一类分数阶差分方程边值问题多重正解的存在性

一类分数阶差分方程边值问题多重正解的存在性
一类分数阶差分方程边值问题多重正解的存在性

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

分数阶控制理论概述--总成

得分:_______ 南京林业大学 研究生课程论文 2013 ~2014 学年第 1 学期 课程号:PD03088 课程名称:工程应用专题 题目:分数阶控制理论研究及工程领域的应用 学科专业:机械工程 学号:8133013 姓名:钱东星 任课教师:陈英 二○一四年一月

分数阶控制理论研究及工程领域的应用 摘要: 作为控制科学与工程中一个新的研究领域,分数阶控制的研究愈来愈被关注。本文简要介绍分数阶控制的数学背景和基本知识,对分数阶控制理论及应用(分数阶系统模型、系统分析、分数阶控制器、非线性分数阶系统、系统辨识) 的研究作了总结、评述和展望。 关键词:控制理论;分数阶微积分(FOC);分数阶系统 Fractional Control Theory and Engineering Applications Qian Dongxing (Nanjing Forestry University, Nanjing Jiangsu 210037)Abstract: As a new study field of control theory and applications , the fractional order control is attracted much attention recently. In this paper, an overview in this field is surveyed. The historical development and the basic knowledge of fractional-order control are introduced. The latest works of fractional-order control are summarized and reviewed, including mathematical model, system analysis, fractional-order controller, nonlinear fractional order system and identification, etc. Some future trends in its further studies are prospected. Key words: Theory of control ;Fractional order calculus( FOC) ;Fractional order system

差分方程基本概念和方法

差分方程基本概念和方法 考察定义在整数集上的函数,(),,2,1,0,1,2, n x f n n ==-- 函数()n x f n =在n 时刻的一阶差分定义为: 1(1)()n n n x x x f n f n ?+=-=+- 函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分: 21212n n n n n n x x x x x x ???+++=-=-+ 同理可依次定义k 阶差分 k n x ? 定义1.含有自变量n ,未知函数n x 以及n x 的差分2,, n n x x ??的函数方程, 称为常 差分方程,简称为差分方程。出现在差分方程中的差分的最高阶数,称为差分方 程的阶。 k 阶差分方程的一般形式为 (,,, ,)0k n n n F n x x x ??= 其中(,,,,)k n n n F n x x x ??为,,, k n n n n x x x ??的已知函数,且至少k n x ?要在式中出 现。 定义2.含有自变量n 和两个或两个以上函数值1,, n n x x +的函数方程,称为(常) 差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。 k 阶差分方程的一般形式为 1(,,, ,)0n n n k F n x x x ++= 其中1(,,,,)n n n k F n x x x ++为1,,, n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定 要出现。 定义3.如果将已知函数()n x n ?=代入上述差分方程,使其对0,1,2, n =成为恒 等式,则称()n x n ?=为差分方程的解。如果差分方程的解中含有k 个独立的任意

含参数的分数阶差分方程特征值问题

含参数的分数阶差分方程特征值问题 与经典的整数阶模型相比,分数阶模型可以更好地刻画多种材料的记忆和遗传特性,所以分数阶微积分的研究逐步引起了国内外学者的广泛关注。分数阶差分方程是离散化的分数阶微分方程,不仅在数学领域有应用价值,还出现在流变学、自相似中的动力学过程和多孔结构、电力网、粘弹性、化学物理和其它许多科学分支。 因为分数阶差分方程的理论发展和实际应用价值,它引起了专家学者们极大的研究兴趣。对差分系统加入参数以后,当参数值变化时,系统的稳定性和结构也可能改变。 因此,研究含参数分数阶差分系统、掌握参数变动对系统的性能、状态和动力学性质的影响是非常有科学意义和应用价值的。另外,研究含参数的分数阶差分方程特征值问题也是进一步研究分数阶差分方程谱理论的重要基础。 由分数阶差分方程的研究我们可以推广到带p-Laplace算子的分数阶差分方程研究,由于p-Laplace算子是非线性算子,因此它可以应用到许多领域,例如动力系统、分子结构、互联网络、图像处理等等。除此之外,当p(28)2时,就可以转化成一般分数阶差分方程边值问题。 本文主要研究了几类分数阶差分方程边值问题,其中包括带p-Laplace算子的边值问题,方程含参数的边值问题,奇异边值问题,最小特征值问题和分数阶Nabla边值问题等多种类型,给出解和正解的存在性、唯一性以及正解的不存在性定理,最小特征值比较定理和Lyapunov不等式,并用例子论证主要结果。第一章给出了分数阶差分方程的研究背景与意义,正文中将会用到的一些基本的定义和引理以及本文的工作安排。

第二章研究了两类带p-Laplace算子的分数阶差分方程边值问题。第一节,利用Banach压缩映射原理和Brouwer不动点定理给出边值问题解的唯一性和存在性,并用例子验证所得结果。 第二节,利用Green函数的性质和Guo-krasnosel’skii不动点定理给出边值问题正解存在的几个充分条件,并用例子验证所得结果。第三章研究了两类含参数的奇异分数阶差分方程边值问题。 利用辅助函数和Guo-krasnosel’skii不动点定理给出边值问题正解的存在性定理,并给出具体例子。第四章第一节研究了一类带有非局部边值条件含参数的分数阶差分方程特征值问题。 通过基于单调迭代技巧的上下解方法给出边值问题正解存在性的结果,利用锥上的Guo-krasnosel’skii不动点定理和Green函数的性质讨论该边值问题特征值的取值范围,并给出实例加以说明。第二节,研究了一类带有强迫项的分数阶差分方程边值问题,给出Lyapunov和Hartman型不等式的结果,并给出实例加以说明。 第五章研究了两类分数阶差分方程最小特征值问题。利用0u正算子给出两个边值问题最小特征值存在的结果,并给出最小特征值的比较方法。 第六章研究了两类含参数的分数阶Nabla差分方程特征值问题。利用Green 函数的性质和锥上的Guo-krasnosel’skii不动点定理讨论边值问题特征值的取值范围,并给出例子说明结果。 第七章为全文的结论与展望,总结论文的主要工作和创新之处,并对将来的可做工作进行展望。

高阶差分方程

第六章 高阶差分方程 在离散时间分析中可能出现这种情况:t 期的经济变量,比如y t ,不仅取决于y t-1,而且取决于y t-2。这样便引出了二阶差分方程。 严格地讲,二阶差分方程是一个包含表达式Δ2y t ,但不含高于二阶差分的方程。Δ2y t 读作y t 的二阶差分。而符号Δ2是符号d 2y /dt 2在离散时间情况下的对应物,表示“取二阶差分”如下: Δ2y t =Δ(Δy t )=Δ(y t+1-y t )=(y t+2-y t+1)-(y t+1-y t )=y t+2-2y t+1+y t 因此,y t 的二阶差分可以转换为包含两期时滞的项的和。因为像Δ2y t 和Δy t 这样的表达式写起来很麻烦,所以我们将二阶差分方程重新定义为包含变量的两期时滞的方程。类似地,三阶差分方程为包含三期时滞的方程;等等。 我们首先集中讨论二阶差分方程的解法,然后再在后面的章节中将其推广至高阶差分方程。为控制讨论的范围,在本章,我们仅讨论常系数线性差分方程。但对常数项和可变项两种形式,均作考察。 具有常系数和常数项的二阶线性差分方程 一类简单的二阶差分方程的形式为: y t+2+a 1y t+1+a 2y=c 6.1 读者应注意到,此方程为线性、非齐次,且具有常系数(a 1,a 2)和常数项c 的差分方程。 二阶差分方程的通解是由余函数和特别积分构成:y t =y c +y p 。 特别积分是 1,12121-≠+++=a a a a y c p 6.2 2,1,21211-≠-=++=a a a a y t c p 6.2’ 2,1,21212-=-=+=a a a t y c p 6.2’’ 为求出余函数,我们必须集讨论简化方程 y t+2+a 1y t+1+a 2y =0 6.3 解一阶差分方程的经验告诉我们,Ab t 式在这种方程的通解中起非常重要的作用。因此,我们先试探形式为y t =Ab t 的解,它自然意味着y t+1=Ab t+1,等等。我们的任务便是确定A 和b 的值。 将试探解代入简化方程,方程变成 Ab t+2+a 1Ab t+1+a 2Ab t =0 或在消去(非零)共同因子Ab t 后,有b 2+a 1b+a 2=0 6.3’ 此二阶差分方程的特征方程与二阶微分方程的特征方程具有可比性。它具有两个特征根:

差分方程的基本知识(3)

差分方程模型的理论和方法 1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

蒋中一《数理经济学的基本方法》(第4版)课后习题详细分析和解答(第18章 高阶差分方程)【圣才出品】

第18章 高阶差分方程 练习18.1 1.写出下列每个方程的特征方程,并求出特征根: (a )y t +2-y t +1+(1/2)y t =2; (b )y t +2-4y t +1+4y t =7; (c )y t +2+(1/2)y t +1-(1/2)y t =5; (d )y t +2-2y t +1+3y t =4。 解:(a )特征方程为:b 2-b +1/2=0,可解得特征根为: (b )特征方程为:b 2-4b +4=0,可解得特征根为: (c )特征方程为:b 2+b/2-1/2=0,可解得特征根为: (d )特征方程为:b 2-2b +3=0,可解得特征根为: 2.对于上题中的每个差分方程,根据特征根判定时间路径是否包含振荡或阶梯波动,以及时间路径是否是放大的。 1211,22b b i == ±12,2,2b b ==12111,,1 222b b ?=-±=- ?12,1b b = =±

解:(a )特征根为一对共轭复根:b 1,b 2=1/2±(1/2)i ,时间路径包含阶梯波动。又因为特征根的绝对值为,所以时间路径衰减。 (b )特征根为:b 1,b 2=2>0,时间路径不包含振荡,也不包含阶梯波动。又因为特征根的绝对值|b|=2>1,所以时间路径放大。 (c )特征根为两个不同实根,其中-1是强根。由于其为负,则时间路径包含振荡,且最终为单位振荡。 (d )特征根为一对共轭复根: ,时间路径包含阶梯波动。又因为特征根的绝对值为 ,所以时间路径放大。 3.求练习18.1-1中的方程的特别解。它们表示稳定均衡或移动均衡吗? 解:(a )a 1=-1,a 2=1/2,c =2,由于a 1+a 2≠-1,由(18.2),特别解为:y p =c/(1+a 1+a 2)=2/(1/2)=4。 (b )a 1=-4,a 2=4,c =7,由于a 1+a 2≠-1,由(18.2),特别解为:y p =c/(1+a 1+a 2)=7/1=7。 (c )a 1=1/2,a 2=-1/2,c =5,由于a 1+a 2≠-1,由(18.2),特别解为:y p =c/(1+a 1+a 2)=5/1=5。 (d )a 1=-2,a 2=3,c =4,由于a 1+a 2≠-1,由(18.2),特别解为:y p =c/(1+a 1+a 2)=4/2=2。 4.解下列差分方程: (a )y t +2+3y t +1-(7/4)y t =9(y 0=6;y 1=3) (b )y t +2 -2y t +1+2y t =1(y 0=3;y 1=4 ) 1R == <12,1b b =±1R ==>

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如n n x λ=的解,带入方程中可得: ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121-- - - +++

(3)若(10)有一对单复根 βαλi ±=,令:? ρλi e ±=, αβ ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21 - - + (4) 若有m 重复根:βαλi ±=,φ ρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(12211 21-- - ++-- - +++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:- n x 如果能得到方程(8)的一个特解:* n x ,则(8)必有通解: =n x - n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果 ) (),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如 ) (n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i =关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x , (1) 或者表示为 0),,,,(1=++k n n n x x x n F (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21 为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a λλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21 称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21 ,则

相关文档
最新文档