2016年中考压轴冲刺之抛物线与直线型交点问题

2016年中考压轴冲刺之抛物线与直线型交点问题
2016年中考压轴冲刺之抛物线与直线型交点问题

动线与图形交点个数问题之直线与几何图形

例1:知识储备—动直线的讨论

1. y=-x+1由 平移得到的。

2. y=2x+b 由 平移得到的。

3. y=kx+b 由 平移得到的。

例2:已知平面直角坐标系中A (-2,4)B (4,2)C (0,-2)围成三角形ABC

(1)直线y=2x+b 与之交点个数的讨论,求相应b 取值范围

(2)直线y=x+b 与之交点个数的讨论,求相应b 取值范围

(3)直线y=-3x+b 与之交点个数的讨论,求相应b 取值范围

练习:(2+2011-25)

1.如图,在平面直角坐标系中,直线1

(0)2

y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,

、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF CD =.设矩形CDEF 与ABO △重

叠部分的面积为S . (1)求点E 、F 的坐标;

(2)当b 值由小到大变化时,求S 与b 的函数关系式;

(3)若在直线1

(0)2

y x b b =-+>上存在点Q ,使OQC ∠等于

90

,请直接..

写出b 的取值范围.

2.已知:关于x 的一元二次方程01-m x 2m 2-mx 2

=++)(

(1)若此方程有实根,求m 的取值范围;

(2)在(1)的条件下,且m 取最小的整数,求此时方程的两个根;

(3)在(2)的前提下,二次函数1-m x 2m 2-mx y 2++=)(与x 轴有两个交点,连接这两点间的线段,并以这条线段为直径在x 轴的上方作半圆P,设直线l 的解析式为y=x+b,若直线l 与半圆P 只有两个交点时,求出b 的取值范围.

动线与图形交点个数问题之抛物线与几何图形

例1:知识储备—动抛物线的讨论

1.y=x 2

-1由 平移得到的。 2. y=(x-2)2

-1由 平移得到的。 3. y=(x-m)2-1由 平移得到的。 4. y=x 2

-2bx+b 2-1由 平移得到的。

例2:已知点A (1,1)B (3,1)C (3,2)D(1,2)围成四边形ABCD

(1)抛物线y=1/2(x-m)2

与之交点个数的讨论,求相应m 取值范围

(2) 抛物线y=2(x-m)2

与之交点个数的讨论,求相应m 取值范围

(3)抛物线y=(x-m)2与之交点个数的讨论,求相应m 取值范围

例3:已知平面直角坐标系中A (-2,4)B (4,2)C (0,-2)围成三角形ABC ,抛物线y=(x-m)2与之交点

个数的讨论,求相应m 取值范围

练习:

1.(抛与直角梯形)已知抛物线y=x 2

-4x+3和直角梯形OBPC ,其中B(3,0) P(2,3) C(0,3)。若将抛物线沿水平方向平移,设顶点D (m,n ),当抛物线与直角梯形OBPC 只有两个交点,且一个交点在PC 边上时,

求出m 的取值范围。

2.(抛与菱形)

已知:将函数y 的图象向上平移2个单位,得到一个新的函数的图像.

(1)求这个新的函数的解析式;

(2)若平移前后的这两个函数图象分别与y 轴交于O 、A

两点,与直线x =C 、B 两点.试判断以A 、B 、C 、O 四点为顶点的四边形形状,并说明理由;

(3)若⑵中的四边形(不包括边界)始终覆盖着二次函数2

1

22

2

++-=b bx x y 的图象的一部分,求满足条件的实数b 的取值范围.

3. (抛与菱形) 定义{},,a b c 为函数2y ax bx c =++的 “特征数”.如:函数223y x x =-+的“特征数”是{}1,2,3-,函数23y x =+的“特征数”是{}0,2,3,函数y x =-的“特征数”是{}0,1,0-

(1)将“特征数”是??

?

?????1,33,0的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式

是 .

(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线3=

x 分别交于D 、C 两点,

判断以A 、B 、C 、D 四点为顶点的四边形形状,请说明理由并计算其周长.

(3)若(2)中的四边形与“特征数”是211,2,2b b ?

?-+???

?的函数图象的有交点,求满足条件的实数b 的

取值范围?

4.(抛与三角形) 已知:关于x 的一元二次方程02)21(2

2=-++-k x k x 有两个实数根. (1)求k 的取值范围;

(2)当k 为负整数时,抛物线2)21(22-++-=k x k x y 与x 轴的交点是整数点,求抛物线的解析式; (3)若(2)中的抛物线与y 轴交于点A ,过A 作x

上平移n 个单位,使平移后得到的抛物线的顶点落在△OAB 的内部围.

5. (抛沿一条直线的平移) 图中的抛物线是函数y=x 2

+1沿射线y =x (x ≤0)的方向平移2个单位,其函数 解析式变为______ ___; 若把抛物线y=x 2

+1沿射线 y =

2

1

x-1( x ≥0)方向 平移5个单位,其函数解析式则变为_________.

6. (抛沿一条直线的平移) 已知关于x 的方程03)13(2=+++x k kx .

(1)求证:无论k 取任何实数时,方程总有实数根;

(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点横坐标均为整数,且k 为正整数,求k 值; (3)在(2)的条件下,设抛物线的顶点为M ,直线y=-2x +9与y 轴交于点C ,与直线OM 交于点D .现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围.

动线与图形交点个数问题之直线与抛物线

例1:m x y +-=与322+--=x x y 交点个数的讨论,求相应m 取值范围。

变式一:新图像的组合方式

1. 翻折:沿x 轴翻折(保留部分)

2. 平移:向左平移2个单位长度,与原图像组合成新图像。

3. 旋转:绕点O 旋转180度,与原图像组合成新图像。

变式二:常用动线的选择 1.动常数函数:y=m (m 是常数) 2.动抛物线:

变式三:交点个数的选择

0、1、2、3…… 练习 翻折

1.抛物线c bx x y ++-=2的部分图像如图所示, (1)求出二次函数的解析式;

(2)将二次函数的图象在x 轴上方的部分沿x 轴翻折,图象的其余部分 保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线

m x y +-=与此图象有两个公共点时,求m 的取值范围.

2. 已知抛物线C 1:22y x x =-的图象如图所示,把C 1的图象沿y 轴翻折,得到抛物线C 2的图象,抛物

线C 1与抛物线C 2的图象合称图象C 3.

(1)求抛物线C 1的顶点A 坐标,并画出抛物线C 2的图象;

(2)若直线y kx b =+与抛物线2

(0)y ax bx c a =++≠时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 围.

3.已知抛物线 2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点. (1)求m 的取值范围;

(2)若m >1, 且点A 在点B 的左侧,OA : OB =1 : 3, 试确定抛物线的解析式;

(3)设(2)中抛物线与y 轴的交点为C ,过点C 作直线l //x 轴, 将抛物线在y 轴左侧的部分沿直线

l 翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线1

3

y x b =+与新图

象只有一个公共点P (x 0, y 0)且 y 0≤7时, 求b 的取值范围.

4. 已知:关于x 的一元二次方程:22240x mx m -+-=.

(1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;

(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形C 1,将图形C 1

向右平移一个单位,得到图形C 2,当直线y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围.

5.(09中考23) 已知关于的一元二次方程

有实数根,为正整数.

(1)求的值;

(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单

位,求平移后的图象的解析式;

(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保

持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个

公共点时,的取值范围.

平移(3+2012-23)

1. 已知:关于x 的一元二次方程063)2(22=-+-+m x m x .

(1)求证:m 无论为任何实数,方程总有实数根;

(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA=3OB ,

请确定抛物线的解析式;

(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:

当直线y=m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.

2. 已知抛物线y =x 2—4x +1.将此抛物线沿x 轴方向向左平移4个单位长度,得到一条新的抛物线. (1)求平移后的抛物线解析式;

(2)由抛物线对称轴知识我们已经知道:直线x m =,即为过点(m ,0)平行于y 轴的直线,类似地,

直线y m =,即为过点(0,m )平行于x 轴的直线.请结合图象回答:当直线y =m 与这两条抛物线有且只有四个交点,实数m 的取值范围;

(3)若将已知的抛物线解析式改为y =x 2+bx +c (b <0),并将此抛物线沿x 轴向左平移 -b 个单位长度,

试回答(2)中的问题.

3.已知:关于x 的一元二次方程0)1(222=++-m x m x 有两个整数根,m <5且m 为整数.

(1)求m 的值;

(2)当此方程有两个非零的整数根时,将关于x 的二次函数2

2

)1(2m x m x y ++-=的图象沿x 轴向左平移4个单位长度,求平移后的二次函数图象的解析式;

(3)当直线y =x +b 与(2)中的两条抛物线有且只有三个..

交点时,求b 的值. 4.(12中考23题) 已知二次函数23

(1)2(2)2

y t x t x =++++在0x =和2x =时的函数值相等。

(1) 求二次函数的解析式;

(2) 若一次函数6y kx =+的图象与二次函数的图象都经过点

(3)A m -,,求m 和k 的值;

(3) 设二次函数的图象与x 轴交于点B C ,(点B 在点C 的左侧),

将二次函数的图象在点B C ,间的部分(含点B 和点C )向左平移(0)n n >个单位后得到的图象记为G ,同时将(2)中得到的直线6y kx =+向上平移n 个单位。请结合图象回答:当平移后的直线与图象G 有公共点时,n 的取值范围。

旋转(直线旋转)

1.已知关于x 的方程2(1)(4)30m x m x -+-+=. (1) 若方程有两个不相等的实数根,求m 的取值范围;

(2) 若正整数m 满足822m ->,设二次函数2

(1)(4)3y mx mx =-+-+

的图象与x 轴交于A B

、两点,将此图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线3y kx =+与此图象恰好有三个公共点时,求出k 的值(只需要求出两个满足题意的k 值即可).

抛物线与直线交点问题

课题:抛物线与直线的交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交)(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1△抛物线与x 轴相交 (2△抛物线与x 轴相切 (3△抛物线与x 轴相离 二、抛物线与平行于x 轴的直线的交点

例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax y ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y c bx ax y 2新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1△抛物线与直线相交 (2△抛物线与直线相切 (3△抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式 方法总结:

初三数学历年中考抛物线压轴题

已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. 求该抛物线的解析式; 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax2+bx+c(a ≠0)的顶点坐标为 ???? ??--a b ac a b 44,22) 如图,抛物线 21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线 2L 对应的函数表达式; (2)抛物线1L 或2L 在轴上x 方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在, 求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线 1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.

如图16,在平面直角坐标系中,直 线 y=与x轴交于点A,与y轴交于点C,抛物 线2(0) y ax x c a =+≠ 经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F的坐标; (2)在抛物线上是否存在点P,使ABP △为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得MBF △的周长最小,若存在,求出M点的坐标;若不存在,请说明理由. 如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且1 AB= ,OB=ABOC绕点O按顺时针方向旋转60 后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线 2 y ax bx c =++过点A E D ,,. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式; (3)在x轴的上方是否存在点P,点Q,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点 Q的坐标;若不存在,请说明理由.

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 1.(2014?北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可; (2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 解答: 解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4), 代入得:, 解得:, ∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1; (2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4, 由函数图象得出D纵坐标最小值为﹣4, 设直线BC解析式为y=kx+b, 将B与C坐标代入得:, 解得:k=,b=0, ∴直线BC解析式为y=x,

当x=1时,y=, 则t的范围为﹣4≤t≤. 点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键. 2.(2011?石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4). (1)求抛物线顶点D的坐标; (2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:(1)先设出过A(﹣2,0)、B(4,0)两点的抛物线的解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴的交点坐标即可求出a的值,进而得出此抛物线的解析式; (2)先用待定系数法求出直线CD解析式,再根据抛物线平移的法则得到(1)中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4), ∵C点坐标为(0,4), ∴a=﹣,(1分) ∴解析式为y=﹣x2+x+4, 顶点D坐标为(1,);(2分) (2)直线CD解析式为y=kx+b. 则,,

2019-2020年中考数学 抛物线-压轴题

2019-2020年中考数学 抛物线-压轴题 1、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m , △AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点, 判断有几个位置能够使得点P 、Q 、B 、O 直接写出相应的点Q 的坐标. 2、已知抛物线y =-x 2 +bx +c 经过点A (0,4),且抛物线的对称轴为直 线x =2. (1)求该抛物线的解析式; (2)若该抛物线的顶点为B ,在抛物线上是否存在点C ,使得A 、B 、O 、C 点构成的四边形为梯形?若存在,请求出点C (3)试问在抛物线上是否存在着点P ,使得以3为半径的⊙P 既与x 又与对称轴相交?若存在,请求出点P 的坐标,并求出对称轴被⊙P 的弦EF 的长度;若不存在,请说明理由. 3、如图,已知抛物线y =ax 2 +bx +c (a ≠0)的顶点坐标为Q (2,-1),且与y 轴交于点C (0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点, 从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴, 交AC 于点D . (1)求该抛物线的函数关系式; (2)当△ADP 是直角三角形时,求点P 的坐标; (3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若 不存在,请说明理由. . 4、如图,平面直角坐标系中,点A 、B 、C 在x 轴上,点D 、E 在y 轴上,OA =OD =2,OC =OE =4,DB ⊥DC ,直线AD 与经过B 、E 、C 三点的抛物线交于F 、G 两点,与其 对称轴交于M .点,P 为线段FG 上一个动点(与F 、G 不重合),PQ ∥y 轴与抛物线交于点Q . (1)求经过B 、E 、C 三点的抛物线的解析式; (2)是否存在点P ,使得以P 、Q 、M 为顶点的三角形与△AOD 相似? 若存在,求出满足条件的点P 的坐标;若不存在,请说明理由; (3)若抛物线的顶点为N ,连接QN ,探究四边形PMNQ 的形状:①能 否成为菱形;②能否成为等腰梯形?若能,请直接写出点P 的坐标; 若不能,请说明理由.

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 2 1. (2014?北京)在平面直角坐标系xOy中,抛物线y=2x+mx+ n经过点A (0, - 2), B (3, 4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A, B之间的部分为图象G(包含A, B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 5 4 ? (1) 将A与B坐标代入抛物线解析 式求出m与n的值,确定出抛物线 解析式,求出对称轴即可; (2) 由题意确定出C 坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 2 解答:解:(1 )???抛物线y=2x +mx+ n经过点 A (0,- 2), B (3, 4), f n=-2 L 18+3nr^n=4 ???抛物线解析式为y=2x2- 4x - 2,对称轴为直线x=1; 2 (2)由题意得:C (- 3,- 4),二次函数y=2x - 4x- 2的最小值为-4, 由函数图象得出D纵坐标最小值为-4, 设直线BC解析式为y=kx+b , 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析: 解得:* :-4 n= - 2 代入得: 将B与C坐标代入得: 3k+b=4 -3k+b二- 解得: k= , b=0, 3 ?直线BC解析式为y=-x, 当x=1 时,y=J

点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解 本题的关键. 2. (2011?石景山区二模)已知:抛物线与 x 轴交于A (- 2, 0)、B (4, 0),与y 轴交于C ( 0, 4). (1) 求抛物线顶点 D 的坐标; (2) 设直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线 CD 于点F ,将抛物线沿其对称轴上下平移,使抛物线 与线段EF 总有公共点?试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度? (1) 先设出过A (- 2, 0)、B (4, 0)两点的抛物线的解析式为 y=a (x+2) (x - 4),再根据抛物线与 y 轴 的交点坐标即可求出 a 的值,进而得出此抛物线的解析式; (2) 先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到 ( 1)中抛物线向下平移 m 各单位 所得抛物线的解析式,再将此解析式与直线 CD 的解析式联立,根据两函数图象有交点即可求出 m 的取值范 围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位. 考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:

中考压轴题---抛物线.doc

A B 中考压轴题一一抛物线 1. 如图,抛物线y=a^+bx+c 经过A (—1,0)、3(3,0)、C (0 ,3)三点,直线/是抛物线的对称轴. (1) 求抛物线的函数关系式; (2) 设点P 是直线/上的一个动点,当△B4C 的周长最小时,求点F 的坐标; (3) 在直线/上是否存在点使为等腰三角形,若存在,直接写出所有符合条件的点M 的 坐标;若不存在,请说明理由. 2. 如图1,点A 在x 轴上,OA=4,将线段OA 绕点。顺时针旋转120°至。8的位置. (1) 求点B 的坐标; (2) 求经过A 、0、B 的抛物线的解析式; (3) 在此抛物线的对称轴上,是否存在点P,使得以点P 、。、B 为顶点的三角形是等腰三角形?若 存在,求点P 的坐标;若不存在,请说明理由. 3. 如图1,已知抛物线y=-^+bx+c 经过A (0, 1)、顷4,3)两点. 1) 求抛物线的解析式; 2) 求 tanZABO 的值; 3) 过点8作BCLx 轴,垂足为C,在对称轴的左侧旦平行于y 轴的直线交线段AB 于点N,交抛物线 于点若四边形MVCB 为平行四边形,求点M 的坐标. 4. 如图1,抛物线 > =-定+2尤+ 3与尤轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C, 顶点为D. (1) 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;

(2)连结8C,与抛物线的对称轴交于点E,点F为线段BC上的一个动点,过点F作PF//DE交抛物线于点F,设点P的横坐标为m. %1用含〃2的代数式表示线段户尸的长,并求出当,〃为何值时,四边形PEDF为平行四边形? %1设的面积为S,求S与〃?的函数关系. 5.如图1,已知抛物线+ +女(。是实数旦人>2)与X轴的正半轴分别交于点A、B (点A 4 4 4 位于点B是左侧),与),轴的正半轴交于点C. (1)点B的坐标为,点C的坐标为 (用含人的代数式表示); (2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于M, HAPBC是以点P为直角顶点的等腰宜角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由; 3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点。的坐标;如果不存在,请说明理由. 6.如图1,已知抛物线的方程Cl:),=__L Q +2)(X-梢(m>0)与工轴交于点8、C,与y轴交于点E, m 旦点B在点C的左侧. (1)若抛物线C1过点M(2, 2),求实数m的值; 2)在(1)的条件下,求2\8京的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标; (4)在第四象限内,抛物线C1上是否存在点F,使得以点8、C、F为顶点的三角形与相似? 若存在,求〃2的值;若不存在,请说明理由.

抛物线与直线交点问题经典讲义教案

抛物线与直线交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交 )(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1 △>0 抛物线与x 轴相交 (2 △=0 抛物线与x 轴相切 (3 △<0 抛物线与x 轴相离

二、抛物线与平行于x 轴的直线的交点 例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y bx ax y 2 新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1 △>0 抛物线与直线相交 (2 △=0 抛物线与直线相切 (3 △<0 抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式

双抛物线型中考压轴题解法赏析

佳题赏析双抛物线型中考压轴题解法 近几年各地中考试题中出现了一类以双抛物线为背景立意的综合性压轴题,它集知识、方法、能力于一体,重在考查考生综合应用数学知识解决问题的能力,具有较强的探索性。这类试题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。本文选取三道比较典型的中考压轴题予以解析。 一、以横轴为对称轴的双抛物线型压轴题 例1、(2006烟台市)如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点, (1)若抛物线l2与l1关于x轴对称,求l2的解析式; (2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上; (3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。 解:设l2的解析式为y=a(x-h)2+k ∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称, ∴l2过A(-2,0),C(2,0),顶点坐标是(0,4) ∴y=ax2+4 ∴0=4a+4 得 a=-1 ∴l2的解析式为y=-x2+4 (2)设B(x1 ,y1) ∵点B在l1上 ∴B(x1 ,x12-4) ∵四边形ABCD是平行四边形,A、C关于O对称 ∴B、D关于O对称 ∴D(-x1 ,-x12+4). 将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4 ∴左边=右边 ∴点D在l2上.

点、直线与抛物线之间的位置关系(学生用)

点、直线与抛物线之间的位置关系(学生用) 一.点与抛物线的位置关系: 已知点p (x 0,y 0)和焦点为F 抛物线2y =2px (p>0) (1)点p (x 0,y 0)在抛物线2y =2px (p>0)? 2o y <2p 0x (p>0) (2)点p (x 0,y 0)在抛物线2y =2px (p>0)上? 2o y =2p 0x (p>0) (3)点p (x 0,y 0)在抛物线2y =2px (p>0)外? 2o y >2p 0x (p>0) 二.直线和抛物线线之间的关系: 已知抛物线C:2y =2px (p>0)直线l :Ax+By+C=0 抛物线C 和直线l 相离: (1)抛物线C 和直线l 相离?抛物线C 和直线l 无交点?方程组22x y =0 y px A B C =++?? ?无解,消去y 得 关于x 的方程设为 A 2x 2 +2(AC-pB)x+C=0 (1)(或消去x 得关于y 的方程,Ay 2 +2pBy+C=0… ⑵)?方程(1)(或方程(2)无解)? 方程(1)中的 判别式?<0(方程(2) 中的 判别式00. 若抛物线C 和直线l 有两个交点A (x 1,y 1),B (x 2,y 2)).C ()00,y x 是AB 的中点,则直线AB 的斜率0 y p k AB = 则 当直线l 斜率是k 时12|AB y y = =- 直线l 倾斜角为α 时1212|||AB x x y y =-=-

中考压轴题分类专题六《抛物线中的圆》

中考压轴题分类专题六——抛物线中的圆 例1、已知如图,过O 且半径为5的⊙P 交x 的正半轴于点M (2m ,0)、交y 轴的负半轴于点D ,弧OBM 与弧OAM 关于x 轴对称,其中A 、B 、C 是过点P 且垂直于x 轴的直线与两弧及圆的交点. (1)当m =4时, ①填空:B 的坐标为 ,C 的坐标为 ,D 的坐标为 ; ②若以B 为顶点且过D 的抛物线交⊙P 与点E ,求此抛物线的函数关系式和写出点E 的坐标; ③除D 点外,直线AD 与②中的抛物线有无其它公共点?并说明理由. (2)是否存在实数m ,使得以B 、C 、D 、E 为顶点的四边形组成菱形?若存在,求m 的值;若不存在,请说明理由. D C B A P M O y x

例2、在ABC ?中,90A ? ∠=,4,3AB AC ==,M 是AB 上的动点(不与A ,B 重合),过M 点作 //MN BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM x =. (1)用含x 的代数式表示MNP ?的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记MNP ?与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? A B C M N D 图 2 O A B C M N P 图 1 O A B C M N P 图 3 O

C O D E A B O 例3、如图,在RT ?ABC 中,∠C=90 (∠A>∠B)。它的两个锐角正弦值恰为方程 0)1(242=++-m x m x 的两根。他的内切圆半径为13-,抛物线c bx ax y ++=2过A 、B 、C 三点 (1).求m 的值 (2).求抛物线的解析式 (3).在抛物线上是否存在点P,使APB S ?=83,若存在,求出P 的坐标,若不存在说明理由 如图,直线y =- 3 3 x +1与两轴分别交于A 、B 两点,以AB 为边长在第一象限内作正三角形ABC.圆O '为?ABC 的外接圆与x 轴交于另一点E (1).求C 点坐标 (2).求过C 点与AB 中点的直线的解析式 (3).求过点E 、O '、A 三点的二次函数的解析式

【精品专题训练】2021年中考数学抛物线压轴题二次函数最值问题专题训练 含答案与试题解析

2021年中考数学抛物线压轴题二次函数最值问题专题训练一.解答题(共10小题) 1.(2020?青白江区模拟)如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB. (1)求抛物线的函数关系式; (2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标; (3)在线段OC上是否存在一点M,使BM+√2 2CM的值最小?若存在,请求出这个最 小值及对应的M点的坐标;若不存在,请说明理由. 2.(2020?日照三模)如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置. (1)求经过A、O、B三点的抛物线的函数解析式; (2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+1 2OM的最 小值. 3.(2019秋?开福区校级期中)如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B

两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB 交于点M. (1)当四边形CODM是菱形时,求点D的坐标; (2)若点P为直线OD上一动点,求△APB的面积;′ (3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M 上一动点,求QB'+√2 2QB的最小值. 4.(2019秋?金安区校级月考)已知抛物线y=ax2+bx﹣4经过点M(﹣4,6)和点N(2,﹣6). (1)试确定该抛物线的函数表达式; (2)若该抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C ①试判断△ABC的形状,并说明理由; ②在该抛物线的对称轴上是否存在点P,使PM+PC的值最小?若存在,求出它的最小 值;若不存在,请说明理由. 5.(2019?中原区校级四模)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

中考数学抛物线压轴题

1. 如图1,抛物线C1:y=ax2+bx+2与直线AB:y=x+交于x轴上的一点A,和另一点B (3,n). (1)求抛物线C1的解析式; (2)点P是抛物线C1上的一个动点(点P在A,B两点之间,但不包括A,B两点),PM⊥AB 于点M,PN∥y轴交AB于点N,在点P的运动过程中,存在某一位置,使得△PMN的周长最大,求此时P点的坐标,并求△PMN周长的最大值; (3)如图2,将抛物线C1绕顶点旋转180°后,再作适当平移得到抛物线C2,已知抛物线C2的顶点E在第四象限的抛物线C1上,且抛物线C2与抛物线C1交于点D,过D点作x 轴的平行线交抛物线C2于点F,过E点作x轴的平行线交抛物线C1于点G,是否存在这样的抛物线C2,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在请说明理由.

2. (2013?桂林)已知抛物线的顶点为(0,4)且与x轴交于(﹣2,0),(2,0). (1)直接写出抛物线解析式; (2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P. ①当直线OD与以AB为直径的圆相切于E时,求此时k的值; ②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由. 3.如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=﹣3. (1)求该抛物线的函数表达式; (2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使 ,求出此时点M的坐标; (3)若点Q是抛物线上一点,且横坐标为﹣4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

2020年中考数学专题复习抛物线有关压轴题

抛物线有关压轴题复习 常见模型 思考 在边长为1的正方形网格中有A, B, C三点,画出以A,B,C 为其三个顶点的平行四边形ABCD。 在射线BD上可以找出一点组 成三角形,可得△ABC、△BEC、 △CBD为等腰三角形。 二、拔高精讲精练 探究点一:因动点产生的平行四边形的问题 例1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式; (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S. 求S关于m的函数关系式,并求出S的最大值. (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。 解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),

将A (-4,0),B (0,-4),C (2,0)三点代入函数解析式得:16404420a b c c a b c -+? -+?? +??=== 解得14 12a b c -??????? = ==,所以此函数解析式为:y=12x 2+x ? 4; (2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,12 m 2 +m ?4), ∴S=S △AOM +S △OBM -S △AOB = 12×4×(-12m 2-m+4)+12×4×(-m )-12 ×4×4=-m 2 -2m+8-2m-8 =-m 2 -4m=-(m+2)2 +4,∵-4<m <0,当m=-2时,S 有最大值为:S=-4+8=4.答:m=-2时S 有最大值S=4. (3)设P (x , 12 x 2 +x-4). 当OB 为边时,根据平行四边形的性质知PQ ∥OB ,且PQ=OB ,∴Q 的横坐标等于P 的横坐标, 又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x-( 12 x 2 +x-4)|=4, 解得x=0,-4,-2±25.x=0不合题意,舍去.如图,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4). 由此可得Q (-4,4)或(-2+25,2-25)或(-2-2 5,2+2 5)或(4,-4). 【变式训练】如图,经过点C (0,-4)的抛物线y=ax 2 +bx+c (a ≠0)与x 轴相交于A (-2,0),B 两点. (1)a > 0,b 2 -4ac > 0(填“>”或“<”); (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式; (3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.

抛物线与直线的交点问题

抛物线与直线的交点问题 1、 抛物线y=ax 2+bx+c 与直线y=m (坐标系中的水平直线)的交点问题: ①把y=m 代入y=ax 2+bx+c 得ax 2+bx+c=m ,即ax 2+bx+(c-m )=0 此时方程的判别式△=b 2-4a(c-m)。 △>0,则抛物线y=ax 2+bx+c 与直线y=m 有两个交点; △=0时有一个交点; △<0时无交点。 ②特殊情形: 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点问题: 令y=0,则ax 2+bx+c=0 此时方程的判别式△=b 2-4ac △>0,则抛物线y=ax 2+bx+c 与x 轴有两个交点; △=0时有一个交点; △<0时无交点。 2、抛物线y=ax 2+bx+c 与直线y=kx+b 的交点问题: 令ax 2+bx+c=kx+b ,整理方程得:ax 2+(b-k)x+(c-b )=0 此时方程的判别式△=(b-k)2-4a (c-b ) △>0,则抛物线y=ax 2+bx+c 与直线y=kx+b 有两个交点; △=0时有一个交点; △<0时无交点。 总结:判别式△的值决定抛物线与直线的交点个数。 3、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的交点位置问题: 若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的交点为(x 1,0)、(x 2,0) ① 若x 1x 2>0、x 1+x 2>0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点右侧 ② 若x 1x 2>0、x 1+x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点在原点左侧 ③ 若x 1x 2<0,则抛物线y=ax 2+bx+c 与x 轴的两个交点分居于原点两侧 4、 抛物线y=ax 2+bx+c 与直线y=0(x 轴)的两个交点距离公式 若ax 2+bx+c=0的两根为x 1、x 2,则抛物线y=ax 2+bx+c 与x 轴的两个交点(x 1,0)、(x 2,0)的距离为 ︱x 1-x 2︱=a ac b 42 练习 1.一元二次方程ax 2+bx +c =0的两根是-3和1,那么二次函数y =ax 2+bx +c 与x 轴的交点是____________. 2.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( ) A .k >-47 B .k <-47且k ≠0 C .k ≥-47 D .k ≥-47且k ≠0 3.若抛物线y =x 2-8x +c 顶点在x 轴上,则c 的值等于( ). A .4 B .8 C .-4 D .16 4.二次函数y =ax 2+bx +c 的值恒为负值的条件是( ). A .a >0, b 2-4ac <0 B .a <0, b 2-4ac >0 C .a >0, b 2-4ac >0 D .a <0, b 2-4ac <0 5.直线y=3x -3与抛物线y=x 2-x+1的交点的个数是______

2016-2017年全国中考二次函数与平行四边形压轴题

2016-2017年全国中考二次函数与平行四边形压轴题

二次函数与平行四边形 1.如图,已知抛物线y=ax 2+c 过点(﹣2,2),(4,5),过定点F (0,2)的直线l :y=kx+2与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C . (1)求抛物线的解析式; (2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(>、<、=),并证明你的判断; (3)P 为y 轴上一点,以B 、C 、F 、P 为顶点的四边形是菱形,设点P (0,m ),求自然数m 的值; (4)若k=1,在直线l 下方的抛物线上是否存在点Q ,使得△QBF 的面积最大?若存在,求出点Q 的坐标及△QBF 的最大面积;若不存在,请说明理由. 2.如图,抛物线c bx x y ++=221 与x 轴交于B A 、两点,

与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB . ⑴求抛物线的解析式及点D 的坐标; ⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标; ⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 3如图,矩形OABC 的两边在坐标轴上,点A 的坐标为()10,0,抛物线24y ax bx =++过,B C 两点,且与x 轴的一个交点为()2,0D -,点P 是线段CB 上的动点,设()010CP t t =<<. (1)请直接写出,B C 两点的坐标及抛物线的解析

动线与图形交点个数问题

动线与图形交点个数问题之直线与几何图形 例1:知识储备—动直线的讨论 1. y=-x+1由 平移得到的。 2. y=2x+b 由 平移得到的。 3. y=kx+b 由 平移得到的。 例2:已知平面直角坐标系中A (-2,4)B (4,2)C (0,-2)围成三角形ABC (1)直线y=2x+b 与之交点个数的讨论,求相应b 取值范围 (2)直线y=x+b 与之交点个数的讨论,求相应b 取值范围 (3)直线y=-3x+b 与之交点个数的讨论,求相应b 取值范围 练习:(2+2011-25) 1.如图,在平面直角坐标系中,直线1 (0)2 y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C , 、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF CD =.设矩形CDEF 与ABO △重 叠部分的面积为S . (1)求点E 、F 的坐标; (2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1 (0)2 y x b b =-+>上存在点Q ,使OQC ∠等于 90,请直接.. 写出b 的取值范围. 2.已知:关于x 的一元二次方程01-m x 2m 2-mx 2 =++)( (1)若此方程有实根,求m 的取值范围; (2)在(1)的条件下,且m 取最小的整数,求此时方程的两个根; (3)在(2)的前提下,二次函数1-m x 2m 2-mx y 2++=)(与x 轴有两个交点,连接这两点间的线段,并以这条线段为直径在x 轴的上方作半圆P,设直线l 的解析式为y=x+b,若直线l 与半圆P 只有两个交点时,求出b 的取值范围. 动线与图形交点个数问题之抛物线与几何图形 例1:知识储备—动抛物线的讨论 1.y=x 2 -1由 平移得到的。 2. y=(x-2)2 -1由 平移得到的。 3. y=(x-m)2-1由 平移得到的。 4. y=x 2 -2bx+b 2-1由 平移得到的。 例2:已知点A (1,1)B (3,1)C (3,2)D(1,2)围成四边形ABCD (1)抛物线y=1/2(x-m)2 与之交点个数的讨论,求相应m 取值范围 (2) 抛物线y=2(x-m)2 与之交点个数的讨论,求相应m 取值范围 (3)抛物线y=(x-m)2与之交点个数的讨论,求相应m 取值范围 例3:已知平面直角坐标系中A (-2,4)B (4,2)C (0,-2)围成三角形ABC ,抛物线y=(x-m)2与之交点 个数的讨论,求相应m 取值范围 练习: 1.(抛与直角梯形)已知抛物线y=x 2 -4x+3和直角梯形OBPC ,其中B(3,0) P(2,3) C(0,3)。若将抛物线沿水平方向平移,设顶点D (m,n ),当抛物线与直角梯形OBPC 只有两个交点,且一个交点在PC 边上时, 求出m 的取值范围。 2.(抛与菱形) 已知:将函数y 的图象向上平移2个单位,得到一个新的函数的图像. (1)求这个新的函数的解析式; (2)若平移前后的这两个函数图象分别与y 轴交于O 、A 两点,与直线x =C 、B 两点.试判断以A 、B 、C 、O 四点为顶点的四边形形状,并说明理由; (3)若⑵中的四边形(不包括边界)始终覆盖着二次函数2 1 22 2 ++-=b bx x y 的图象的一部分,求满足条件的实数b 的取值范围.

中考数学压轴题-抛物线与圆(含答案)

中考数学压轴题分类强化训练3-抛物线与圆 1、如图①②,在平面直角坐标系中,边长为2的等边△CDE 恰好与坐标系中的△OAB 重合, 现将△CDE 绕边AB 的中点G (G 点也是DE 的中点),按顺时针方向旋转180°到△C 1DE 的位置。 (1)求C 1点的坐标; (2)求经过三点O 、A 、C 1的抛物线的解析式; (3)如图③,⊙G 是以AB 为直径的圆,过B 点作⊙G 的切线与x 轴相交于点F ,求切线BF 的解析式; (4)抛物线上是否存在一点M ,使得3:16:=??OAB AMF S S .若存在,请求出点M 的坐标;若不存在,请说明理由。 解(1)C 1(3,3) (2)∵抛物线过原点O(0,0),设抛物线解析式为y =ax 2 +b x 把 A(2,0),C`(3,3)带入,得420 933 a b a b +=???+=?? 解得a =3,b =-23 ∴抛物线解析式为y = 3x 2-23 x (3)∵∠ABF=90°,∠BAF=60°,∴∠AFB=30° 又AB =2 ∴AF=4 ∴OF=2 ∴F (-2,0) 设直线BF 的解析式为y =k x +b 把B(1,3),F(-2,0)带入,得3 20 k b k b ?+=??-+=?? 解得k =33,b =233 ∴直线BF 的解析式为y = 33x +23 3 (4)①当M 在x 轴上方时,存在M(x , 3x 2-23 x )

S△AMF:S△OAB=[ 12×4×(3x 2-23x )]:[1 2 ×2×4]=16:3 得x 2 -2x -8=0,解得x 1=4,x 2=-2 当x 1=4时,y = 3×42 -23×4=83; 当x 1=-2时,y = 3×(-2)2 -23×(-2)=83 ∴M 1(4, 83),M 2(-2,83 ) ②当M 在x 轴下方时,不存在,设点M(x , 33x 2-23 3 x ) S△AMF:S△OAB=[- 12×4×(33x 2-233x )]:[1 2 ×2×4]=16:3 得x 2 -2x +8=0,b 2 -4a c <0 无实解 综上所述,存在点的坐标为M 1(4, 83),M 2(-2,83 ). 2.已知:如图,在平面直角坐标系xOy 中,以点P (2,3)为圆心的圆与y 轴相切于 点A ,与x 轴相交于B 、C 两点(点B 在点C 的左边). (1)求经过A 、B 、C 三点的抛物线的解析式; (2)在(1)中的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的 2 1 .如果 存在,请直接写出所有满足条件的M 点的坐标;如果若不存在,请说明理由; (3)如果一个动点D 自点P 出发,先到达y 轴上的某点,再 到达x 轴上某点,最后运动到(1)中抛物线的顶点Q 处,求使点D 运动的总路径最短的路径的长.. 解:(1)联结P A ,PB ,PC ,过点P 作PG ⊥BC 于点G . ∵⊙P 与y 轴相切于点A , ∴P A ⊥y 轴, ∵P (2,3), ∴OG =AP =2,PG =OA =3 ∴PB =PC =2. ∴BG =1.

相关文档
最新文档