电子技术课程设计报告--低频正弦信号发生器

电子技术课程设计报告--低频正弦信号发生器
电子技术课程设计报告--低频正弦信号发生器

电子技术课程设计

课题名称: 低频正弦信号发生器班级: 32010803

姓名:

指导教师:

日期: 2012年12月27号

前言

此次课程设计,我们组所选的题目是低频正弦信号发生器,它的要求如下:1.信号频率范围20HZ~20kHZ;2.输出信号电压幅度 5;3.输出信号频率数字显示;4.输出电压幅度数字显示。根据题目的要求,我们根据所学的知识初步判断,这是一个数字电子技术与模拟电子技术相结合的题目,中间必然会用到数模之间的转换,很明显,我们要用的是A/D转换。于是我们组就先将题目大致分成四个模块:正弦波的产生、正弦波幅值的调节、频率数字显示和幅度数字显示。并根据手中已有的数字电子技术和模拟电子技术教材,在网上和图书馆中寻找我们需要的资料。当资料收集的差不多的时候,就着手进行开始电路图的设计与仿真。在工作的过程中,我们又发现所收集的资料与具体的操作中有出入,中途又几次在网上和图书馆中收集我们所欠缺的资料,最终经过一周多的时间完成了此次任务,也从中学到了很多。由于时间仓促和我们水平的有限,其中不免会有不太合理的地方,请谅解。

目录

前言 (2)

摘要 (4)

一、系统概述 (5)

二、单元电路设计 (8)

1、正弦波的产生模块 (8)

2、正弦波的幅值调节模块 (13)

3、正弦波的的频率数字显示模块 (14)

4、正弦波的幅值数字显示模块 (18)

三、参考文献 (22)

四、鸣谢 (22)

五、元器件明细表 (22)

六、收获体会与存在问题 (23)

七、评语 (25)

低频正弦信号发生器

摘要

正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

由数字电路构成的低频信号发生器,多是由一些芯片组成,其低频性能比模拟信号发生器好得多,并且体积较小,输出的信号谐波较少,频率和振幅相对比较稳定。本文借助555定时器产生方波,再借助滤波电路,产生频率可调且输出稳定的正弦波。

在产生了稳定可调的正弦波之后,本组借助A/D转换,用一些芯片,将正弦波信号的幅值通过数码管显示出来,完成幅显的功能。并且用一种数字电路中常用的十进制计数器芯片74LS160将正弦波的频率通过数码管显示出来,完成频显的功能。

关键词低频 555定时器正弦信号滤波频显幅显

技术要求

1、输出为正弦信号

2、输出正弦信号频率为20HZ—20kHZ可调

3、数码管显示正弦信号幅值-5v--+5v可调

4、数码管显示正弦信号频率

一、系统概述

正弦信号发生器又称正弦波振荡器,产生其信号的振荡器种类繁多,下面介绍三种切实可行的方案。

方案一:

直接数字合成频率合成器(又称DDS)使用集成芯片AT89C52作为产生20HZ~器等部分实现调频、调幅,ASK、PSK等功能,系统采用自动增益控制电路,通过启动DDS电路,把内存缓存区的数据送到DDS后输出相应的频率,使输出信号峰.峰值稳定在5 V左右,并送到20kHZ 正弦信号的核心部件,并且运用DDS电路、8位数码管显示、功率放大LED(发光二极管)显示器进行显示。该系统输出稳定度和精度极高,适用于通信系统和高精度仪器。DDS以稳定度高的参考时钟为参考源,通过精密的相位累加器和DSP(数字信号处理器,DDS系统的一个显著特点是在DSP控制下能精确快速地处理频率和相位)、高速D/A变换器产生所需的数字波形(通常是正弦波形),经过模拟滤波器后,得到最终的频谱纯净、频率和相位都可以编程控制且稳定性很好的模拟正弦波形,此正弦波能够直接作为基准信号源。下图是整个系统的流程图:

图1 方案一原理方框

但是直接数字频率合成式(DDS)信号发生器,其电路实现起来不是很容易,需用的集成芯片较复杂,且需要其他外围器件,因而其成本较高.它所使用硬件描述语言实现脉宽输出简化编程复杂度,其输出显示需要LED数码管与单片机合作使用,对于我们刚学完汇编语言的大学生来说,实现起来甚是困难。

方案二:

基于正弦脉宽凋制(SPWM)理论.提出适合于数字电路实现的,抗干扰性强,可靠性较高的一种正弦信号发生器构想,它的总体构思是利用可编程逻辑器件(PLD)产生正弦调制的脉宽信号,然后通过三相PWM 逆变电路实现滤波从而产生精确的正弦信号.其优点在于使用可编程逻辑器件,使得整个电路控制灵活(可以在线编程),而且可实现的输出频率范围广;采用脉宽调制形式使得能够对输出电压幅度和频率连续调节;滤波方法简单有效.与常规的用模拟电路方式实现的信号发生器和查表式的信号发生器相比,它的输出频率稳定、精度高、范围广。

脉冲宽度调制(Pulse Width Modulation,PWM)是用载波信号调制相当于基波的正弦信号,从而达到能够调节输出脉宽的方式.正弦信号脉宽调制,它是采用三角载波信号调制正弦信号.其传统的实现方法,是让三角波发生电路与正弦波发生电路通过一个比较器产生脉宽调制波.

但是,采用这种方式实现的脉宽信号大多采用模拟电路控制,由于采用大量的模拟元件组成电路,容易受温度漂移影响,造成频率和相位不稳定.它的控制电路复杂,给安装和调试带来不便。

方案三:

基于555定时器构成的多谐振荡器能够产生正弦信号,可以采用数字电路作为正弦信号发生器。这种方法是由555首先产生正弦信号波,然后使其通过两个双BCD加法计数器4518,进行4级级联分频,选出满足要求的某一特定频率,再通过后面的滤波电路和放大电路输出信号。对于频率和电压的显示,再分别设计电路图,通过模数转换芯片使其变成能够在数码管上显示的数字信号。这种设计电路的核心部件是555定时器,通过调节滑动变阻器来改变信号的频率,使其满足要求,在20HZ~20kHZ变化,当然也可以用另一个变阻器来使电压达到5V。

图2 方案三原理方框

对上述电路的实现以及调节方法都比较简便可靠,并且产生的正弦信号误差较小,与理论值相差不大,只是在显示频率和电压方面,由于其电路中用到的元件主要是模数转换器,还附加另外的一些元件,使其连接变得很复杂,需认真看图,并且MF10在我们经常使用的仿真软件Multisim中没有,故有很多部分是不能进行仿真的,这不利于我们发现错误,就连连接的对错我们都不是很清楚另。外还有一点,我们所学的芯片不多,A/D转换我们学的就更少了,对于在短时间内要对这么多的芯片进行重新学习是有一定难度的,况且我们没办法仿真的话,对错就更不清楚了。虽然这种方法可行,但不是我们的首选。我们选择了方案四。

方案四:在数字电子技术书中,我们学习了利用555定时器产生方波的原理,基于熟悉的知识,我们决定用555定时器先产生频率可调的方波,再利用模拟电子技术中所学的滤波电路搭建一个多阶的滤波电路(我们采用的是三阶可调滤波电路),利用方波产生频率可调的正弦波。再利用数字电子技术所学的十进制计数器74LS160和数码显示DCD-HEX来完成频率的显示。由滤波电路产生的正弦波信号,经过一个放大器放大后,形成幅值在-5v--+5v可调的正弦波信号,最后在利用我们所没有学过的A/D转换装置,经过数码显示装置,完成幅值显示功能。其原理方框图如下:

图3 方案四原理方框

对我们来说,这些方法在我们的知识范围内,其原理和一些注意要点都为我们所熟悉,用到的一些芯片可以通过查阅参考书了解其作用和其原理以及管脚图的连接,其中比较难的也许是模拟电路那块,原理和调试仿真虽然难了点,但仍在我们的能力范围,这种方法是一种比较适合我们设计产生正弦信号的方法。当然,方案一、方案二和方案三在产生的信号也许比方案四更加精确,误差更小,但是,其中用到的许多元件以及电路连接相当复杂,特别是对于单片机的使用,对我们要求太高了。

综合以上考虑,采用方案四比较适合。

二、单元电路设计

1、正弦波的产生模块

本组正弦波的产生模块又可以分成方波产生部分和正弦波产生部分两个小模块。先由方波产生部分产生频率可调的方波,再通过正弦波产生部分(滤波网络)产生正弦波。

1.1、方波产生部分

A、本组正弦波的产生采用的是以芯片555定时器为核心的电路。有数字电子技术

的基本知识可以知道,用555定时器可以构成多谐振荡器、单稳态触发器、施密特触发器等具有加上电源后,能够产生一定的波形的电路。本组采用的就是用555定时器构成

的多谐振荡器,经过一定方式的电路连接,产生方波。

B、方波产生信号的接线电路图及原理

VCC

图6 方波产生信号的接线电路图

为了让占空比等于50%,则充电回路的时间T1和放电回路的时间T2必须相等,因此我们设计了图6所示的电路。

计算可得

T1≈0.7R6C1

T2≈0.7R5C1

当设定R5=R6时,就可以使T1=T2

由于要求的输出频率为20HZ—20KHZ

F=1/T=1/(T1+T2)≈1/1.4R6C1

当设定C1=1uF时

可以算出

R5=R6=35.7Ω~35.7ΚΩ

由于要求产生的信号是频率可调的,而且电路的特点又要求R5=R6,所以R5、R6在调节上就要求同步变化。

这样输出端3脚就可以得到一个占空比为50%的矩形波。

但是最后要得到正弦波,用这种矩形波是不行的,因为这种矩形波只有正值,没有负值,经滤波产生的波形不符合要求。于是,我们可以用图6所示的那样给输出端加反电动势,输出矩形波向下平移,使0坐标轴正好位于矩形波的中间位置,这样通过改变R5、R6的阻值就可以形成输出频率在20HZ—20KHZ的方波。

C、电路的仿真结果

搭接好电路以后,经过仿真,仿真结果正如我们设计的那样,仿真结果如下图

图7 电路的仿真结果

1.2、正弦波产生模块

A、滤波网络图及原理

图8 滤波网络图

本组采用的是三阶有源低通滤波电路。为了简单期间我们在这部分用方波信号发生器代替前面的方波发生电路。对于滤波电路,我们根据它的特性可以知道,低通滤波电路只允许频率低于截止频率的低频信号通过,一般有源低通滤波电路的截止频率是1MHZ,完全可以满足我们的设计要求。为了避免划线变阻器的阻值过大,引起调节不方便我们采用了两个小划线变阻器相串联,为了能够更好的达到滤波效果,我们设定三组相串联划线变阻器的阻值相等且

C1=C2=C3=1uF

对于滤波电路适于通过的频率

f=1/(2*3.14RC)

由于电容C的值已经选取为确定值,只需要通过选取滤波网络中R的值,就可以达到选取所需要的频率,并且使通过的频率满足课设的要求。

又由于一阶低通有源滤波和二阶低通有源滤波电路对于我们设计的电路滤波效果不是很好,三阶低通有源滤波电路效果非常好,调节起来也不是很麻烦。所以我们选择三阶低通有源滤波网络。

B、滤波仿真结果

图9 滤波仿真结果

C 、隔离装置图及原理

U3

3554BM 6

5

7

2

1

R10800kΩ

R11

200kΩ

R12

100kΩ

图10 隔离装置图

由于前面所得到的方波幅值很小,并且加上后面的滤波电路以后波形会发生严重的变形,故我们在这里加了一个放大倍数为4的反向比例器作为隔离装置,使输出的方波幅值为5V ,因为反向比例器的输入电阻非常大,理想情况下可以认为是无穷大的。这时就

可以得到如下方波:

图11 5V 方波波形图

2、正弦波幅值的调节模块

2.1、正弦波幅值调节电路图及原理

U3

3554BM

6

5

7

2

1

R91kΩ

U4

3554BM 6

5

7

2

1

R12

2kΩKey=A

90%

R13

500kΩ

Key=A 0%

R11kΩ

图13 正弦信号幅值调节电路图

对于此正弦信号幅值调节电路,采用的是反相放大器,由于在前面的滤波电路中数据设置的特殊性,使产生的正弦波信号的幅值远远小于5V ,故我们才用了两级放大装置,当频率很小时调节第一级放大器,当频率很大时调节第二级放大器,这样就可以实现正弦波信号在 -5V---+5V 之间变化。

2.2、最终幅值为最大时的仿真结果

以输出幅值为5V 的方波发生器产生的方波信号代替前面电路所产生的方波,

并把信号送入滤波电路中其电路原理图和仿真结果如下所示:

U4

3554BM

6

5

7

2

1

R13

300kΩ

R14

200kΩC6

1μF

XFG1

C7

1μF

C8

1.0μF

R15

40kΩKey=A 100%R1640kΩKey=A 100%

R17

100ΩKey=A 90%R18

100ΩKey=A 90%R19

100ΩKey=A 90%

R20

40kΩ

Key=A 50%U5

3554BM

6

5

7

2

1

R21

1kΩ

U6

3554BM 6

5

7

2

1

R221kΩ

R23

Key=A

15%

R25

500kΩ

Key=A 0%

图14 滤波放大电路

图15 最终最大幅值的正弦波仿真结果图

3、正弦波信号频率数字显示模块

正弦波信号发生器的频率数字显示模块是将正弦波信号发生器的输出信号的频率或与之相等的频率通过我们设计的电路,最终在数码管上面显示出来。

频率计数,也就是计数1秒内输出多少个信号。本设计是通过计数和正弦波同频率的方波数来达到计数正弦波频率的目的。其中方波可由前面的方波来代替,因为它和正弦波是同频率的,但是考虑到精确性我们把正弦波输入一个由555构成的施密特触发器中来产生和正弦波同频率的方波,其电路图如下所示:

VCC

图16 同频方波电路

本设计中是用一个高电平为1秒,低电平为0.33秒的矩形波来控制频率计数部分:当为高电平时计数器计数频率数,当高电平结束下降沿到来时计数器的值被送入存储器中并通过数码管显示出来,当为低电平时对计数器清零,当下一个高电平到来时又开始新一轮的计数,在计数阶段存储器中的值保持不变,也就是1.33秒数码管的值改变一次。因此这部分包括时钟分频和频率计数显示部分。

3.1、时钟分频部分

A、时钟分频电路图及其原理

VCC

5V

U2

74LS160N

QA 14QB 13QC 12QD 11RCO

15

A 3

B 4

C 5D

6

ENP 7ENT 10~LOAD 9~CLR 1CLK

2

U3

74LS160N

QA 14QB 13QC 12QD 11RCO

15

A 3

B 4

C 5D

6

ENP 7ENT 10~LOAD 9~CLR 1CLK

2

U4

74LS160N QA 14QB 13QC 12QD 11RCO

15

A 3

B 4

C 5D

6

ENP 7ENT 10~LOAD 9~CLR 1CLK

2

U5

74LS160N

QA 14QB 13QC 12QD 11RCO

15

A 3

B 4

C 5D

6

ENP 7ENT 10~LOAD 9~CLR 1CLK

2

U1LM555CN

GND

1

DIS

7

OUT

3

RST 4VCC

8THR

6CON

5

TRI 2GND

R1962Ω

C10.1μF

C20.01μF

R2480Ω

U6A 74LS04D

图15 时钟分频电路图

时钟分频电路是由一个555定时器构成的多谐振荡器和四片74LS160组成,最终能够产生周期为1.33s 的脉冲。

555计数器产生的脉冲信号的周期不是太大,如果太大的话,对R1、R2和C1的要求比较高,比较难以实现。为了产生比较精确的信号,我们设计的555计时器产生的信号的高电平为100us ,低电平部分为33us.

由于555计时器产生的是周期为133us 的脉冲,而74LS160为十进制计数器,每经过一片74LS160,脉冲的周期就能够扩大10倍,经过四片该芯片之后,就能产生周期为1.33s 的脉冲信号(其中低电平为1秒,高电平为0.33秒)。然后再通过一个非门就可以得到一个高电平为1秒低电平为0.33秒的矩形波,这样就得到了我们想要的信号了。其信号如下图所示:

图16 控制信号波形

(2)、正弦波信号发生器频率数字显示的电路图及其原理

图16 正弦波信号发生器频率数字显示的电路图

在正弦波信号发生器频率数字显示的电路图中,方波脉冲发生器A代表时钟分频电路,它产生一个周期为2秒的方波,此电路中数码管2秒变化一次。方波发生器B代表施密特触发器产生的方波信号。此方波信号和正弦波同频率。

而对于由10片74LS160组成的电路则可以分为两个部分,第一个部分为U1及其右面的四个芯片为计数部分,它们的作用主要是在控制信号为高电平时接收方波信号的频率脉冲并计数,当控制信号的下降沿到来时,把U1的输出置数给U2,并由数码管显示。当控制信号为低电平时将各自的数异步清零。第二部分为存储部分,其作用主要是在下降沿到来时,接收第一部分传来的数据并将其传输给数码管进行显示,它使用的是置数端有暂时存储数据的作用,这样可以在及时记录数据并可以使数码管进行显示。

(3)正弦波信号发生器频率数字显示的电路仿真结果

图17 正弦波信号发生器频率数字显示仿真结果

注:为了使数码管和74LS160芯片连接方便,右边的数码管为最高位,左边为最低位,上面所显示的频率为19999HZ.

4、正弦波信号幅值数字显示模块

在设计任务中,要求输出电压幅值,由于正弦波输出电路产生的信号为模拟信号,不能直接进行数字显示,需要通过A/D转换电路转换成数字信号,驱动数码管显示电压幅值。本电路用到的数字电压显示电路是以3 1/2位数字A/D转换器7107为核心进行模拟信号到数字信号的转换的。具体的功能介绍如下:

7107是一块应用非常广泛的集成电路,它的工作原理采用双积分原理:采择阶段——正向积分,测量阶段——反向积分。它包含3 1/2位数字A/D转换器,可直接驱动LED数

码管,内部有时钟发生器、分频器、记数器、锁存器,二---十进制计数器、译码器、驱动

器等电路。内部设有参考电压、具有独立模拟开关、逻辑控制、显示驱动、自动调零功能等。数字电压表的构成是它的一种典型应用,在制作表时,数字显示用的数码管为共阳型,

2K可调电阻最好选用多圈电阻,分压电阻选用误差较小的金属膜电阻,为防止芯片输出电

流过大,超过功耗发热,在每个字段上串电阻进行限流,以便防止功耗过大,起保护芯片

的功能。整个数字电压电路连接图如图13所示。

7107包含有40个管脚,具体的管脚图和各引脚的功能如图18所示。

图18 7107的管脚图

重点注意的引脚:

①芯片第1脚是供电,正确电压是 DC5V 。第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,本电路中的电压为-5V,但是不能是正电压,也不能是零电压。芯片第 31 引脚是信号输入引脚。在一开始,可以把它接地,造成“0”信号输入,以方便测试。

②注意芯片 27,28,29 引脚的元件数值,在本电路中用的是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。芯片的 33 和 34 脚接的 104 电容也不能使用磁片电容。

③注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。

图19 数字电压表的电路图

5、结束语

本设计能够很好的完成题目的要求,其最大的特点是能够在一定程度上避免温漂等一些由模拟器件引起的输出不稳定。但是在改变频率时过于复杂,并且要求较高,希望能在此基础使用一些新型芯片来加以简化和改进。

多功能信号发生器设计报告.doc

重庆大学城市科技学院电气学院EDA课程设计报告 题目:多功能信号发生器 专业:电子信息工程 班级:2006级03班 小组:第12组 学号及姓名:20060075蒋春 20060071冯志磊 20060070冯浩真 指导教师:戴琦琦 设计日期:2009-6-19

多功能信号发生器设计报告 一、设计题目 运用所掌握的VHDL语言,设计一个信号发生器,要求能输出正弦波、方波、三角波、锯齿波,并且能改变其输出频率以及波形幅度,能在示波器上有相应波形显示。 二、课题分析 (1).要能够实现四种波形的输出,就要有四个ROM(64*8bit)存放正弦波、方波、三角波、锯齿波的一个周期的波形数据,并且要有一个地址发生器来给ROM提供地址,ROM给出对应的幅度值。 (2).因为要设计的是个时序电路,所以要实现输出波形能够改变频率,就必须对输入的信号进行分频,以实现整体的频率的改变。 (3).设计要求实现调幅,必须对ROM输出的幅度信息进行处理。最简单易行的方法是对输出的8位的幅度进行左移(每移移位相当于对幅度值行除以二取整的计算),从而达到幅度可以调节的目的。同时为了方便观察,应再引出个未经调幅的信号作为对比。 三、设计的具体实现 1、系统概述 系统应该由五个部分组成:分频器(DVF)、地址发生器(CNT6B)、四个ROM 模块(data_rom_sin、data_rom_sqr、data_rom_tri、data_rom_c)、四输入多路选择器mux、幅度调节单元w。 2、单元电路设计与分析 外部时钟信号经过分频器分频后提供给地址发生器和ROM,四个ROM的输出接在多路选择器上,用于选择哪路信号作为输出信号,被选择的信号经过幅度调节单元的幅度调节后连接到外部的D/A转换器输出模拟信号。 (1)分频器(DVF) 分频器(DVF)的RTL截图

焊接操作规程

XXXXX 操作规程XXXX-XXXX-XXXX 焊接操作规程共 7 页第1 页 第A版第0次修改 1 目的 通过对焊接过程的控制,确保产品的焊接质量。 2 适用范围 本程序适用于公司电子仪器设备的焊接过程。 3 职责 3.1生产车间负责产品的焊接。 3.2质管部负责产品焊接效果的检验。 3.3人力资源部负责焊接作业人员的培训、考核。 4工作程序 4.1作业前 4.1.1为确保焊接质量,须对焊接作业人员的工序认知及操作水平进行考核,考核合格后方可上岗。 4.1.2根据焊件大小与性质选择合适的烙铁头。 焊件及工作性质选用烙铁 烙铁头温度(℃)(室温、220V电压) 一般印制电路板、安装导线20W内热式,30W外热式、恒温式 300~400 集成电路20W内热式、恒温式、储能式 焊片、电位器、2~8W电阻、大电解电容35~50W内热式、恒温式 50~75W外热式 350~450 8W以上大电阻,φ2以上到线等较大元器件100W内热式 150~200W外热式 400~550 维修、调试一般电子产品 20W内热式、恒温式、感应式、 储能式、两用式 4.1.3焊接作业前先清洗烙铁头,去除表面氧化层,然后将电烙铁插头插入电源插座上,检查烙铁是否发热。若在确保插头插好的情况下烙铁不发热,则应及时更换烙铁,切勿随意拆开烙铁,不能用手直接触碰烙铁头。 4.2焊接步骤 4.2.1加热焊件 电烙铁的焊接温度由实际使用情况决定。一般来说以焊接一个锡点的时间限制在3±1秒

XXXXX 焊接操作规程共 7 页第2 页 第A版第0次修改最为合适。焊接时烙铁头与印制电路板成45°角,电烙铁头顶住焊盘和元器件引脚然后给元器件引脚和焊盘均匀预热。 4.2.2移入焊锡丝 焊锡丝从元器件脚和烙铁接触面处引入,焊锡丝应靠在元器件脚与烙铁头之间。 4.2.3移开焊锡 当焊锡丝熔化(要掌握进锡速度)焊锡散满整个焊盘时,即可以45°角方向拿开焊锡丝。 4.2.4移开电烙铁 焊锡丝拿开后,烙铁继续放在焊盘上持续1~2秒,当焊锡只有轻微烟雾冒出时,即可拿开烙铁,拿开烙铁时,不要过于迅速或用力往上挑,以免溅落锡珠、锡点、或使焊锡点拉尖等,同时要保证被焊元器件在焊锡凝固之前不要移动或受到震动,否则极易造成焊点结构疏松、虚焊等现象。 加热焊件移入焊锡 移开焊锡移开电烙铁 4.3焊接要领 4.3.1烙铁头与被焊件的接触方式 4.3.1.1接触位置 烙铁头应同时接触要相互连接的2个被焊件(如焊脚与焊盘),烙铁一般倾斜45度,应避免只与其中一个被焊件接触。当两个被焊件热容量悬殊时,应适当调整烙铁倾斜角度,烙铁与焊接面的倾斜角越小,使热容量较大的被焊件与烙铁的接触面积增大,热传导能力加强。两个被焊件能在相同的时间里达到相同的温度,被视为加热理想状态。 4.3.1.2接触压力 烙铁头与被焊件接触时应略施压力,热传导强弱与施加压力大小成正比,但以对被焊件表面不造成损伤为原则。

能产生方波,三角波,正弦波地信号发生器(用741)

模拟电子技术 ——课程设计报告 题目:信号发生器 专业: 班级: 学号: : 日期: 指导老师: 目录(信号发生器) 1 信号发生器的总方案及原理框图 1.1 电路设计原理框图 1.2 电路设计方案设计

2 设计的目的及任务 2.1 课程设计的目的 2.2 课程设计的任务与要求 2.3 课程设计的技术指标 3 各部分电路设计 3.1 正弦波产生电路的工作原理 3.2 正弦波——方波发生电路的工作原理3.3 方波——三角波转换电路的工作原理3.4 电路的参数选择与计算 3.5 总电路图 4 电路的仿真 4.1 正弦波发生电路仿真 4.2 方波——三角波发生电路的仿真 5 电路的安装与调试 5.1 正弦波发生电路的安装与调试 5.2 正弦波——方波的安装与调试 5.3 方波——三角波的安装与调试 5.4 总电路的安装与调试 5.5 电路安装与调试中遇到的问题及分析解决方法 6 电路的实验结果 6.1 正弦波发生电路的实验结果

6.2 正弦波——方波转换电路的实验结果6.3 方波——三角波转换电路的实验结果 6.4 实测电路误差分析及改进方法 7 实验总结 1 信号发生器的总方案及原理框图 1.1 电路设计原理框图 电路设计原理框图如图1所示。 三角波

图1 电路设计原理框图 1.2 电路设计方案设计 1、采用RC串并联网络构成的RC桥式振荡电路产生正弦波。 2、将第一级送出的正弦波经过第二级的滞回电压比较器输出方波。 3、将第二级的方波通过第三级的积分器输出三角波。 4、电路完成。 2 设计的目的及任务 2.1 课程设计的目的 1、学习用集成运放构成正弦波、方波、三角波发生器。 2、学习波形发生器的调整和主要性能指标的测试方法。

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

FSSS作业指导书

编写日期:2008-08-05 编写:马光伟 审核: 批准: 前言 FSSS系统一般分为两个部分,即燃烧器控制系统BCS(Burner ControlSystem)和燃料安全系统FSS(Fuel Safety System)。燃烧器控制系统的功能是对锅炉燃烧系统设备进行监视和控制,保证点火器,油枪和磨煤机组系统的安全启动、停止和运行。燃料安全系统的功能是在锅炉点火前和跳闸停炉后对炉膛进行吹扫,防止可燃物在炉膛堆积。在检测到危及设备、人身安全的运行工况时,启动主燃料跳闸(MFT),迅速切断燃料,紧急停炉。 FSSS系统对保证电厂锅炉系统的安全运行具有重要作用,为了规范FSSS系统现场调试及大修后检测FSSS系统的各项功能和试验,严格执行有关规程要求,保证校验人员在大量现场工作中可以安全、优质地完成任务,内蒙古电力科学研究院热控自动化研究所编写了FSSS系统现场作业指导书。 由于编写者水平有限,有不正确的地方望大家提出。 目录 1.适用范围-----------------------------------------------4 2.引用文件-----------------------------------------------4 3.现场作业前准备-----------------------------------------4 4.现场作业流程-------------------------------------------9 5.试验条件检查-------------------------------------------9 6.FSSS所涵盖的系统及设备--------------------------------10 7.FSSS系统试验内容--------------------------------------10 8.试验后应达到的指标------------------------------------23 9.结束工作----------------------------------------------24 关键词:作业指导书

函数信号发生器设计报告

函数信号发生器设计报告 一、 设计要求 设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求: (1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调; (2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ; 中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。 (3) 输出带LED 指示。 二、 设计的作用、目的 1. 掌握函数信号发生器工作原理。 2. 熟悉集成运放的使用。 3. 熟悉Multisim 软件。 三、 设计的具体实现 3.1函数发生器总方案 采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。 总原理图:

3.2单元电路设计、仿真 Ⅰ、RC桥式正弦波振荡电路 图1:正弦波发生电路 正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。

SPM作业指导书

SPM智能化静止进相机作业指导书 XDL/JS/0D3-27 一、紧固件的检查 (1) 二、控制线与转子电缆的连接 (1) 三、通电试车 (1) 四、常见故障及处理 (1) 附表:电源板的电压输出参数 (2) 襄樊大力工业控制股份有限公司制 2003/08/23

一、紧固件的检查 由于长途运输,设备在调试前应检查并紧固所有紧固件。包括所有器件和端子排上的螺钉、螺帽。 二、控制线与转子电缆的连接 1.电源线从端子排X1上A.B.C.N接至配电柜,A.B.C接三相火线,N接零线。电源线型号 的选择参见随机《进相机使用说明书》。 2.控制线的连接要求参见随机《进相机电器图》。 3.转子电缆接在KM3下端,起动柜过来的电缆接在KM2的下端。 4.通电前认真核对接线有无漏接、错接、松动的现象。 三、通电试车 1.模拟试车 短接311和313,将检测转子电流信号的霍尔互感器(TA1,TA2,TA3)上的插件取下,接在信号发生器上,将“中控/现场”旋钮打至“现场”位置。合上空开,电源指示灯亮,待KA1吸合后,按下“进相”按钮,此时KM3吸合KM2释放,同时进相指示灯亮。进相机顶端的排风扇的风向应自下而上(若风向相反,对调任意两相电源进线即可)。 试验正常后,按下“退相”按钮,此时KM2吸合KM3释放,进相指示应灯熄。 断开空开,去掉311和313的短接线;恢复霍尔互感器上的信号线(注意相序)。 2.带载试车(负载需达到60%以上) 2.1. 通电前认真核对接线有无漏接、错接、松动的现象。主电机正常运行后,观 察面板上的功率因素表若在超前位置,则需停机将12、14号线对调。如果仍不正常,必须严格检查功率因素表的信号是否是A、C相的电压,B相电流信号。 2.2.合上空开,观察各控制板指示灯的状态。控制板第一指示灯常亮,第二、三、 四指示灯应交替闪亮;触发板第一指示灯先闪亮十秒钟左右,随即六个指示灯闪亮;电源板上的所有指示灯常亮。表明允许进相。 2.3.按下“进相”按钮,进相指示灯亮,电流下降,功率因素上升。 2.4.观察逆变变压器输入输出电流范围,如下表所示。 若复位后各指示灯状态仍不正常,参见故障处理第一条。 2.6.如果电流上升,需先退相,关掉电源。对调进相机背面端子排X3上的01和03 号线。 2.7.如果电流波动较大,说明有环流产生,处理方法见故障处理第二条。 四、常见故障及处理 1.进相机触发板六个指示灯具有故障指示功能。指示灯所指示故障如表:

EDA课程设计-正弦信号发生器的设计

《EDA技术》设计报告 设计题目正弦信号发生器的设计 院系:信息工程学院 专业:通信工程____ 学号: 姓名:__________

一.设计任务及要求 1.设计任务: 利用实验箱上的D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波 2.设计要求: (1) 用VHDL 编写正弦波扫描驱动电路 (2)设计可以产生正弦波信号的电路 (3)连接实验箱上的D/A 转换器和示波器,观察正弦波波形 二.设计方案 (1)设计能存储数据的ROM 模块,将正弦波的正弦信号数据存储在在ROM 中,通过地址发生器读取,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 (2)用VHDL 编写正弦波信号数据,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 三.设计框图 图 1 设计框图 信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM 用于存储待采样的波形幅度数值,TLV5620用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。其中,ROM 设置为7根地址线,8个数据位,8位并行输出。TLV5260为串行输入的D/A 转换芯片,因此要把ROM 中并行输出的数据进行并转串。 四.实现步骤 1.定制ROM 计 数 器 7根地址线 8 位 R O M 并转串输出 CLK TLV5620D/A 转换 RST

ROM的数据位选择为8位,数据数选择128个。利用megawizard plug-in manager定制正弦信号数据ROM宏功能块,并将上面的波形数据加载于此ROM中。如图3所示。 图2 ROM存储的数据 图3 调入ROM初始化数据文件并选择在系统读写功能 2.设计顶层

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

正弦信号发生器(2012)(DOC)

正弦信号发生器 摘要:本系统以MSP430和DDS为控制核心,由正弦信号发生模块、功率放大模块、频率调制(FM)、幅度调制(AM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生1kHz~10MHz正弦信号;经滤波、放大和功放模块达到正弦信号输出电压幅度 =6V±1V 并具有一定的驱动能力的功能;产生载波信号可设定的AM、FM信号;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK 信号且二进制基带序列码速率固定为10kbps,二进制基带序列信号可自行产生。 关键词:DDS;宽频放大;模拟调频;模拟调幅。 一、方案比较与论证 1.方案论证与选择 (1)正弦信号产生部分 方案一:使用集成函数发生器芯片ICL8038。 ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。它是电压控制频率的集成芯片,失真度很低。可输入不同的外部电压来实现不同的频率输出。为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。 方案二:锁相环频率合成器(PLL) 锁相环频率合成器(PLL)是常用的频率合成方法。锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。通过鉴相器获得输出的信号FO与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi 由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。一般来说PLL的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。 方案三:直接数字频率合成(DDS) DDS是一种纯数字化方法。它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如图1所示:

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

正弦信号发生器

正弦信号发生器[2005年电子大赛一等奖] 2008年06月15日星期日 17:06 摘要:以SPCE061A单片机为核心,通过DDS合成技术设计制作了一个步进值能任意调节的多功能信号源。该信号源在1KHz~10MHz范围能输出稳定可调的正弦波,并具有AM、FM、ASK和PSK等调制功能。信号输出部分采用低损耗电流反馈型宽带运放作电压放大,很好地解决了带宽和带负载能力的要求。系统带中文显示和键盘控制功能,操作简便,实现效果良好。 一、方案论证 1、信号产生 方案一:使用传统的锁相频率合成的方法。要求产生1KHz到10MHz的信号,用锁相环直接产生这么宽的范围很困难,所以先产生50.001M到60M的可调信号,然后把此信号与一个50M的本振混频,得到需要的频率。此方法产生的频率稳定度高,但波形频谱做纯很困难,幅度也不恒定,实现也麻烦。 方案二:采用专用DDS芯片产生正弦波。优点:软件设计,控制方便,电路易实现,容易直接达到题目要求的频率范围和步进值,且稳定性和上法一样,频谱纯净,幅度恒定,失真小。 综上所述,选择方案二用专用DDS芯片AD9850产生正弦波。AD9850是采用DDS技术、高度集成化的器件,当它在并行工作方式时,有8根数据线、3根控制线与单片机相连。AD9850的频率控制字为: 其中FTW为频率控制字,为要输出的正弦的频率,为系统时钟的频 率,由晶振产生。 2、模拟频率调制 方案一:使用内调制(软件调制),通过单片机中断,对外来模拟调制信号进行采样,采样速率为32KHz,然后对采样值进行转换,把电压转换成对应的频偏,然后转换成相应的频率控制字送DDS,以实现对1KHz正弦信号的调频,这样可以满足最大频偏的精度要求。 方案二:使用外调制,通过锁相环控制DDS总时钟,在锁相环电路中进行频率调制,来改变DDS输出信号频率,间接实现调频,这样实现简单,频域内频谱连续,但是很难做到精确的10KHz和5KHz的最大频偏。 综合以上方案,选择方案一,实际中要求调制信号是固定不变的1KHz正弦信号,所以,我们直接把正弦信号存储在单片机中,并且换算好频率控制字。 3、模拟幅度调制 方案一:使用二极管调幅电路。较常用的二极管调幅电路有二极管平衡调幅电路和二极管环形调幅电路。但由于二极管的特性不一致,会造成电路不可能完全对称,造成控制信号的泄漏。 方案二:充分利用单片机SPCE061A的资源,1K的调制信号使用单片机的DA 口输出,经滤波放大后送MC1496与DDS产生的载波进行混频,这样效果非常好,而且成本低。 综合以上方案,选择方案二。 4、ASK和PSK数字调制

锯齿波信号发生器课程设计报告

锯齿波信号发生器的设计 技术指标要求: 频率f=500Hz ,V p-p =10V 。 该课题的内容: (一)原理结构说明 一、滞回比较器 在单限比较器中,输入电压在阈值电压附近的任何微小变化,R 都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。滞回比较器具有滞回特性,即具有惯性,因此也就具有一定抗干扰能力。从反相输入端输入的滞回比较器电路如图(a)所示,滞回比较器电路中引入了正反馈。 (b)电压传输特性 从集成运放输出端的限幅电路可以看出,uo =±U Z 。集成运放反相输入端电位u N =u I ,同相输入端电位 根据“虚短”u N =u P ,求出的u I 就是阈值电压,因此得出 U Z U Z R 1+R 2 u P = R 1 U Z ±U T = ± R 1

当u I<-U T,u N+U T,uo=-U Z。 当u I>+U T,u N>u P,因而uo=-U Z,所以u P=-U T。u I<-U T,uo=+U Z。 可见,uo从+U Z跃变为-U Z和uo从-U Z跃变为+U Z的阈值电压是不同的,电压传输特性如图(b)所示。 在我们所设计的锯齿波发生器中,滞回比较器由运放U1和电阻 Rb,R1,R4所组成。 通过由稳压管D1,D2和限流电阻R3构成的输出限幅电路,从而输出方波波 形。 其中调节电阻Rb,R1可改变锯齿波的幅值和一定范围的频率。调节滞回 比较器的稳幅输出D1,D2值,可调整方波输出幅值,可改变积分时间,从 而在一定范围内改变锯齿波的频率。 二、积分电路 如图所示的积分运算电路中,由于集成运放的同相输入端通过R’接 地,u N=u P=0,为“虚地”。 电路中电容C的电流等于流过电 阻R的电流 输出电压与电容上电压的关系为 u o=-u c 而电容上电压等于其电流的积分,故

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

简易信号发生器单片机课程设计报告

课程设计(论文)任务书 电气学院电力系统及其自动化专业12(1 )班 一、课程设计(论文)题目:简易信号发生器设计 二、课程设计(论文)工作自 2015年1 月12 日起至2015 年 1月16 日止。 三、课程设计(论文) 地点:电气学院机房 10-303 四、课程设计(论文)内容要求: 1.课程设计的目的 (1)综合运用单片机原理及应用相关课程的理论知识和实际应用知识,进行单片机应用系统电路及程序设计,从而使这些知识得到进一步的巩固,加深和发展;(2)熟悉和掌握单片机控制系统的设计方法,汇编语言程序设计及proteus 软件的使用; (3)通过查阅图书资料、以及书写课程设计报告可提高综合应用设计能力,培养独立分析问题和解决问题的能力。 2.课程设计的内容及任务 (1)可产生频率可调的正弦波(64个点)、方波、锯齿波或三角波。 (2)显示出仿真波形。 (3)通过按键选择输出波形的种类。 (4)在此基础上使输出波形的幅值可控。

3.课程设计说明书编写要求 (1)设计说明书用A4纸统一规格,论述清晰,字迹端正,应用资料应说明出处。(2)说明书内容应包括(装订次序):题目、目录、正文、设计总结、参考文献等。应阐述整个设计内容,要重点突出,图文并茂,文字通畅。 (3)报告内容应包括方案分析;方案对比;整体设计论述;硬件设计(电路接线,元器件说明,硬件资源分配);软件设计(软件流程,编程思想,程序注释,) 调试结果;收获与体会;附录(设计代码放在附录部分,必须加上合理的注释)(4) 学生签名: 2015年1月16 日 课程设计(论文)评审意见 (1)总体方案的选择是否正确;正确()、较正确()、基本正确()(2)程序仿真能满足基本要求;满足()、较满足()、基本满足()(3)设计功能是否完善;完善()、较完善()、基本完善()(4)元器件选择是否合理;合理()、较合理()、基本合理()(5)动手实践能力;强()、较强()、一般()(6)学习态度;好()、良好()、一般()(7)基础知识掌握程度;好()、良好()、一般()(8)回答问题是否正确;正确()、较正确()、基本正确()、不正确() (9)程序代码是否具有创新性;全部()、部分()、无() (10)书写整洁、条理清楚、格式规范;规范()、较规范()、一般()总评成绩优()、良()、中()、及格()、不及格() 评阅人:

信号发生器期间核查操作规程

奥维通信股份有限公司移动通信工程实验室 文件编号:AWTC-IOP-01 信号发生器期间核查操作规程

目录 1目的 (2) 2检查范围 (2) 3检查内容 (2) 4使用的设备 (2) 5检查依据 (2) 6核查条件 (2) 7期间核查方法 (2) 7.1输出信号频率的期间核查 (2) 7.2输出电平的期间核查 (3) 8评定 (4) 8.1频率期间核查允许误差范围 (4) 8.2输出电平期间核查允许误差范围 (4) 9检查周期 (5) 10相关记录 (5)

信号发生器期间核查操作规程 1目的 在信号源两次检定/校准之间或仪器维修后投入使用前进行期间核查,验证设备是否保持检定/校准时的状态,确保检验结果的准确性和有效性。 2检查范围 适用于本实验室所使用的N5182A等信号发生器的期间核查。 3检查内容 输出信号频率、输出低电平、输出高电平 4使用的设备 5检查依据 JJF 1174-2007 《数字信号发生器校准规范》 AWTC-EOP-01《信号源操作规程》 6核查条件 23℃±5℃; 相对湿度≤80%; 7期间核查方法 7.1输出信号频率的期间核查 7.1.1仪器仪表连接图下图所示:

7.1.2被核查信号发生器置于未调制状态,调节信号发生器电平使频谱分析仪正常工作。频谱分析仪取样时间的设定应使其显示位数比指标要求的有效位多一位。 7.1.3从低到高改变被核查信号发生器的载波频率f,按低、中、高选取一半测试点与根据通信制式频段选取典型测试点相结合的原则(或按照技术说明书要求)选取10个频率 ,并记入到《信号发生器期间核查记录》附表A.1当点,从频谱分析仪上读出频率值f 中 7.1.4被核查信号发生器的误差计算公式按式(1)计算: △=f - f (dB)(1) 7.2输出电平的期间核查 7.2.1输出信号高电平的期间核查 7.2.1.1仪器仪表连接图下图所示: 7.2.1.2被核查信号发生器置于未调制状态,调节信号发生器输出电平为最大值,按低、中、高选取一般测试点与根据通信制式频段选取典型测试点相结合的原则(或按技术说明书要求)选取不同频率点,按高、中、低原则线后调节信号发生器输出电平不少于3个校准点(包括0dBm),从功率计上读出电平值L0,记录于《信号发生器期间核查记录》附表 A.2当中。 7.2.1.3输出高电平误差按式(2)计算: △= L - L (dB)(2) 7.2.2输出信号低电平的期间核查 7.2.2.1仪器仪表连接图下图所示:

相关文档
最新文档