾构机的每周清洗浆桶时间对行车钢丝绳、注浆泵活塞、盾尾油脂泵、真空泵、真空吸盘密封条等易损部位进行仔细检查有损坏立即更换,电气箱柜做清洁除尘等工作并做好相关的详细记录,盾构机运行过程中遇到故障抓紧一切时间抢修,机修和电气组员相互配合、相互合作尽可能快的解决故障,良好的团队合作与无私奉献精神增强了他们的凝聚力。 图纸不正确将会给设备的维护与保养工作带来非常大的困难,盾构机在安装完成后的调试过程中设计制造者在图纸上修改了很多地方,有相当一部分未在图纸上标明或多次修改后图示不清楚。平时的维护保养工作中他们一边检查一边核对图纸,遇到不正确的地方及时在图纸注明,在推进过程中常常会碰到设计不合理的地方需要修改机械尺寸,更换机械零部件或更改电气原理,这时他们会仔细记录并在图纸上画出修改部分,为日后的盾构维修和拆装带来了方便。 为满足隧道施工的需要,盾构维修保养小组利用自己所学的东西对盾构进行了方方面面的改进。管片运输机的整改,使几乎原来每天要更换的提升滚轮不再出现故障;盾尾油脂泵加装备用泵,让维修更换时间大大缩短;注浆系统几次加装改进润滑系统让注浆系统更加稳定可靠,节省了润滑脂的消耗;注浆系统加装独立液压油箱,杜绝了注浆系统对液压主油箱的污染,使推进和拼装系统更加稳定;加装了主油箱加油和滤油泵组使盾构推进中加油更加快捷,在不需加油时又能自动的过滤主油箱使油质保持清洁;加装泥水截止阀V70、V71的远程操作使接泥水管路更快捷;管片真空度显示系统使真空度显示更直观,降低真空泄漏的危险性;加装泥水管路泥水截止球位置换算显示系统;对管片运输行车提升系统的电气改进大大减低了吊装管片的故障率和危险性,并方便了行车的机械维护。这样的改进还有很多,降低了施工难度,提高了设备运转的安全性。 盾构不断的掘进,和地面的距离越来越长,每隔一段距离就要加装一个排泥接力泵,加装泵时排泥管路需要断开,盾构处于停止状态,这时他们必须尽可能快的将接力泵安装到位并调试好,以确保盾构能正常运转,时间紧,任务重,这时盾构维修保养小组的组员放弃休息时间连续工作,安装接力泵及供电设备并调试,每次都提前完成安装和调试工作。有一次下行线P2.4泥水接力泵动力柜发生故障,需要更换整个动力柜,时间不等人,盾构维修保养小组的组员立即投入工作,只用了一天一夜的时间就更换了整个动力柜,重新连接所有电缆并调试完毕。盾构维修保养小组的团队接受并出色的完成了考验,连外国人也非常惊讶能在这么短的时间里完成这个任务。对于下班后或是晚上的常规性抢修作业,不用部门领导安排就自行加班加点已成为他们的日常习惯,然而所有这一切,靠的就是高度的尽业和无私奉献精神。一份耕耘一份收获,一年多来,这个心齐、劲足、实干的班组不但圆满完成每一次维修与保养任务及时满足了盾构掘进需要,而且确保人身安全,未发生任何重大机损事故。 班组的安全文明工作是重中之重。每个组员都能严格执行各项安全操作规定是他们的一个基本特点,不管是每天的交接班还是每次的设备维护总结会,他们都非常认真地将平时工作中发现的安全隐患拿出来积极讨论并制订相应的防范措施,并定期开展班组安全教育工作。在设备的保养过程中,盾构维修保养小组明确要求组员必须严格按照设备维护规定与盾构操作手册进行。针对盾构机机身大,修理盲区也大的实际情

PPP案例:南京长江隧道工程(BOT模式)

PPP案例:南京长江隧道工程(BOT架构) 项目名称:南京长江隧道工程 项目地点:南京市 建设期:2005年-2010年 运营期:2010年至今 获奖情况: 2013年,中国建设工程鲁班奖; 2014年,国家科技进步二等奖。 项目背景: 南京钟灵毓秀,但长江天堑将城市格局一分为二,江北经济发展因两岸交通不便而受阻碍。市政府提出“跨江发展战略”,借2004年《国务院投资体制改革决定》春风,将南京长江隧道工程列为南京市首个采取项目法人招标模式的重点基础设施工程建设项目。 南京长江隧道是迄今为止中国水下盾构隧道中地质条件最复杂、技术难题最多、施工风险最大的越江隧道,面临着大直径、高水压、强透水、薄覆土、长掘进、高风险等六大世界级技术难题,国内外院士、专家称之为“万里长江第一隧”。 对于南京市政府而言,该项目的建设风险要远远大于项目建成通车后的运营、回报风险,通过公开招标的方式选择有经验、有能力的建设承包商,是项目成败的关键。 项目建设概况: 南京长江隧道工程位于南京长江大桥与三桥之间,连接南京市浦口区——江心洲——主城区,采用“北隧南桥”方式,分别穿越长江主航道和夹江,设计为双向6车道、80公里/小时的城市快速通道。工程全长5853米,其中隧道建筑长度3790米(盾构段长度3020米),采用盾构法施工,盾构直径14.93米;桥梁为独塔自锚式悬索桥,一跨过夹江。隧道、桥梁部分于2005年9月30日正式施工建设,2009年8月22日全线贯通,2010年4月30日全部建成完工,2010年5月28日南京长江隧道工程全线通车,开始收费运营。

项目的特许经营权范围、期限及限制: (一)特许经营权的范围 1. 过江隧道项目的投资、建设、建成通车后的车辆通行费的收费权(经省政府批准后生效); 2. 过江隧道项目的冠名权; 3. 过江隧道项目沿线规定区域内的相关配套服务设施(包括饮食、加油、车辆维修、商店等服务设施)的经营权及沿线广告经营权。 (二)特许经营权的期限 特许经营权期限自市政府授权过江隧道公司建设经营过江隧道项目起算,至经省政府批准的过江隧道收费期限届满终止。 (三)特许经营权的限制 过江隧道及其配套设施的所有权属市政府,过江隧道公司在特许经营期间内不得自行处分,也不得以此设定任何担保。过江隧道公司未经政府有权部门同意,不得以转让、出租、质押等方式处分特许经营权,但是过江隧道公司为过江隧道项目建设、经营及维护需要以过江隧道项目收费(益)权出质向金融机构借款的除外。 项目投融资架构图:

2013年南京楼市新势力 10大新兴价值板块的崛起

2013年南京楼市新势力10大新兴价值板块的崛起当一块块“处女地”在人们的惊呼声中成功拍卖,当外来地产大鳄一次次敲开金陵楼市的大门,当遍布各个区域工地上的机器轰鸣声响彻南京城上空,我们知道,南京楼市的版图,正在一步步被改写。 而那些曾经游离余南京楼市边缘的地区,也随着规划发展的利好、交通网线的改造、大腕房企的扩张而成为新兴的价值板块。城市扩容而催生出的新宜居板块与价值盆地,正在改变南京人根深蒂固的城市情结。 一、麒麟新城:大城东迎来品牌集群时代 紫气东来,城东板块凭借得天独厚的自然环境一直受到众多置业者的青睐。2013年,地处大城东板块的麒麟新城开始成为南京楼市的热门字眼。 作为市委市政府重点布局的科技创新重点载体平台,麒麟科创园的基础设置建设尤其是轨道交通建设发展迅速。未来南京市还会有8号线、10号线、16号线、17号线在内的4条地铁线通过麒麟科创园核心区,5年以后实现整个园区交通系统全覆盖,富力将推出法式经典洋房和创新合院别墅“富力十号”,打造高端产品。世茂双麒路地块定案名为“世茂君望墅”,项目打造约

170-250平米创新叠墅、约90-170平米别院,预计6月首次开盘。中海NO.2013G03地块案名定为“中海国际社区”,项目预计9、10月份开盘,包含多层、高层、洋房和叠加别墅多层业态,以高层和花园洋房为主。 “国际化创新园区、国际性生活社区”,是未来大城东麒麟科技创新园的发展目标。大城东迎来品牌集群时代的同时,也打开了新的想象空间。 二、江心洲:未来房价很有可能突破3万 从长江中一个默默无闻的农耕小岛,到逾1000亿元投资打造的新加坡?南京生态科技岛,15.21平方公里的江心洲,在各方的努力推动下规划建设已经取得了实质进展。而在青奥会前,江心洲将全面升级,成为南京城市新名片。岛内将打造完善的交通系统,纬三路过江通道、长江隧道、地铁十号线、地铁四号线等多条交通轨道建成以后与主城无缝对接。 江心洲在去年下半年共推出了5宗住宅地块,分别被银城保利收入麾下,最高楼面地价达8125元/平方米。银城江心洲将打造高端改善型住宅,预计今年10月份上市,产品类型有类别墅、花园洋房和小高层,价格方面预计不会低于河西。

南京长江隧道设计与施工

南京长江隧道设计与施工

一.项目背景
南京长江隧道是南京市 “井字加 一环”快速路系统跨江成环的重要 组成部分,是“全面达小康、建设 新南京、实施跨江发展战略”的标 志性基础设施,被江苏省2006年重 点投资计划列为重点工程。 本项目为中铁建投资的BOT项目。 建设期为4年、特许经营期30年。 已于2010年5月1日建成通车

长江隧道的地理位置
南京长江大桥
南京长江二桥
南京长江四桥 纬三路过江隧道 南京长江三桥
南京长江隧道
京沪高速铁路大桥

二、建设环境 建设环境
V V
V
V V
V
V
自然地理:隧址为长江河床及高河漫滩,地形 自然地理 隧址为长江河床及高河漫滩 地形 开阔平坦。 工程地质 上部地层主要为第四系全新统冲积 工程地质:上部地层主要为第四系全新统冲积 层, 深部为白垩系岩层,地层起伏不大。 水文地质:地表水为长江水系,地下水为孔隙 水及裂隙水,对混凝土、钢筋无腐蚀性。 地震基本烈度:V VII度 。 航运航道:长江南京水道为常年主航道,隧 址处航宽480~1000m,水深约11m 。 河床演变:最大冲刷深度约9m,深槽的摆幅 为150~160m。 防洪等级:长江大堤为Ⅰ级堤防。

三. 设计概况
1、主要设计参数:
道路全长:5.853 km 道路等级:城市快速路,双向6车道 车道设置:3.5m×2+3.75m,高4.5m 设计车速:80 km/h 车辆荷载:城-A级 抗震设计:100年一遇超越概率10% 人防等级:6级 防洪设计:按100年一遇水位设计 结构安全等级:一级,重要性系数1.1 设计年限:100年

PLC在南京长江隧道盾构机上的应用

PLC在南京长江隧道盾构机上的应用 中铁十四局隧道公司南京长江隧道第一项目部刘中华 摘要:现代隧道工程中已逐渐广泛应用盾构机施工,而盾构机的自动控制系统多采用可编程序控制器(PLC)实现,文中介绍了德国西门子PLC在南京长江隧道海瑞克大直径泥水盾构机上的硬件组态及软件组成,运行过程。结合实例分析PLC的应用及故障的处理。 关键词:可编程序控制器;盾构机;应用 The application of PLC in Nanjing Yangtze TBM LIU zhonghua 14th Engineer Bureau Group Co.,Ltd,CRCC Abstract:The tun building machine (TBM) is applied in the m odern tunnel projects widely,and the automatic control system of the TBM is realized by the programmable logic controller (PLC),it introduce the hardware configuration and software components of the Siemens’ PLC,which is manufactured in Germany, it also introduce the process of the system in the Nanjing Yangtze TBM.Analysis with practical examples of the application of PLC and malfunction handling. Key words: PLC;TBM; application 1工程概况 南京过江通道是《南京城市总体规划》确定的一条重要的城市过江快速通道,连接南京河西新城区-江心洲-浦口区。整个工程通道总长5853m,双洞双线六车道设计,采用“左汊盾构隧道+右汊桥梁”方案,其中左汊盾构隧道(分为左、右线两条隧道)江北起点里程为K3+600,江南梅子洲到达里程为K6+532.756,盾构区间长度为2932.756m,左、右线两条隧道分别采用德国海瑞克公司生产的两台(S349、S350)Φ14.93m泥水加压平衡盾构机施工。左、右线隧道分别于2009年5月20日和8月22日贯通,现正在对盾构机进行保养工作。 2盾构机及对控制系统的要求 每台盾构机全长约134米,主体部分约8米,主体部分主要有刀盘、管片拼装机、碎石机;后配套有3台台车组成,分别装有管片运输吊机、喂片机、液压泵站、变压器、配电柜、泥水罐、储气罐、空压机;以上各部分组成了由西门子PLC控制的液压推进系统、刀盘驱动系统(电机变频调速)、膨润土泥水系统、拼装系统、盾尾油脂加注系统、同步注浆系统、刀盘主轴承自动润滑及密封系统、工业水系统、冷却系统和VMT激光导向控制系统,是当今隧道掘进设备中自动化集成程度很高的机械。 盾构机在掘进过程中需要大量的检测变量和执行元件,其中包含了大量的位移传感器、温度传感器、

上海某长江隧道工程冬季安全防护方案_secret

xxxx越江通道xx隧道工程XX标段冬季安全防护方案 编制: 审核: 审定: xx市第二市政工程有限公司 xx工程项目经理部 xx

一、工程概况 1、xxxx越江通道是规划xx高速公路的组成部分,是连接xx市区、长兴岛、xx和苏北地区的交通纽带,是整条高速公路的重要节点,是国家和xx市重点工程,属国民经济基础设施。 2、本工程为xxxx越江通道xx隧道工程的长兴岛岸边段部分,包括工作井、暗埋段、引道段、接线道路及其他附属工程等。 二、冬季施工技术措施 1、室外日平均气温连续5天稳定低于5摄氏度时,混凝土结构工程应采取冬季施工措施,并应及时采取气温突然下降的防冻措施。 2、冬季钢筋的焊接,宜在室内进行,当必须在室外焊接时,应有防雪挡风措施,焊后的接头,严禁立即碰到冰雪。 3、配置冬期施工的混凝土,应优先选用硅酸盐水泥或普通硅酸盐水泥,水泥标号不应低于425号。最小水泥用量不宜少于300Kg/m3,水灰比不应大于0.6。 4、混凝土所用骨料必须清洁,不得含有冰、雪等冻结物及易冻裂的矿物质。 5、要保持抹灰工程的环境温度不低于5摄氏度。 6、在温度达0℃以下时不宜浇捣砼。 7、砼在终凝前温度不得低于+4℃,因此要适量减小水灰比,增加砼搅拌时间。要缩短工序间隙,并在模板边预设测温孔,随时测定内温。还要准备好足够的覆盖物(如一层薄膜加二层草包等),浇捣完成后及时覆盖,尤其在迎风面更应覆盖严密,模板外侧也需盖好; 8、在下雪天,砼表面应及时清扫积雪,防止积雪冻融时吸取砼中热量。

9、在砼施工前应及时和气象站联系,如有特大寒流来临,应改期浇捣砼,若在浇捣好后遇特大寒流侵袭,则应采取烤火保温等特殊措施。 10、桩基工程:冬季砼灌注桩的施工应采取加热原材料或掺防冻剂的方法进行,砼灌注温度不得低于5°C,当砼桩身位于冻土层内时,?砼浇筑后顶部应覆盖保温,保证砼强度未达到设计标号的50%之前不得受冻. 11、土方工程: (1)土在冬季,由于遭受冻结,变为坚硬,挖掘困难,施工费用比常温时高,?所以新开工项目的土方及基础工程应尽量抢在冬季施工前完。 (2)必须进行冬期开挖的土方,要因地制宜地确定经济合理的施工方案和制定切实可行的技术措施,做到挖土快,基础施工快,?回填土快。 (3)地基土以覆盖草垫保温为主,对大面积土方开挖应采取翻松表土、耙平法进行防冻,松土深度30-40cm。 (4)冬期施工期间,若基槽开挖后不能马上进行基础施工,应按设计槽底标高预留300mm余土,边清槽作基础。一般气温0?℃至-10℃覆盖二层草垫,-10℃以下覆盖三至四层草垫。 (5)准备用于冬期回填的土方应大堆堆放,上覆盖二层草垫,以防冻结。 (6)土方回填前,应清除基底上的冰雪和保温材料。 (7)土方回填每层铺土厚度应比常温施工减少20-25%,?预留沉降量比常温施工时适当增加。用人工夯实时,每层铺土厚度不得超过20cm,夯实厚度为10-15c m。

南京长江隧道疏散通道专题研究

南京长江隧道咨询项目 南京长江隧道疏散通道专题研究 北京交通大学隧道及地下工程试验研究中心 2005年9月26日

目录 第一章概述 1.1 南京过江隧道概况及背景 (3) 1.2 南京过江通道隧道段地质及水文特点 (6) 1.3 专题研究的目的意义 (10) 1.4 专题主要研究内容 (11) 第二章国内外江(海)底隧道疏散通道设置方式及主要案例 2.1 国内外江(海)底隧道疏散通道设置方式 (13) 2.2 国内外江(海)底隧道疏散通道设置的主要案例 (13) 2.3 国内外江(海)底隧道疏散通道设置方式的优缺点分析 (34) 第三章横通道作为南京长江隧道疏散通道的分析 3.1横通道主要施工方法及施工风险分析 (36) 3.2主隧道——横通道应力变形分析 (44) 第四章东京湾海底公路隧道疏散通道(纵向)案例分析研究 4.1 工程概况 (53) 4.2 日本公路隧道紧急系统标准 (54) 4.3 东京湾海底公路隧道通风系统 (57) 4.4 东京湾海底公路隧道安全设施 (58) 4.5 东京湾海底公路隧道的疏散设施 (63) 4.6 其它 (65) 第五章南京过江隧道疏散通道的设置 5.1南京过江隧道疏散通道可能选用的设置方式 (68) 5.2南京过江隧道疏散通道设置的方案比选 (69) 5.3 结论与建议 (69) 附件1 关于消防系统与工程技术问题与日本早稻田大学小泉淳教授等专家的会谈纪要 (71)

第一章概述 1.1 南京过江隧道概况及背景 长江南京段上游过江通道是《南京城市总体规划》确定的一条重要的城市过江快速通道。江南接主城滨江大道和纬七路(即应天西路),通过纬七路再接城西干道和城东干道;江北接江北滨江大道和浦珠路,将江南江北的快速交通网络连为一体,形成横跨长江的一条东西向城市快速通道。该通道的建设可促进城市跨江快速交通网架的构建、实现南北交通的顺畅联系、加速江南江北的一体化发展,有利于改善南京市江北新市区与老城区及中心区、河西新城区的交通联系,促进实现一城三区的均衡发展;同时还有利于带动沿江地区的发展,促进江心州的开发利用,解决城市过江交通严重饱和,机动车发展迅猛,过江瓶颈制约江北发展等问题。过江通道总体规划见图1.1。 长江南京段上游过江通道主要包括左汊隧道工程、右汊桥梁工程、接线道路、立交以及附属工程等。其中隧道工程有以下五种横断面形式:圆形隧道横断面、矩形隧道横断面、引道光过渡段横断面以及引道敞开段横断面。各段在左右线隧道的长度分布如表1.1及表1.2所示。 南京长江隧道设计为双管盾构隧道,隧道江北起点为进口里程为K3+380m,梅子洲隧道出口里程为K6+854.053,隧道总长度3474.053m,其中盾构段自K3+600至K6+532.756,盾构长度为2932.756m,选用两台泥水加压盾构同向掘进。 圆形隧道段基本位于隧道中部的水底,是主要的隧道断面形式。圆形隧道断面经过双管单层、双管双层和四管单层三种断面方案的比选,最终选定双管单层

南京浦口区研究(终版)

南京浦口区域研究 一、浦口片区发展怎么样?浦口近年来发展水平稳步提升,目前来看浦口新城区域是浦口未来最具发展潜力的片区,区域的开发价值尚未完全挖掘,从国家级新区规划报批、苏南现代化建设示范区规划到南京城市发展、江北以及浦口的发展来看,浦口新城都承担着南京城市发展的重要角色,是南京未来重点打造的区域,同时区域的交通条件、配套建设以及景观规划都遵循高标准、高规格,对比浦口以及南京其他新兴发展区域,拥有更好的发展前景和优越性; 1、浦口发展历程及展望: ?浦口的过去:过去近十年的时间,桥北区域一直是浦口人口最密集以及发展最迅速的区域,这个区域房地产开发项目众多,由于仅有长江大桥免费过江,桥北这个区 域一直都是浦口的开发热点,珠江镇则依靠江浦地缘客户独立发展,高新区以及顶 山区域的发展则相对缓慢; ?浦口的现在:桥北区域的发展仍然维持较好的发展势头;珠江镇随着纬七路过江隧道开通以及地铁10号线的开通,认知度不断提升;高新区在项目陆续开发的情况 下,关注度也逐渐提升;目前浦口新城开发不断提速,其中总部大道区域受益于过 江隧道和地铁10号线,开发热度不断提升,而浦口新城核心区域(顶山区域)目 前尚未进行大规模的开发,开发项目也不多; ?浦口的未来:桥北、高新区以及珠江镇都不同程度的在快速开发,但目前浦口新城(尤其是新城核心片区)却仍然没有进行大规模的开发,这边规划等级高、配套建 设完善,在南京发展大势以及区域开发价值未被完全挖掘等情况下,这个区域势必 成为浦口下一片开发热土; 2、浦口新城的发展前景及机会: ?从国家层面来看:国家级“江北新区”规划报批以及国家颁布的“苏南现代化建设示范区规划”都极大的提升了区域发展的战略等级,而浦口新城作为“江北新区” 的核心,势必享有更高、更好的发展前景; ?从南京层面来看:南京整体城市发展和规划从秦淮河时代跨进长江时代的一个趋势,南京整体发展呈现“一主三副”的格局,“江北新区”承担南京向北发展以及跨江 发展的重担,而浦口新城在这中间起到了重要的桥头堡的作用; ?从江北以及浦口层面来看:浦口新城是“江北新区”的核心区域,从交通、景观、配套等方面进行高标准、高规格的规划,区域沿长江发展,通过纬七路及纬三路过 江隧道与主城河西形成快速连接,发展潜力及优势明显; ?浦口新城交通规划:南京2010-2020年规划了13处16条过江通道,在这基础上,

某长江隧道施工组织设计

xx 隧道施工组织设计 1 预定目标承诺 1.1 工期目标总工期:计划开工日期为:2004年11月11日,竣工日期:2006年8月10日,工期为21 个月。 1.2 质量目标确保本全合同段全部分项工程达到交通部《公路工程质量检验评定标准》(JTJ071-98)中的优良等级,单位工程一次质量检验合格率100%优良率达90鸠上, 确保投诉处理率100%。 1.3 安全目标消灭因违章施工危及公路行车险性及以上事故;杜绝职工因工死亡事故, 无职工一次负伤 5 人以上或一次重伤 3 人以上事故;重伤率控制在0.6 %。以下,轻伤率控制在5%。以内。 1.4 环境保护目标杜绝重大环境污染责任事故,确保社会、居民投诉及抱怨事件的处理率 100%。 2 编制说明 2.1 编制范围本施工组织设计编制范围为:甲市至乙市国家重点干线xx 至xx 高速公路J2 合同段xx 隧道正洞掘进开挖、支护、衬砌、路面、洞内装饰、洞口工程、附属工程以及临时工程。 2.2 编制依据施工合同、投标书、施工图纸,现行施工技术规范、操作 规 程、安全技术规程(包括技规、安规、行规、维规) 、试验规程、检验评定标准、验收规范、企业贯标程序文件、管理办法,项目进场调查报告等。 2.3 编制原则遵循“严肃性、标准性、先进性、可行性、连续性、均衡 性、 节奏性、协调性、经济性”的九性原则。 2.4 总体设计思路以“高起点、高标准、高质量、高效益”为总体目 标,精心 组织、科学规划。做到开工必优,精益求精,铸造精品工程。 3 工程概况 3.1 工程概况

3.1.1 工程概述 本合同段起于xx 隧道中部(K171+750) ,途经庙湾、上柳树 湾、狮子岩、掀盘湾、杏子包至长堰塘与K合同段相接(K173+499)。其间无河流,存在不同水量的溪流。与K合同段接头处距离乌兰 至xx 公路约 3 公里。全长1.749 公里。其中左线隧道起讫 K171+750?K172+953,长1203 米。右线隧道起讫YK171+75A YK172+948,长1198米。隧道最大埋深276m。 3.1.2 地形地貌 隧址区地貌上属低山重丘区地貌,最低标高约280 米,最高处标高约590米,相对高差约310米。 3.1.3 工程地质 xx 隧道出口位于低山重丘斜坡下部,地形呈斜坡小坎状,洞口地形坡度稍缓,总体坡度约25 度,隧道走向与坡向近一致,冲沟较发育,无地下水出露,坡面第四系堆积物厚度薄,多小于2 米。基岩为粉砂质泥岩与砂岩互层,未见不良地质现象,坡面较稳定。基岩浅埋或裸露,强?弱风化裂隙较发育,岩体较破碎?较完整,围岩受浅埋和风化影响,稳定性差。边仰坡成坡条件一般,采取无仰坡进洞的方式处置。 隧道洞身段岩性为粉砂质泥岩、泥质粉砂岩与砂岩不等厚互层,岩石为弱?微风化,属软质岩。裂隙不发育?较发育,岩体完整?较完整。岩石透水性差,洞室开挖不会产生大的地下水涌出,但局部有渗水现象。围岩类别以川类为主,有少量H、W类,具体划分情况见表3-1 :

第四章隧道总体设计

4隧道总体设计 4.1隧道选址 大青山公路隧道一号线位置的选择满足《公路隧道设计规范》的要求。隧道里程为K16+215~K18+030段,全长1815m,地貌属中低山区。该隧道为一级公路标准的长隧道。在确定线路时,要在多个路线方案中,根据地形图和各种资料进行技术、经济的比较之后,最后确定一条路线,线形对隧道很重要,一般隧道的平面线形以采用直线或大半径曲线为好。隧道位置选择在稳定的地层中,尽量避免穿越工程地质和水文地质极为复杂以及严重不良地段,当必须通过时,要有切实可靠的工程措施。该隧道范围内主要发育坝底山间沟谷。拟建隧道横穿坝顶山。 4.2隧道纵断面设计 隧道内的纵坡形式,根据《公路隧道设计规范》(JTG D70-2004),可设置单面坡和人字坡两种。两种坡型适用于不同的隧道。对位于紧坡地段,要争取高程的区段上的隧道、位于越岭隧道两端展线上的隧道、地下水不大的隧道,可以采用单面坡型。对于长达隧道、越岭隧道、地下水丰富而抽水设备不足的隧道,宜采用人字坡型。 纵坡坡度以不妨碍排水的缓坡为宜。在变坡点应放入足够的竖曲线。隧道纵坡过大,不论是在汽车的行驶还是在施工及养护管理上都不利,公路隧道控制坡度的主要因素是通风问题,汽车排出的有害物质随着坡度的增大而急剧增多,一般把纵坡保持在2%以下比较好,超过2%时有害物质的排出量迅速增加;纵坡大于3%是不可取的。从施工中和竣工后的排水需要考虑,在隧道内不应采用平坡。在施工时,为了使隧道涌水和施工用水能在坑道内的施工排水侧沟中流出,需要0.3%的坡度。如果预计涌水量相当大,则需采用0.5%的坡度。竣工后的排水,包括涌水、漏水、清洗隧道用水、消防用水等,如果能满足施工排水的需要,其最小坡度不应小于0.2%。陡坡隧道且涌水量又大时,应考虑减缓坡度。 综合以上所述,该段地形起伏大,山势险峻,海拔高程在1339~1790m,相对高差大于450m,需要争取高程,并且该区域地下水水量小,水质优良,所以选择单面坡型。但在丰水季节施工时,大的降水有可能引起局部的坍塌及

相关文档
最新文档