波长移相干涉仪的算法研究

WDM光传送网的选路和波长分配算法

WDM光传送网的选路和波长分配算法 为了克服电处理的速率“瓶颈”,宽带网络向光网络发展。目前,光突发交换、光分组(包)交换正在积极研究中,但是距商用还较远。已可商用的是具有光分插复用器(OADM,OpticalAdd-DropMultiplexer)和光交叉连接器(OXC,OpticalCross-Connect)的波分复用(WDM)网络。由于是提供可调度的传送用光路,称这种网络为WDM光传送网(OTN,OpticalTransportNetwork)。 1网络结构 图1是网络物理结构的一个例子,虚线内为光传送网。图中有5个OXC:A,B,C,D,E;5个具有光接口的电设备:S1~S5;6个将OXC相连的物理链路:l1~l6。一般一条物理链路包含一对光纤供双向运用,有的OXC间没有物理链路相连。但更多的情况是一条物理链路包含多根光纤供不同方向运用。一根光纤上可采用多个波长。 一般情况下,OXC不直接和电设备相连,只起光交叉连接作用。 OXC可分为无波长变换和有波长变换(也可以是部分端

口有波长变换或波长变换的范围有限)两种:无波长变换的OXC的作用是将一根输入光纤上的某一波长信号连到另一根输出光纤的同一波长上,即波长是连续的;有波长变换则是将一根输入光纤上的某一波长信号连到另一根输出光纤 的另一波长上。适当地安排路由和分配波长,可为电设备间建立光路(opticalpath)。在一根光纤上,不能为不同光路分配相同波长。图2(a)为图1建立的光路例子。将图2(a)的光路连接用图2(b)来表示,称为逻辑结构,也称逻辑拓扑或虚拓扑。例如,图2(a)中,节点B与E间的光路是经节点A中的OXC转接的,在图2(b)中用O4表示。图2(b)中,O6、O4、O1都是中间有OXC转接的。O2、O3、O5是直接光路。 这样建立的光路对信号是透明的,即信号可以是任意方式。 实际设计中,一种需求情况是:提出所需建立的光路,为这种光路选取物理路由并分配相应的波长[1,2]。例如,图2(b)中提出要建立6条光路,图2(a)就是一种选路和波长分配方案。 网络向分组化发展,图1中的电设备可以是ATM交换机或IP路由器。例如,连在端口B2的路由器可以通过光路O6和连在端口C3的路由器相连。B2到C3可有多条路径,O6是最近的,也可以经过O4―O5―O3或O4―O5―O1―O2连接,但需要路由器转接,即电的多跳连接。A与B间

EAST偏振干涉仪研制

EAST偏振干涉仪研制 等离子体电子密度和电流密度是核聚变等离子体的主要参数。在托卡马克运行模式研究中发现,等离子体电流参与了等离子体的磁流体平衡的过程。当采用离轴电流驱动实现电流中空分布的情况下,可以建立等离子体内部输运垒进而可以显著改善等离子体芯部区域约束情况。研究认为这是由于电流密度剖面的改变进而导致磁剪切的改变,并影响等离子体的输运,使其由反常输运降低到了新经典输运的水平,从而促使了内部输运垒的建立。 由于等离子体电流密度分布与磁流体的稳定性密切相关,因此在托卡马克或者未来聚变反应堆中,电流分布的测量与反馈控制至关重要。经过多年的发展,偏振干涉仪被认为测量电子密度和电流分布最可靠的手段之一。为了配合EAST 全超导托卡马克放电实验,开展不同放电位形、不同壁条件、不同加热功率、长脉冲运行条件下电流密度的观测和行为的研究,我们需要对电流密度诊断进行改进优化。本文的主要工作发展11道偏振干涉仪系统,实现系统的空间分辨率及电流分布的高精度测量。 主要工作为:完成系统的光学和机械设计;分析了各种系统误差并对其进行误差标定、提高系统测量精度,完善了系统的标定方法和标定精度;开展了驻波误差的理论分析,并在实验中对其进行了消除。利用偏振干涉仪准确的进行了电流分布、电子密度分布、电子密度扰动等物理参数的准确测量和分析。本文首先对干涉仪和偏振仪的测量原理进行阐述,介绍了偏振干涉的几种测量方法并进行对比,并着重对POINT系统所采用的三波法技术进行阐述。通过对高斯光束传播原理和远红外光学元件的分析,对11道偏振干涉仪进行了详细优化的光学设计,其中包括:光路设计、光路系统模拟、光学元件尺寸设计等;随后对偏振干涉仪的光学平台、光学塔架的机械稳定性设计进行描述,介绍系统的机械振动测试,最终确定由光学平台和光学塔架造成的振动误差小于系统的测量精度;为了提高偏振干涉仪法拉第旋转角的测量精度,同时保证偏振干涉仪测量数据真实性、可靠性,我们对偏振干涉仪的误差进行了详细分析及计算,并给出相应的处理方法;结合法拉第旋转角的测量数据,详细分析了杂散光效应对偏振测量的影响,并设计了一种光学隔离器以减少杂散光的干扰,极大的提高了法拉第旋转角的测量精度;通过对系统共线调节、偏振态调节,杂散光消除等关键技术问题的解决,EAST偏

WDM光传送网的选路和波长分配算法

WDM 光传送网的选路和波长分配算法 为了克服电处理的速率“瓶颈” ,宽带网络向光网络发展。目前,光突发交换、光分组 (包)交换正在积极研究中,但是距商用还较远。已可商用的是具有光分插复用器 (OADM,OpticalAdd - DropMultiplexer) 和光交叉连接器(OXC,OpticalCross- Connect)的波分复用(WDM)网络。由于是提供可调度的传送用光路,称这种网络为 WDM 光传送网 (OTN,OpticalTransportNetwork) 。 1 网络结构 图 1 是网络物理结构的一个例子,虚线内为光传送网。图中有 5 个 OXC:A,B,C,D,E;5 个具有光接口的电设备: S1? S5; 6个将OXC相连的物理链路:11?16。一般一条物理链路包含一对光纤供双向运用,有的OXC间没有物理链路相 连。但更多的情况是一条物理链路包含多根光纤供不同方向运用。一根光纤上可采用多个波长。 一般情况下,OXC不直接和电设备相连,只起光交叉连接作用。 OXC可分为无波长变换和有波长变换(也可以是部分端口有波

长变换或波长变换的范围有限 )两种:无波长变换的 OXC的作用是将一根输入光纤上的某一波长信号连到另一根输出光纤的同一波长上,即波长是连续的;有波长变换则是将一根输入光纤上的某一波长信号连到另一根输出光纤的另一波长上。适当地安排路由和分配波长,可为电设备间建立光路 (opticalpath) 。在一根光纤上,不能为不同光路分配相同波长。图2(a)为图1建立的光路例子。将图 2(a)的光路连接用图2(b)来表示,称为逻辑结构,也称逻辑拓扑或虚拓扑。例如,图2(a)中,节点B与E间的 光路是经节点 A中的OXC 转接的,在图2(b)中用04表示。图2(b)中,06、04、01都是中间有 OXC转接的。02、03、05是直接光路。 这样建立的光路对信号是透明的,即信号可以是任意方式。 实际设计中,一种需求情况是:提出所需建立的光路,为这 种光路选取物理路由并分配相应的波长 [1,2]。例如,图 2(b)中提出要建立6条光路,图2(a)就是一种选路和波长分配方案。 网络向分组化发展,图1中的电设备可以是 ATM交换机或 IP 路由器。例如,连在端口 B2 的路由器可以通过光路 06 和连在端口 C3的路由器相连。B2到C3可有多条路径,06 是最近的,也可以经过 04— 05— 03或04— 05— 01—02连接,但需要路由 器转接,即电的多跳连接。 A与B间没有光 路,至少需经 C 电跳连接一次 实际设计中另一种需求情况是:提出各路由器间的所需业务 量强度;设计出逻辑拓扑并为其光路选取物理路由和分配波长 [2

ASON中一种新的动态路由和波长分配算法_杜荔

收稿日期:2008-05-31 基金项目:国家高技术研究发展计划项目(2003AA781011);辽宁省自然科学基金资助项目(20072022)·作者简介:杜 荔(1962-),女,辽宁沈阳人,东北大学副教授· 第30卷第4期2009年4月东北大学学报(自然科学版)Journal of Northeastern University (Natural Science )Vol .30,No .4 Apr .2009 ASON 中一种新的动态路由和波长分配算法 杜 荔,孟艳楼,毕晓红 (东北大学信息科学与工程学院,辽宁沈阳 110004) 摘 要:在A SO N 中的网络节点不具备波长变换能力且光纤中复用的波长数有限的情况下,针对为到达的业务请求动态选路和波长分配问题,提出了一种新的动态路由和波长分配算法(N -RWA )·该算法中设计了一种同时考虑节点跳数和当前网络状态的合理适应度函数,并将遗传算法和最小影响波长分配算法相结合,实现对传统RWA 算法的改进·仿真结果表明,与传统的RWA 算法相比,N -RWA 算法在保证全网业务负 载均衡的同时,大大降低了网络阻塞的可能性· 关 键 词:自动交换光网络;路由和波长分配;最小影响;遗传算法;进化代数 中图分类号:T N 915 文献标识码:A 文章编号:1005-3026(2009)04-0518-04 A New Dynamic Routing /Wavelength Assignment Algorithm in AS ON DU Li ,MENG Yan -lou ,B I Xiao -hong (School of Info rma tio n Science &Engineering ,N ortheastern U niversity ,Shenyang 110004, China . Correspondent :D U Li ,E -mail :duli @ise .neu .edu .cn ) A bstract :Considering the conditions that the nodes are unable to convert the w aveleng th and that the number of multiplex wavelengths is limited in optical fibres ,a new routing /w aveleng th assig nment (N -RWA )algorithm is proposed to solve dynamically the routing and w aveleng th assig nment problem for the arrival of service request .In the new algorithm a rational fitness function is designed taking account simultaneously of the number of hops in a lightpath and the current netw ork conditions and the genetic algorithm is in combination with least influence w aveleng th assignment algorithm ,thus improving the conventio nal RWA algo rithm .Simulation results showed that N -RWA can significantly reduces the blocking probability in com parison w ith the conventional RWA algorithm w ith balanced load kept o n in the w hole netwo rk .Key words :ASON (automatically sw itched optical netw ork );routing /wavelength assig nment ;least influence ;genetic algorithm ;evolution generation 自动交换光网络(ASON )是在信令网控制之下完成光传送网内光通道连接和自动交换功能的新型网络[1],代表未来网络技术的发展方向·而RWA 问题是指当一个连接请求到来时,为连接请求计算路由并分配波长的问题,是ASON 中的关键技术之一[2]·针对不同的业务特性和连接请求方式,RWA 问题的研究主要分为静态和动态RWA 问题[3]·由于RWA 问题是NP -C 问题,因而为降低问题复杂度,一般将RWA 问题分为路由问题和波长分配问题来研究[4]· 当前路由选择策略包括固定路由(fixed routing ,FR )、固定可选路由(fixed alternate routing ,FAR )和自适应路由(alternate routing , AR )[5]·波长分配算法主要有首次命中( first fit ,FF )、最小负载(least loaded ,LL )、最小影响(least influence ,LI )、相对容量损失(relative capacity loss ,RC L )等·在ASON 智能光网络中,静态RW A 算法通常是在建网初期对静态网络业务的规划方法,一般可采用整数线性规划方法实现[6] ·而动态RWA 算法通常是在网络运行期间对动态网络业

二维干涉仪测向算法研究

摘要:为明确二维干涉仪测向中传统体制和相关体制两类算法的不同适用范围,一方面将扩展基线干涉仪算法从一维测向拓展到方位俯仰角二维测向;另一方面采用插值拟合技术提高空间夹角相关干涉仪算法测向精度。通过matlab对两种算法的测向精度和抗系统误差性能进行仿真对比实验,明确了各算法的优势,为干涉仪测向设备中测向技术的选择提供依据。 关键词:干涉仪;空间夹角;扩展基线;测向精度;抗系统误差 中图分类号:tn966?34 文献标识码:a 文章编号:1004?373x(2013)01?0001?04 0 引言 干涉仪测向通过测量来波信号在接收天线上产生的电信号之间的相位差来确定波达方向[1]。干涉仪测向技术因其具有测角范围广、能被动测向、测向精度高、实时性好等优点,已被广泛地应用于导航、探测、航空航天等军事和民用领域的测向系统中[2]。 干涉仪测向体制主要分为两类——传统干涉仪和相关干涉仪[3]。传统干涉仪通过直接计算求解出方位俯仰角,相关干涉仪通过对比实测相位差和原始相位差样本实现测向[4]。目前,传统干涉仪主要致力于解模糊技术的创新发展[5],主要的方法[6?8]有长短基线法、虚拟基线法、参差基线法和辅助基线法等。具有代表性的是基于辅助基线的扩展基线干涉仪算法,因其不受阵列形式限制且测向精度高等优点而被广泛应用。而相关干涉仪当样本数据量较大时,难以实现测向的实时性。文献[9]中介绍的空间夹角相关干涉仪算法,通过引入空间夹角,使得针对方位角和俯仰角的二维搜索变成了空间夹角的一维搜索,从而降低算法的运算量。 可以看出,目前关于提高干涉仪测向性能的研究大都针对干涉仪测向算法的某个方面存在的问题提出新的或改进方法,缺少对两类体制算法进行横向系统的比较,进而无法弄清具体条件下两类算法的优劣性和实现的可能性。因此本文选取扩展基线干涉仪算法和空间夹角相关干涉仪算法展开研究,一方面将扩展基线算法的应用从一维测向扩展到二维测向,另一方面将三点插值应用到空间夹角算法提高其测向精度。接着通过仿真对比,给出了两算法在测向精度和抗系统误差性能等方面的差异,明确了两者的优劣,以便在不同的条件下选择最优的算法来满足测向性能需求。

北邮光网络技术作业第2次 路由波长分配(RWA)算法的研究现状

路由波长分配(RWA)算法的研究现状 班级:2010211117 学号:10210518 姓名:刘芷若 1. 前言 波分复用(Wavelength Division Multiplexing—WDM)网络利用了光纤传输链路的巨大带宽,随着WDM技术日趋成熟,WDM传输技术已经进入实用化和商用化阶段。WDM全光通信网是光纤通信未来发展的主要方向之一。由于光网络对传输信号的速率和格式透明,具有灵活的波长选路和动态资源配置能力,可以实现网络的动态重构,被认为是通信网络升级的首选方案。如何利用现有的和即将敷设的光纤连网,构成未来高速、大容量、多业务的WDM 网络已经成为光通信领域中的一个重大问题。WDM网络节点处采用光分插复用器(OADM)或光交叉连接设备(OXC)在光层建立光连接,即光通道(optical path),为高层的多个逻辑电网络提供了高速、大容量的信息传送平台。光通道的建立,要求在传送网的物理结构中选择一条由业务源点到宿点的路由,并为其分配一定的波长信道(参见图1.1)。考虑到波长资源的重利用以及提高网络的阻塞性能,优化光通道的选路和波长分配(Routing and Wavelength Assignment —RW A)方案成为光通道层设计的核心问题。RW A解决如何寻找一条合适的光通道并合理地分配通道所使用的波长,使有限的资源充分发挥作用,以提供尽可能大的通信容量。 2.RWA算法的分类 WRON被认为是构建下一代光网络的候选方案之一。但是由于网络资源有限(如波长数、收发器数目等),不可能在网络中为每一节点对都建立一条直接相连的光路,因此针对不同的网络需求,需要考虑对现有可用资源进行高效利用和优化设计。WRON的核心问题是优化设计光路的选路和波长分配,寻找一条合适的光路并为之合理地分配波长,使有限的资源充分发挥作用,以提供尽可能大的通信容量。根据光通道连接请求的特点,可以把RWA问 题分成静态和动态两类。 (1)静态RWA(SRWA)问题:网络的业务类型是静态的,而且当所有连接建立好之后,连接将保持不变。光通道连接请求是预先给出的,因此要求离线计算路由和分配波长,而不需要实时计算。SR—WA问题的研究适合广域网(或骨干网),因为对于广域网来说,其业务流量基本是确定的。SRWA的输出结果是所有的源一目的节点对之间的光通道的路由以及给这些光通道分配的波长。 (2)动态RWA(DRWA)问题:光通道连接请求是逐条提出的,而且一条光通道持续一段时间后又被拆除,因此需要为每一条光通道做实时RWA计算。对于DRWA问题,对光通道建立请求的处理通常有两种策略:可重构型策略和不可重构型策略。所谓可重构型策略,就是当网络拥塞发生的时候,光网络的逻辑拓扑可以进行重构,以消除拥塞情况。但是这样的操作可能会中断很多现有的连接,而且需要对网络节点之间的光通道进行大量的调整(拆除或者重新建立),因此不适合大规模的网络。而不可重构型策略,则在拥塞发生的时候不能重构光通道,只能拒绝该请求。

移相干涉术(Phase-shift Interferometry Experiment Report

Phase-Shift Interferometry Experiment Report 一、前言: 在傳統光學中,相位的計算是以干涉條紋之條紋中心為定位,用此方式計算時,(1)中心條紋定位不易;(2)易受到外界或CCD雜訊影響而導致解析之相位誤差甚大,解析度與可靠度均甚低。因而造成移相干涉術(phase-shift interferometry,PSI)的發展,利用此技術不必透過辨識干涉條紋便可將空間相位精準的還原。 常見的干涉術其架構如下: 1.Twyman-Green架構:利用PZT 壓電奈米致動器來造成參考相位移相的目的。 (具PZT 壓電致動器之Twyman-Green 移相干涉儀) 2.Mach-Zehnder干涉儀:參考相位的移動由液晶元件(liquid crystal device, LCD) 來完成。

(具LCD 之Mach-Zehnder 移相干涉儀) 二、移相干涉術實驗儀器基本功能介紹、實驗流程簡介: 三、移相干涉術實驗原理:(Hariharan相位還原演算法) (五步還原演算法)

移相干涉術基本原理乃規則改變參考光光程,並經由影像擷取卡將參考光與信 號光所形成的干涉條紋數位化並且編碼記錄,經過程式演算解碼出信號光的波前相 位狀態,因此為一資料收集與分析的方法。 假設在一x,y 空間平面上,一參考光),,(t y x W r 與一待測光),(y x W t 分別表示如下 參考光:)](),([),(),,(t y x i r r r e y x a t y x W δφ-= 待測光:),(),(),(y x i t t t e y x a y x W φ= 其中,),(y x a r 和),(y x a t →光波的振幅 ),(y x t φ和),(y x r φ→光波的相位 )(t δ→代表兩道光間的相位移。 當兩道光相互干涉後,其光強度可表示為: )](),(cos[),("),(),(),,(),,('2 t y x y x I y x I y x w t y x w t y x I t r δφ+?+=+= 其中),(),(),(22'y x a y x a y x I t r +=→為強度偏壓; ),(),(2),("y x a y x a y x I t r ?=→為強度調變; ),(),(),(y x y x y x r t φφφ-=→為波前相位差。 為求解出波前相位差φ(x, y)之結果,我們選擇Hariharan 先生所提出得演算法, 又稱為五步還原演算法,利用此方式可以減低相位移位移量不精準所衍生的量測誤 差,並且資料運算量也不會太高是為其優點。 假設每一張分析圖的相位移差為α,我們利用CCD 擷取五張干涉影像圖,而圖 上每一點的干涉強度值可表為: ]2),(cos[),("),(),,(1αφ-?+'=y x y x I y x I t y x I ]),(cos[),("),(),,(2αφ-?+'=y x y x I y x I t y x I )],(cos[),("),(),,(3y x y x I y x I t y x I φ?+'= ]),(cos[),("),(),,(4αφ+?+'=y x y x I y x I t y x I ]2),(cos[),("),(),,(5αφ+?+'=y x y x I y x I t y x I 經還原計算可得1 53422)sin(2)] ,(tan[I I I I I y x ---=?αφ 當2πα=時,代入便可得到相位值→?? ? ???---=-1534212)(2tan ),(I I I I I y x φ

偏振分光镜对干涉仪系统非线性误差的影响

偏振分光镜对外差激光干涉仪非线性的影响 摘要:偏振分光镜为外差干涉仪系统非线性误差的一个重要来源,除了通常熟知的偏振漏光,还分析了偏振分光镜的另一个误差,即部分偏振光经偏振分光镜后的偏振态的改变。给出检测这种频率混叠的方法,理论证明,这种频率混叠对干涉仪系统非线性的影响不可忽略,而由于偏振漏光所产生的非线性误差往往可以忽视。 关键词:频率混叠; 偏振分光镜;非线性误差;偏振漏光 前言 外差激光干涉仪由于其结构简单,抗干扰能力强,且能达到很高的测量分辨率,在纳米测量中有着独特的优势。但是由于激光源的偏振态的不理想,光学元器件有缺陷,容易引起干涉臂中的光学混频,在测量中产生了相位位移和被测长度的非线性关系。这个误差随着长度的变化以光学相位差2 为周期变化,形成了较大的周期性非线性误差,其幅值往往达到几纳米,已成为影响纳米测量精度的重要误差源。 许多学者对非线性误差进行了理论分析和实验研究,以减小非线性误差。文献【】为非线性误差的来源提供了理论依据。偏振分光镜是干涉仪中的重要光学零件,从一开始发现干涉仪的非线性以来,就成为重点研究对象,许多论文报告了有意义的研究结果,但是通常来说,只有漏光现象被作为偏振分光镜的误差。在文献【】中提出并分析了偏振分光镜中可能存在的另一个误差,即偏振分光的非正交性。 在实验中,发现了偏振分光镜的另一种引起非线性误差的原因,即部分入射光经过偏振分光镜后偏振态发生改变,其对外差干涉仪的非线性误差的影响不可忽略。本文指出如何检测这种误差的存在,并理论分析了它对外差干涉仪非线性的影响。 偏振分光镜对非线性误差的影响 外差激光干涉仪利用两束有很小频率差的相互正交的线偏振光作为光源(图1), 这可以通过使用赛曼效应激光、双纵模激光或是对单频激光加声光调制得到。通过偏振分光镜将偏振态不同的两束激光完全分离,形成激光外差干涉系统的两个测量臂,经过检偏器,在光电接受器上形成参考信号和测量信号。(由于本文重点研究偏振分光镜对外差干涉仪的非线性的影响,因此假设光源为理想的,即出射光为有很小频率差的完全正交的线偏振光。) 图1 外差干涉仪测量原理 通常在检测偏振分光镜时只有偏振漏光现象被视为偏振分光镜的误差,所谓偏振漏光是指在偏振分光时,应该反射的偏振光被透射,或者该透射的偏振光被反射,如图(2)所示。

近红外傅立叶变换与偏振干涉仪原理

近红外傅立叶变换与偏振干涉仪原理 邓德文* (瑞士步琪(Buchi )实验室仪器公司中国市场部,上海,200030) 摘 要:本文简要阐述了近红外傅立叶变换的原理、传统迈克尔逊干涉仪的优势、缺点和人们对迈克尔逊干涉仪的改进、偏振干涉仪的原理、优点及其启示。 关键词:偏振干涉仪,傅立叶变换,迈克尔逊干涉仪,近红外 随着科技的发展,近红外光谱仪已逐渐成为一种常规的实验室检测仪器,其便捷、快速、无污染和多功能的特点,使它成为常规分析测试的宠儿。傅立叶变换光谱仪由于其快速、可靠、方法不受仪器约束的特点已成为近红外光谱仪的主流。在这种背景下,本文讲述了傅立叶变换的简单原理、专家们对传统迈克尔逊干涉仪的改进以及近红外傅立叶变换干涉仪的最新发展,以期增加人们对近红外光谱仪的了解。 1 傅立叶变换原理 近红外光谱是由一系列近红外波长(或频率)与其对应光信号强度(吸光度、透过率、反射率等)值构成的点所组成的曲线。每一波长的光的信号强度都可对应一个可逆的傅立叶变换的正弦或余弦曲线,如图1所示。 图1 傅立叶变换原理示意图 把所有波长的正弦曲线叠加起来,就得到一个干涉图。干涉图经过傅立叶逆变换,还可以返回得到光谱图。简单地说,能得到近红外的干涉图,就能得到相应的近红外谱图。傅立叶变换是利用干涉仪调制光源出来的连续光,得到叠加的干涉谱图,经过傅立叶逆变换得到近红外谱图。下面是传统迈克尔逊干涉仪的简要工作原理(图2)。 *作者简介:邓德文,男,2001年上海水产大学食品工学硕士毕业。现工作于瑞士步琪(Buchi )实验室仪器公司中国市场部,从事近红外产品的应用支持工作。E-mail :deng.d@https://www.360docs.net/doc/bd12313056.html, 。 FT FFT FT FFT

《激光移相干涉测试系统的设计》

一.激光移相干涉测试技术原理 1.激光干涉仪 激光具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。目前常用来测量长度的干涉仪,主要是以麦克森(Michelson)干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统,如图一所示。激光光经由分束镜(beam splitter),又称半反射镜(semi-reflector),将光束一分为二,一束射向一个固定反射镜形成参考路径,一束射向可移动的反射镜形成测量距径。这二反射镜所反射的光,回到分束镜内重新会合,合并成一道光束并产生干涉条纹射至光电传感器,因传感器感测出这些条纹的明暗变化,经由后级信号处理电路加以处理,即能计算出移动反射镜(待测物)所移动的距离。 激光干涉仪是以激光波长为已知长度、利用迈克耳逊干涉系统测量位移的通用长度测量工具。激光干涉仪有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉仪在极接近标准状态(温度为20℃、大气压力为101325帕、相对湿度59%、C O2 含量0.03%)下的测量精确度很高,可达1×10。

1)单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 2)双频激光干涉仪 在氦氖激光器上,加上一个约0.03特斯拉的轴向磁场。由于塞曼分裂效应和频率牵引效应, 激光器产生1和2两个不同频率的左旋和右旋圆偏振光。经1/4波片后成为两个互相垂直的线偏振光,再经分光镜分为两路。一路经偏振片1后成为含有频率为f1-f2的参考光束。另一路经偏振分光镜后又分为两路:一路成为仅含有f1的光束,另一路成为仅含有f2的光束。当可动反射镜移动时,含有f2的光束经可动反射镜反射后成为含有f2 ±Δf的光束,Δf是可动反射镜移动时因多普勒效应产生的附加频率,正负号表示移动方向(多普勒效应是奥地利人C.J.多普勒提出的,即波的频率在波源或接受器运动时会产生变化)。这路光束和由固定反射镜反射回来仅含有f1的光的光束经偏振片2后会合成为f1-(f2±Δf)的测量光束。测量光束和上述参考光束经各自的光

相位干涉仪测向算法及其在TMS320C6711上的实现

摘要:对实施被动无源测向定位的主要工具之一的相位干涉仪进行了较为详细和系统的研究,给出了一维相位干涉仪的基本关系式,分析了五通道相位干涉仪测向定位算法及其性能指标?熏对解相位模糊问题进行了探讨。最后,在高速浮点数字信号处理器TMS320C6711系统上实现了五通道相位干涉仪测向定位算法,达到了性能指标及实时实现。关键词:相位干涉仪测向定位相位模糊定位误差实时处理相位干涉仪测向技术广泛应用于天文、雷达、声纳等领域。将干涉仪原理用于无线电测向始于上世纪五十年代和六十年代,随着数字信号处理器的出现,通过数字信号处理器来实现高精度实时测向成为可能。本文在对一维和二维相位干涉仪进行研究的基础上给出了五通道相位干涉仪的基本关系式,分析了测向精度,并对解相位模糊问题和信道校正问题进行了探讨。采用多基线五元圆形天线阵列为模型,由天线阵列接收到的信号求解出五元天线阵列的互相关信号,并由此提取测向所需的方位信息。本文以五通道相位干涉仪硬件实现为目标,采用高速浮点数字信号处理芯片TMS320C6711进行测向处理。1相位干涉仪测向原理1.1一维相位干涉仪测向原理图1所示为一个最简单的一维双阵元干涉仪模型。图中,间隔为d(d称为基线)的两根天线A1和A2所接收的远场辐射 φ=(4πd/λ)cosθ(1)式(1)中,λ为接收电磁波的波长。因此,只要测量出φ,就能算出辐射源的到达方向θ:θ=arccos(φλ/4πd)(2)1.2测向误差的分析在实际系统中,两根天线A1和A2接收的信号为:xi(t)=s(t)exp[(-1)jj2πd/λcosθ]+ni(t),i=1,2(3)其中,ni代表对应阵元i接收的噪声,两阵元的噪声统计相互独立,且与信号统计独立。两个阵元接收信号的互相关为:r=E{x1(t)x2*(t)}=Psexp(j4πd/λcosθ)(4)式中,E代表数学期望运算,“*”代表复共轭运算,Ps代表信号功率,相关以后噪声得到抑制。由(4)式有:θ=arccos[(λ/4πd)arg(r21)+kλ/2d(5)式中,arccos表示反余弦函数,arg代表复数取幅角运算,区间为[-π,π]。k为整数,且满足:-2d/λ-arg(r21)/2π≤k≤2d/λ-arg(r21)/2π(6)在(6)式中,当d/λ>0.5时,k的取值不唯一,θ有多个解,由此产生测向模糊。对(5)式求导,有:|Δθ|=λ/4πd|sinθ|Δarg(r21)(7)由(7)式可以得出以下结论:sinθ越大,即方位角与干涉仪法线方向的夹角越小,测向精度越高;反之,测向精度降低,直至测向无效。当θ=±90°(即信号从干涉仪法线方向入射)时,精度最高;θ=0°或180°(即信号从干涉仪基线方向入射)时,接收信号互相关的幅角arg(r21)反映不出方位角的变化,测向无效。但单基线干涉仪不能同时测量俯仰角和方位角,此时至少需要另一条独立基线的干涉仪对测得的数据联合求解。1.3二维干涉仪测向原理及去模糊处理1.3.1多基线五元圆形天线模型五通道相位干涉仪采用宽口径、多基线的五元圆形天线阵,五边形的五个阵元均匀分布在半径为R的圆上,五个阵源分别为1、2、3、4、5,如图2所示。天线阵平面与地面平行,测得的方位角θ为以天线到地面的垂足为原点,目标在地面上的方位角。测得的俯仰角φ对应于目标到原点的距离(俯仰角0°对应原点)。两个阵元接收信号之间的互相关为:ri,j+1=E{xi(t)x*i+1(t)}=GiGi+1Psexp{j2π(R/λ)sinφ?[cos(θ+54°-72°i)-cos(θ-18°-72°i)]}i=1~5,定义r56=r51方位角θ和俯仰角φ的具体计算如下:Qri,i+1的幅角为αi,i+1=arg(ri,i+1)+2k2π=4π(R/λ)cos54°sinφcos(θ+108°-72°i)ri+3,i+4的幅角为αi+3,i+4=arg(ri+3,i+4)+2k1π=4π(R/λ)cos54°sinφcos(θ-108°-72°i)∴θ=atan2[αi+3,i+4-αi,i+1)csc108°,(αi+3,i+4+αi,i+1)sec108°]+72°i(8)式中,i=1~5,令r56=r51、r67=r12、r78=r23、r89=r34;atan2(y,x)代表四象限求反正切函数;arcsin代表反正弦函数。k1、k2为整数,且满足:

圆偏振光干涉原理介绍

圆偏振光干涉原理介绍 绝大多数光干涉都是通过同频同偏振方向的两束线偏振光进行的。光程差变化将引起干涉条纹的移动(两束光之间有夹角)或干涉场明暗的变化(两束光平行且同轴)。因为干涉图样的变化直接反映了光程差的变化,光程差的变化又反映着位移量的变化,而激光波长的稳定性、微小性使得光干涉测量成为精密测量的重要手段。 基于光干涉的原理,人们发明了迈克尔逊干涉仪,马赫-曾德尔干涉仪等多种干涉仪用于高精度的光程差测量。但基于这种同频同偏振方向的光干涉原理组成的干涉仪有一些缺陷:由于在光程差变化比较缓慢时(既测量镜移动比较缓慢或基本不动),则光探头检测到的是一个变化缓慢的直流信号。直流信号的躁声剔除和误差判断是比较困难的,这使得测量光路的抖动和光强起伏对测量的影响一直成为无法克服的问题,极大的影响了激光干涉测量技术的应用和发展。 为了解决上述困难,1970年惠谱公司发明了双频激光器测量系统。我们知道两个频率相差不太大的激光相互重叠也会发生干涉——我们会探测到这一个频率的差——拍频信号,在双频激光测量系统中,这个拍频信号作为参考信号。用其中一个频率的激光进行测量,由于多普勒效应,当测量镜移动时,其频率会发生改变,再与另一频率的激光干涉,产生新的拍频信号,将它与参考拍频信号相减,便可得到被测物位移的信息。因为多普勒效应造成的频率改变能反映被测物是远离(频率下降)还是靠近(频率上升),因此运动方向很容易判断,所以即使被测物作振动也是可以被分辨出来的。而探测器探测到的信号是一个有一定带宽的交流信号(两束激光的频率差),相对直流信号而言,对光强变化不敏感。 该技术由于对使用环境和条件要求不高,抗干扰能力强,而被广泛应用在机械、微电子、计量、科研等领域,几乎成为当今几何量测量的终极手段。 除了以上两种干涉外,两束同频的圆偏振光也会发生干涉,其相位关系也同样会反映在干涉结果中,但它的干涉结果不同于上述两种干涉,既没有干涉图样,也没有拍频信号,而是反映在偏振态上。通过对偏振态的定量测量,就可以得到两束光的相位关系。另外被测物的移动方向也可以通过特定的测量方案来确定,解决了普通干涉仪无法分辨被测物来回振动的困境,具有实用价值。因为圆偏振光干涉是需要同频的光干涉,故使用单频激光即可,这一点比双频测量系统具有优越性。 通过理论分析,圆偏振光干涉的测量精度不会低于双频测量精度,如果测量系统的精度够高,甚至可以达到纳米量级。 在本实验中我们首次将干涉和偏振——这两个看似独立的的基本光学现象统一为一体,清楚地解释了他们之间的相互关系。

相关文档
最新文档