内接法和外接法测电源电动势的误差分析

内接法和外接法测电源电动势的误差分析
内接法和外接法测电源电动势的误差分析

内接法和外接法测电源电动势的误差分析

测量电源电动势E ,有两种电路接法,图一和图二,图一是电流表的内接法,图二是电流表的外接法。

图一 图二

下面讨论内接法和外接法的误差:

电源电动势测量原理:Ir U E +=,r 是电源内阻,U 是路端电压,在理论上,认为电压表和电流表都是理想电表,U 仅指电阻R 上的电压,认识到这一点很重要。

①内接法:如图一所示,R 和电流表看做外电路,电压表和电源看做一个新的等效电源,在等效电源里,电压表和内阻r 并联,当干路中电流I=0A 时,外电路中R 和电流表上的电压等于电源的实际电动势,而U-I 图像中,I=0A ,测量电动势等于R 上的电动势,所以,测量的电动势小于实际的电动势。电压表内阻v R 和r 的总阻值等于测量的电源内阻,因为v R 和r 并联,所以并联电阻小于电源实际内阻r ,因此用这种接法测量的电源电动势和电源内阻都偏小。U-I 图像如下:

②外接法:如图二所示,R 是外电路,电流表和电源看做一个新的等效电源,在等效电源里,电流表和内阻r 串联,当干路中电流I=0A 时,R 两端电压等于实际电动势,实际上,在U-I 图像中,I=0A 时,测量电动势等于R 两端的电动势,所以,测量电动势等于实际电动势。电流表内阻A R 和r 的总阻值等于测量的电源内阻,因为A R 和r 串联,所以串联电阻大于电源实际内阻r ,因此用这种接法测量的电源电动势等于实际电动势,测量的内阻大于实际内阻。U-I 图像如下:

用补偿法测量电池电动势 (2)

大学物理实验报告纸 姓名 指导教师 学号 同组人 专业班级 实验日期 实验名称 [实验目的] [实验原理 ] 1 1. 学习用补偿法测量电动势的基本原理。 2. 了解电位差计的基本结构、工作原理,并学会其使用方法。 1.电位差计测量电池电动势原理 用电位差计测量电池电动势的原理是补偿法。如图3.10-1所示,移动滑线变阻器AB 的滑动端C 的位置,可以找到一处使检流计G 中的电流为零。 此时,C 、B 两点间的电压U CB =E x 与未知电动势E x 互相补偿。若滑线变阻器上的电压分布事先加以标定,则可求出E x ,这种测量电动势的方法称为补偿法。 要精确测出E x ,必须要求分压器(滑线变阻器) 上的电压标度稳定而且准确。 为此,实际用的 电位差计会在电源回路中接人一个可变电阻R,如图3.10-2所示,称为工作电流1调节电阻。E 和R 串联后给分压器AB(标准电阻R AB )供电,调节R,使加到分压器AB 两端的电压保持不变,从而保证分压器AB 上的电压标度不变。 为保证分压器AB 上的电压标度不变,通常将一已知电动势为E s 的标准电池接在待测电池位置,如图3.10-2所示,然后将分压器调到标度等于E s 的C 、D 位置,此时若检流计G 中没有电流,则说明电压U CD 与E s 能互相补偿,分压器上的电压标度值未变;若G 中有电流,则说明标度值变了, 此时,调节R 使G 中电流为零。经这样的校准后,电位差计就能按标度值进行测量了。这个过程称为电位差计的标准化,亦即校准工作电流。

实际上,电位差计可以看成由三个回路组成,如图3.10-2所示:一是工作电流回路,E、R、R AB组成,在校准工作电流和测量过程中都是通路;二是校准回路,由E S、R CD、G和S组成,将开关S倒向E x就形成此回路,在测量过程中此回路不通;三是测量回路,田R CD、G和S组成,将S倒向E x时形成,在校淮工作电流时此回路断开。校准回路和测量回路也称为补偿回路。 2

导线电阻引起应变测量的误差分析及其补偿电路

导线电阻引起应变测量的误差分析及其补偿电路

导线电阻引起应变测量误差分析及其补偿电路 摘要:分析了全桥和半桥式应变测量电路中导线电阻引起测量误差的原因,并根据分析结果提出了一种传感器供桥电压自动补偿电路,以消除导线电阻引起的测量误差。 关键词:应变测量;桥式电路;补偿电路;测量误差 1 概述 应变片电测技术就是利用电阻应变片或由应变片制成的传感器对应力、应变、拉压力、位移、液体压力等物理量进行电测量的一种专门技术。它广泛应用于公路桥梁检测、地基沉陷和土压测量及筑路机械性能参数的测量中,其测量误差大小直接影响到桥梁、道路和机械参数的真实性和准确性,从而导致错误的分析和判断。在应变测量电路中,应变片或传感器与测量放大器用导线连接,由于连接导线具有一定的电阻,因此会引起测量误差,当连接导线较长时,这种误差往往很大而不能被忽略,例如,在桥梁检测中导线可能长达上千米。而本文分析结果表明,当导线长300m时引起的测量误差将超过20%。鉴于测量误差的重要性,本文在分析了导线电阻引起测量误差的基础上,提出了一种简单有效的消除这种误差的电桥电路。 2 导线电阻引起的误差分析 电桥电路具有测量精度高、抗干扰能力强等优点,更重要的是把应变片接成电桥电路可以消除温度变化产生的测量误差,因而得到广泛应用。以下将分别讨论由导线电阻引起的全桥及半桥电路的测量误差。2.1 全桥电路 全桥电路的接法如图1实线部分所示。图中R 1、R 2 、R 3 、R 4 为测量应 变片,r为连接导线的等效电阻,U AC 为测量放大器提供的供桥电压,U A′C′ 为电桥的实际工作电压。在不考虑导线电阻r的影响时,电桥输出给测量放大器的电压 图1 全桥电路接法

测定电源电动势及内阻实验报告

U/V I/A 测定电源电动势及内阻实验报告 班级:____________小组:___________姓名:____________ 实验目的:利用伏安法测定电源电动势及内阻 实验原理:闭合电路欧姆定律U =E -Ir 具体做法如下:(1)、利用实验图所示电路,改变滑动变阻器的阻值,从电流表、电压表中读出几组U 、I 值,由U =E -Ir ,列两方程,解之得:E= ,r= 。 (2)、利用如图所示的电路,通过 ,多测几组U 、I 的值(至少测出6组),并且变化范围尽量大些,然后用描点法在U -I 图象中描 点作图,由图象的 找出E ,由图象的 找出内电阻。 思考:1、在此实验过程中为什么不用电流表的内接法?用外接法有什么好处? 2、利用上述实验电路图测量E 及r 能测准确吗?若不能试推导测量值与真实值的关系。用电流表的外接法情况又如何? 3、如果实验室准备有新旧电池在该实验中选用什么电池更好一些?试说明理由。 4、在实验数据处理过程中采用图像法和解方程组再求平均值的方法哪种方法较好一些?为什么? 5、你还能想到用其它不同的方法测电源电动势和内阻吗?试画出你设计的实验电路图并写出实验步骤。 实验步骤: (1)、恰当选择实验器材,照图连好实验仪器,使开关处于 状态且滑动变阻器的滑动触头 的一端. (2)、闭合开关S ,接通电路,记下 。 (3)、将滑动变阻器的滑动触头由一端向另一端移动至某位置,记下此时电压表和电流表的示数. (4)、继续移动滑动变阻器的滑动触头至其他几个不同位置,记下各位置对应的电压表和电流表的示数. (5)、断开开关S ,拆除电路。 (6)、在坐标纸上以U 为纵轴,以I 为横轴,作出U —I 图象,利用图象求出E 、r . 思考:1、在实验过程中通电电流能否太大?若电流太大对实验会有什么影响?电流能否太小?太小又会如何? 2、为了不使通过电源的电流时间太长,在实验过程中开关应如何使用? 数据记录: 在右边坐标纸内作出U-I 图像,求出电源电动势及内阻。

关于伏安法测电阻的内接法与外接法

关于伏安法测电阻的内接法与外接法 利用电压表和电流表测电阻R的电路有两种接法。 (1)电流表内接法 电路:如图1。 结果:测量值偏大,即R测〈R。 定性解释:电流表内接时,电流表的读数与R中的电流相等。但由于电流表的内阻R A≠0,而具有分压作用,使电压表读数大于R两端电 定量分析:因为电压表所量得的是R和R A的串联电压,所以测得值 绝对误差ΔR内=R测 R=R A。 因此,在待测电阻R》R A时(这时电流表的分压很小),内接法误差小。 (2)电流表外接法 电路:如图2。

结果:测量值偏小,即R测〈R。 定性解释:电压表的读数与R两端电压相等。但由于电压表内阻R V ≠∞,而具有分流作用,使得电流表的读数大于流过R的电流,因此由 定量分析:因为电流表量得的是通过R和R V的总电流,所以测得值是R和R V的并联等效电阻。 因此,在待测电阻R《R V(这时电压表分流很小)时,外接法误差小。 在实测中,内、外接法的选择并不都是理论上越精确就一定越好。例如:设待测电阻R=5Ω,电流表电阻R A=0.05Ω,电压表电阻R V=10KΩ。 理论结果似乎说明外接法更好,但实际上我们使用这两种线路所得测量值是会相同的。这是因为任何一种指针式电表,由于制作时磁钢的强弱、动圈电阻的大小、刻度的间距、阻尼的大小等等因素不可能都绝对相同,因此电表本身就具有一定的误差——误差等级,中学学生实验使用的电流表、电压表一般都是2.5级电表,即测量误差可达最大刻度值的2.5%。在这种情况下,δ内=l%和δ外=0.5‰的差别,电表本身已不能反映出来,因此测量结果将相同。但如果待测电阻是0.5Ω,则内接法的误差就会达到10%!这时就应使用外接法了。 在实测中,不一定都能事先知道待测电阻的大概值,也不一定很清楚R A和R V的大小。为了快速、准确地确定一种较好的接法,可以按以下步骤操作:

用补偿法测电池的电动势实验报告

用补偿法测电池电动势 一.实验简介 在测量电动势时,如果用电压表直接测量的话,由于电压表也有一定的电流通过,测出的值是电池的路端电压,而不是电源的电动势,所以要想消除电源的内阻 影响,测出电源的电动势就要用一个电压与电源相互抵消,这就是补偿法。这样, 当电源两端电压为零时,补偿电压就是电源的电动势。用补偿法测电池电动势就是 为了消除电池内阻对所测电池电动势的影响。 二.实验原理 任何一种电池当外电路有电流通过时,由于电池有内阻,因而在电池内部产 生电位降落,所以电池两端电压总是小于电池的电动势。电池的电动势。端电压和 内阻的关系为 E = (U A? U B) + I r i(1) 从上式可看出,若电路中电流I逐渐变小,电源的端电压U A-U B数值逐渐接近 电动势E,如能使电流I趋于零,则电池的电动势E就无限接近电池的端电压数值, 即E=U A-U B。 这就是本实验测量电池电动势的指导思想。也就是说,在测量时不使待测电 池中有电流通过。这样就可避免电池内的电势降落,从而以电池的端电压的数值 来表示电池的电动势。 如何才能使待测电池中没有电流流过呢?最常见的方法,是补偿法。图1是 补偿法原理图。Eo为可调电源,Ex为待测电源。两电源正极对正极,负极对负极,调节电源Eo,使检流计指零,有Ex=Eo,这时就称电路处于补偿状态。在补 偿状态下若Eo已知,则Ex就可以求出。这种利用补偿原理测电动势的方法就称 为补偿法。 图1 补偿法原理图 图2是测未知电动势的原理图。电源E和精密电阻R ab串联成一闭合回路,称 为辅助回路,当有一恒定的标准电流Io流过电阻R ab时、改变R ab上两滑动头c、d 的位置,就能改变c、d间的电位差U cd的大小,U cd正比于电阻R ab中c、d之间那 部分的电阻值。由于测量时应保证Io恒定不变,所以在实际的电位差计中都根据

伏安法测电阻及误差分析

伏安法测电阻及误差分析 【原理】伏安法测电阻是电学的基础实验之一。它的原理是欧姆定律IR U =。根据欧姆定律的变形公式 I U R= 可知,要测某一电阻 x R的阻值,只要用电压表测出 x R两端的电压,用电流表测出通过 x R的电流,代入公式即 可计算出电阻 x R的阻值。 【内接法与外接法】由于所用电压表和电流表都不是理想电表,即电压表的内阻并非趋近无穷大,电流表也存在内阻,因此实验测量出的电阻值与真实值不同,存在误差。为了减少测量过程中的系统误差,通常伏安法测电阻的电路有两个基本连接方法:电流表内接法和电流表外接法(如图1所示),简称内接法和外接法。 图1 电路图 【误差分析】对于这两个基本电路该如何选择呢?下面从误差入手进行分析。 外接法: 误差分析方法一: 在图2的外接法中,考虑电表内阻的存在,则电压表的测量值U为R两端的电压,电流表的测量值为干路电流,即流过待测电阻的电流与流过电压表的电流之和,此时测得的电阻为R与v R的并联总电阻,即:R R R R I U v v + ? = = 测 R<R(电阻的真实值) 此时给测量带来的系统误差来源于 v R的分流作用,系统的相对误差为: 100% R R 1 1 100% R R v ? ? = + = - 测 R E(1) 误差分析方法二: 当用外接法时,U测=U真,I测=I V+I真>I真 ∴测出电阻值R测= 测 测 I U = 真 真 +I I V U <R真,即电压表起到分流作用,当R越小时,引起误差越小,说明该接法适应于测小电阻。 图2 外接法

内接法: 误差分析方法一: 在图3内接法中,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,即: R R I U A +==测R >R (电阻的真实值) 此时给测量带来的系统误差主要来源于A R 的分压作用,其相对误差为: 100%R R R R R E A ?= -= 测 (2) 误差分析方法二: 当用内接法时,I 测=I 真,U 测=U A +U 真>U 真 ∴测出电阻值R 测=测 涡I U = 真 真 +I U A U >R 真,即电流表起了分压作用。当R A 越小时引起误差越小,说明该接法适应于 测大电阻。 综上所述,当采用电流表内接法时,测量值大于真实值,即“内大”;当采用电流表外接法时,测量值小于真实值,即“外小”。从(1)式可知,只有当V R 》R 时,才有→E 0,进而有R =测R ,否则电表接入误差就不可忽略。同样,从(2)式也可以得到,只有当A R 《R 时,才有→E 0,进而R =测R 。 图3 内接法

电路测量时内接法与外接法的选择

电路测量时内接法与外接法的选择 根据欧姆定律的变形公式I U R =可知,要测某一电阻x R 的阻值,只要用电压表测出x R 两端的电压,用电流表测出通过x R 的电流,代入公式即可计算出电阻x R 的阻值。 误差原因 由于所用电压表和电流表都不是理想电表,即电压表的内阻并非趋近无穷大,电流表也存在内阻,因此实验测量出的电阻值与真实值不同,存在误差。 测量方法 通常伏安法测电阻的电路有两个基本连接方法:内接法和外接法(电流表在电压表的内侧还是外侧)。 电路选择 在内接法电路中,因为电流表有内阻,在内接法的电路中电流表两端有电压,所以电压表测出的电压是电流表和待测电阻消耗的电压之和,比待测电阻两端的电压值大,利用= U R I 计算,这样测得的电阻值比真实值偏大,就产生了实验误差。 内接法测得的电阻值=X A R R R +内,误差原因:电流表的分压作用。 当测阻值大的电阻即X R >>A R 时,用电流表内接法测量电阻误差小。 在外接法电路中,因为电压表中有电流通过,所以电流表测得的电流是待测电阻与电压表中的电流之和,比流过待测电阻的电流值大,利用=U R I 计算,这样测得的电阻值比真实值偏小,也产生了实验误差。 外接法测得的电阻值=X V X V R R R R R +外,误差原因:电压表的分流作用。 当测阻值小的电阻即X R <

用补偿法测量电流电压和电阻

用补偿法测量电流电压 和电阻 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验3-3 用补偿法测量电压、电流和电阻 电位差计是精密测量中应用最广的仪器之一,不但用来精确测量电动势、电压、电流和电阻等,还可用来校准精密电表和直流电桥等直读式仪表,在非电参量(如温度、压力、位移和速度等)的电测法中也占有重要地位。 【实验目的】 1.掌握补偿法原理,了解其优缺点。 2.掌握UJ-31型直流电位差计的原理、构造及使用方法。 3.学会用UJ-31型电位差计来校准微安表及测量其内阻。 【仪器用具】 滑线式电位差计一套、UJ-31型直流电位差计一台、检流计一台、标准电池、工作电源、待测电池、微安表头、直流电阻箱。 【实验原理】 电压的测量一般用伏特表来完成。由于电压表并联在测量电路中,电压表有分流作用,会对原电路两端的电压产生影响,测量到的电压并不是原电路的电压。用电压表测量电源电动势时,由于电压表的引入,电源内部将有电流,而电源一般有内阻,内阻将有电压降,从而电压表读数是电源的端电压,它小于电源的电动势。由此可知,要测量电动势,必须让它无电流输出。 补偿法是电磁测量中一种常用的精密测量方法,它可以精确地测量电动势、电位差和低电阻,是学生会必须掌握的方法之一。 滑线式电位差计、UJ-31型电位差计或学生型电位差计UJ-36等都是根据补偿法原理而设计的仪器。补偿的电路原理图如图3-3-1所示。 R和R组成的回路称 由Ea、K、 限 工作回路;由Es或Ex与检流计G组

成测量支路,与R 仪器组成测量回路。在Ea>Es, Ea>Ex 时,选择适当的限R ,调节R 的滑点,可使检流计G 中无电流流过。此时有S AC E V =。在限R 不变的情况下,降Es 换成Ex ,再调节R ,若调节到C `位置使检流计无电流流过,则x AC E V =。因此,有 即:S AC AC x E R R E ' = (3-3-1) 测量支路中无电流流过,那么Es 或Ex 就是它们的电动势,由此可知电压补偿法测量电动势或电位差时比一般电表法更为准确。由图3-3-1可知,用补偿法测电动势时,需一个标准电池(标准电动势)作为标准比较。标准电池的电动势比较稳定,精度比较高。图中限R 起调节工作电流的作用,工作电流越大,分压电阻R 上单位电阻上的电压降越大;工作电流越小,分压电阻上单位电阻上的电压降越小,表示测量精度越高。检流计G 灵敏度越高,测量精度越高。 下面介绍两种常用的电位差计的基本原理。 一、线式电位差计基本原理 如图3-3-2所示,按通K 1后,有电流I 通过电阻丝AB ,并在电阻丝上产生电压降R I 。如果再接通K 2,可能出现三种情况: 1. 当x CD E V >时,G 中有自右向左流动的电流(指针偏向右侧)。 2. 当x CD E V <时,G 中有自左向右流动的电流(指针偏向左侧)。 3. 当x CD E V =时,G 中无电流,指针不偏转。将这种情形称为电位差计处于补偿状态,或者说待测电路得到了补偿。 在补偿状态时,x CD E IR =。设每单位长度电阻丝的电阻为0r ,CD 段电阻丝的长度为x L ,于是 x x L Ir E 0= (3-3-2) 将保持可变电阻n R 及稳压电源E 输出电压不变,即保持工作电流I 不变,再用一个电动势为s E 的标准电池替换图中的x E ,适当地将C D 、的位置调至''C D 、,同样可使检流计G 的指针不偏转,达到补偿状态。设这时''C D 段电阻丝的长度为s L ,则

用半偏法测电阻及误差分析报告

江苏省姜堰中学二轮复习教学案 用半偏法测电阻及误差分析 用半偏法可以测量电流表的电阻(含灵敏电流计)、伏特表的电阻和未知电阻的阻值.如何设计实验电路,如何测量,怎样减少实验误差,下面分类解析. 1、用半偏法测电流表的内阻R g 电流表的内阻R g 的测量电路有图1和图2两种电路. 应用图1电路测量电流表的内阻: 步骤: (1)先闭会开关S 1和S 2,调节变阻器R ,使电流表指针指向满偏; (2)再断开开关S 2,仅调节电阻箱R /,使电流表指针指向半偏;(3)电流表的内阻等于电阻箱的阻值R /. 实验仪器的基本要求:R << R /. 表流表内阻误差分析: 图1是串联半偏,因为流过R g 和R / 的电流相等,应比较它们的电压U g 和U 2的大小,S 2闭合时,两者电压之和和U =U g +U 2=U g +0= U g ,S 2断开时,电路的总电阻增大,由闭合电路的欧姆定律得:总电流减少,R 的右端电阻、R 0和电源内阻三者电压之和减少,并联部分的电压U 并增大,即U 并= U g /2 +U 2/ > U g 所以U 2/ > U g /2 ,R / > R g .故测量值偏大. 注:在图1电路中,R / 只能用电阻箱,而不能用滑动变阻器,其阻值只需比灵敏电流计的电阻大一点就可以了.R 一般使用滑动变阻器,其阻值要求较小,要求R << R / ,以减小因闭合S 2而引起总电压的变化,从而减小误差. 应用图2电路测量电流表的内阻:步骤: (1)先将R 调到最左端,闭合S 1,断开S 2,调节R 使电流表满偏; (2)使R 不变,闭合S 2调节电阻箱R ’使电流表指到满 刻度的一半; (3)此时电阻箱R ’的读数即为电流表的内阻R g .实验的基本要求:R >> R /.表流表内阻误差分析 图2是并联半偏,在半偏法测内阻电路中,当闭合S 2时,引起总电阻减小,总电流增大,大于原电流表的满偏电流,而此时电流表半偏,所以流经R ’的电流比电流表电流多,R ’的电阻比电流表的电阻小,但我们就把R / 的读数当成电流表的内阻,故测得的电流表的内阻偏小. 1 图1图2

伏安法测电源的电动势和内阻的误差分析

伏安法测电源的电动势和内阻的误差分析 在伏安法测电源的电动势和内阻的实验中,要应用闭合电路的欧姆定律,学习应用图像处理数据,练习测量电流、电压的技能。此外,还必须明确电流表和电压表的接入会带来一定的实验误差。到底电流表内接还是电流表外接呢?下面我们讨论这个问题。 一、安培表外接 外接法电路如图——1所示,由于电流表得分压,电压表测得的电压并不是真正的路端电压,这种接法测量值和真实值之间的关系如何呢? 设滑动变阻器的滑片在某一位置时电路中的电流表的示数为I1,电压表的示数为U1,改变滑片的位置,电流表中的示数为I2 ,电压表的示数为U2 由闭合电路的欧姆定律得:如果不考虑电表的影响则有 E=U 1+I 1 r ①E=U 2 +I 2 r ②

解得: 如果考虑电表的影响,设电流表的内阻为R A则有 图——2电流表外接时,由于测量的电流是干路中的电流,测量的电压比路端电压小,所以,同一个电流I下,电压的测量值总是在电压的真实值的 下方,反映在图像上如图——2所示。 比较可得:,测量的内电阻比真实的内电阻大,多的数值为电流表的内阻,由于一般电源的内阻和电流表的内阻相差不多,采用这种接法时,使得内电阻测量的误差非常大,一般不采用这种接法。 二、电流表内接

电流表内界的电路如图——3所示,由于电压标的分 流,测得的电流并不是通过电源的电流,采用这种接法 时,电动势和内阻的测量值和真实值之间又有什么关系 图——3呢? 设滑动变阻器的滑片在某一位置时电路中的电流表的示数为I1,电 压表的示数为U1,改变滑片的位置,电流表中的示数为I2 ,电压表的示数 为U2 由闭合电路的欧姆定律得:如果不考虑电表的影响则有 E=U1+I1 r ①E=U2+I2 r ② 解得: 如果考虑电表的影响,设电流表的内阻为R V则有

电源电动势和内阻的测量方法及误差分析

关于电源电动势和内阻的几种测量方法及误差分析 黎城一中物理组 一、伏安法 选用一只电压表和一只电流表和滑动变阻器,测出两组U 、I 的值,就能算出电动势和内阻。 1 电流表外接法 1.1 原理 如图1-1-1所示电路图,对电路的接法可以这样理解:因为要测电源的内阻,所以对电源来说用的是电流表外接法。处理数据可用计算法和图像法: (1)计算法:根据闭合电路欧姆定律Ir U E +=,有: 测测r I U E 11+= 测测r I U E 22+= 可得:122112I I U I U I E --= 测 1 22 1I I U U r --=测 (2)图像法:用描点作图法作U-I 图像,如图1-1-2所示: 图线与纵轴交点坐标为电动势E ,图线与横轴交点坐标为短路电流r E I =短,图线的斜率的大小表示电源内阻I U r ??= 。 1.2 系统误差分析 由于电压表的分流作用,电流表的示数I 不是流过电源的电流0I ,由电路图可知I <0I 。 【1】计算法:设电压表的内阻为V R ,用真E 表示电动势的真实值,真r 表示内阻的真实值,则方程应修正为:真真r R U I U E V ???? ? ?++=,则有: r R U I U E V ???? ? ?++=11真 r R U I U E V ???? ??++=22真 图1-1-2 I 短 图1-1-1

解得:测真E R U U I I I U I U E V >----= 21121221 , 测真r R U U I I U U r V >-- --=2 1122 1 可见电动势和内阻的测量值都小于真实值。 【2】图像修正法:如图1-1-3所示,直线①是根据U 、I 的测量值所作出的U -I 图线,由于I >,减小系统误差,使得测量结果更接近真实值, 综上所述,采用相对电源电流表外接法,由于电压表的分流导致了系统误差,使得真测E E <, 真测r r <。 2 电流表内接法 2.1 原理 如图1-2-1所示电路图,对电源来说是电流表内接,数据的处理也可用计算法和图像法 (1)计算法:根据闭合电路欧姆定律E=U+Ir ,有 测测r I U E 11+= I I 短 图1-1-3 E 真 E 测 图1-2-1

用补偿法测电池的电动势实验报告

用补偿法测电池的电动势 一、实验内容 1.根据补偿法原理正确连接实验线路; 2.用补偿法测电池的电动势。 二、实验原理 任何一种电池当外电路有电流通过时,由于电池有内阻,因而在电池内部产生电位降落,所以电池两端电压总是小于电池的电动势。电池的电动势。端电压和内阻的关系为 (1) 从上式可看出,若电路中电流I逐渐变小,电源的端电压UA-UB数值逐渐接近电动势E,如能使电流I趋于零,则电池的电动势E就无限接近电池的端电压数值,即E=UA-UB。 这就是本实验测量电池电动势的指导思想。也就是说,在测量时不使待测电池中有电流通过。这样就可避免电池内的电势降落,从而以电池的端电压的数值来表示电池的电动势。 如何才能使待测电池中没有电流流过呢?最常见的方法,是补偿法。图1是补偿法原理图。Eo为可调电源,Ex为待测电源。两电源正极对正极,负极对负极,调节电源Eo,使检流计指零,有Ex=Eo,这时就称电路处于补偿状态。在补偿状态下若Eo已知,则Ex就可以求出。这种利用补偿原理测电动势的方法就称为补偿法。 图2是测未知电动势的原理图。电源E和精密电阻Rab串联成一闭合回路,称为辅助回路,当有一恒定的标准电流Io流过电阻Rab时、改变Rab上两滑动

头c、d的位置,就能改变c、d间的电位差Ucd的大小,Ucd正比于电阻Rab 中c、d之间那部分的电阻值。由于测量时应保证Io恒定不变,所以在实际的电位差计中都根据Io的大小把电阻的数值转换电压刻度标在仪器上。Ucd相当于上面所要求的“Eo”,测量时把滑动头c、d两端的电压Ucd引出与未知电动势Ex进行比较。要注意的是在电路中Es、Ex和E必须接成同极性相对抗。 由于ab为一均匀截面的电阻导线,当通过的电流不变时,其两点的电势差与该两点间的长度成正比。分别测量电池Es和Ex、在其分支电路中电流为零时所对应的长度Ls和Lx,则有 (2) (3) 式中,ρ和S分别为导线ab的电阻率和横截面积。将上两式相除,得 (4) Es为标准电池的电动势,其值已知,则待测电池的电池电动势Ex就可由上式求出。 本实验装置如图3所示。电阻线AB曲折成11段,每段长1m,均置于板上。最下边一条电阻丝旁有一带刻度尺的米尺。电阻丝上有活动接头D,可左右移动,用以寻找平衡时的D点,接点C也是活动的,可以任意插入孔1、2、3、4、…至适当的位置。双刀双掷开关可向上或向下关闭,即能分别连接Es和Ex。

伏安法测电阻的误差分析

教材衍生 伏安法测电阻的误差分析 潍坊新华中学 孙晓燕 伏安法测电阻是初中阶段电学中的一个非常重要的实验,它在高中阶段也一样重要,特别是分析误差对学生提出了更高的要求。能分析伏安法测电阻实验中,电流表内接法和外接法的误差主要来源,会选择合适的方法测量电阻。 二、知识讲解: 1、在初中阶段我们认为电流表没有电阻,电压表的电阻无限大。但实际上电流表是有电阻的,只不过电阻比较小,大约0.05欧到几欧。电压表的电阻比较大,大约几千欧。 2、电流表串联在电路中,能分得一部分电压,根据分压定理U x /U A =R x /R A 可知如果R A <<Rx ,则电流表分得的电压就微乎其微,可以忽略不计。采用电流表内置法,电压表测量的电压略微偏大,误差比较小。如果Rx 比较小与R A 接近,则电流表分得的电压就会偏大。用电流表内置法测得的电压会产生很大的误差。 3、电压表与被测部分并联,也会有一部分电流通过。当R u >>Rx ,则通过电压表的电流与通过Rx 的电流相比就小的多,而采用电流表外置法可以使误差比较小。 例题:用伏安法测某电体电阻的实验: 1、实验原理是 。 2、在连接电路的过程中,开关始终是 的。(填“断开”或“闭合”) 3、画出实验的电路图。 4、根据图7-5所示实物连接情况,闭合开关前滑片P 若在B 端,线的M 端应接滑动变阻器的 端。(填“A ”或“B ”,并在图中连接) 图7-5 图7-6

5、滑片P移动到某一位置时,电流表、电压表读数如图7-6所示。 I= 安,U= 伏,导体的电阻R= 欧。 6、这种测法使得测量值(偏大,偏小)。适合于测量阻值比较(大,小)的电阻。 分析:伏安法测电阻是初中测量电阻的常规方法。在实验的过程中开关要处于断开状态,主要是培养学生形成良好的实验习惯,在电路连接的过程中药注意电压表电流表的式样方法,读数时,注意量程的选择以及对应的分度值。这个实验室采用了电流表外接法,电流表测量值偏大,所以电阻值偏小。这种测量方法适合于测量阻值比较小的电阻。 答案:1、伏安法。2、断开。3、4、 A.。5、0.5;偏小;小

伏安法测Er误差分析的三种方法.

伏安法测E 、r 误差分析的三种方法 一、公式法 伏安法测电源的电动势和内阻实验通常有两种可供选择的电路,如图1、图2所示,若采用图1电路,根据闭合电路欧姆定律,由两次测量列方程有 E U I r E U I r 测测,=+=+1122 解得 E I U I U I I r U U I I 测测,= --=--2112211 2 21 若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有: E U I U R r E U I U R r V V 真真,=++?? ???=++?? ? ??111222 解得 E I U I U I I U U R E r U U I I U U R r V V 真测真测 ,= ---->=--- ->2112211212 2112 即测量值均偏小。若采用图2电路,若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有 E U I r R E U I r R A A 真真,=++=++122()() 解得E I U I U I I E r U U I I R r A 真测真测 ,= --==---<21122112 21 二、图象法 为了减少偶数误差,可采用图象法处理数据:不断改变阻器的阻值,从伏特表、安培表上读取多组路端电压U 和电源的电流I 的值,然后根据多组U 、I 值画出电源的U —I 图象,图线在纵轴上的截距就是电源的电动势E ,图线的斜率就是电池的内阻r 。 图1电路误差来源于伏特表的分流,导致电源电流的测量值 I 测 (即安培表的示数)比真

实值偏小, I I U R V 真测=+ (U 为伏特表的示数,R V 为伏特表的内阻) 。因对于任意一个 U 值 ,总有 I I 真 测>,其差值 ?I I I U R V =-= 真测,随U 的减小而减小;当U =0时,△I =0。画出 U I 测测-图线AB 和修正后的电源真实 U I 真真 -图线AC ,如图3所示,比较直线AB 和AC 纵轴截距和斜率,不难看出 E E r r 测真测真 ,<<。 图2电路误差来源于安培表的分压,致使路端电压的测量值U 测 (即伏特表的示数)总 比真实值偏小,其间差值 ?U U U IR A =-=真测(I 为安培表的示数,R A 为安培表的内 阻)随电源电流I 的减小而减小;当I =0时,△U =0。根据以上特点画出U I 测测 -图线 PM 和修正后的电源的 U IR 真-图线PN ,比较直线MP 和NP 纵轴截距和斜率,显然 E E r r 测真测真 ,=>。 三、等效电源法 将图1中电源与电压表的并联看作等效电源,如图5中虚线框内所示,该等效电源的电 动势就等于 E 测 ,因电压表的分流作用, E R R r E E V V 测真 真真 = +<,故 E E 测真 <。该等 效电源的内电阻等于电压表的电阻R V 和电源本身电阻r 真的并联值,即 r R r R r r V V 测真真 真 = +<。

电源电动势和内阻测定的几种方法

例谈电源电动势和内阻测定的几种方法 李霞 实验是物理学习中的重要手段,虽然高考是以笔试的形式出现的,但却力图通过考查设计性的实验来鉴别考生独立解决新问题的能力。因此,在平时的学习中要充分挖掘出物理教材中实验的探索性因素,不断拓宽探索性实验设置的新路子,努力将已掌握的知识和规律创造性的运用到新的实验情景中去。笔者结合习题简略介绍几种测量电源电动势和内阻的方法。 一. 用一只电压表和一只电流表测量 例1. 测量电源的电动势E 及内阻r (E 约为4.5V ,r 约为1.5Ω)。 器材:量程为3V 的理想电压表V ,量程为0.5A 的电流表A (具有一定内阻),固定电阻R =4Ω,滑动变阻器R ',开关K ,导线若干。 (1)画出实验电路原理图,图中各元件需用题目中所给出的符号或字母标出。 (2)实验中,当电流表读数为I 1时,电压表读数为U 1;当电流表读数为I 2时,电压表读数为U 2,则可以求出E =___________,r =___________。(用I I U U 1212,,,及R 表示) 解析:由闭合电路欧姆定律E U Ir =+可知,只要能测出两组路端电压和电流即可,由E U I r E U I r =+=+1122,可得: E I U I U I I r U U I I =--<> = --<> 2112 21 1221 12 我们可以用电压表测电压,电流表测电流,但需注意的是题给电压表的量程只有3V , 而路端电压的最小值约为()U E Ir V V =-=-?=4505 15375....,显然不能直接把电压表接在电源的两端测路端电压。依题给器材,可以利用固定电阻R 分压(即可以把它和 电源本身的内阻r 共同作为电源的等效内阻“R r +”),这样此电源的“路端电压”的最 小值约为()()U E I R r V V V =-+=-?=<4505551753....,就可直接用电压表测“路端电压”了,设计实验电路原理图如图1所示。

1用补偿法测电源电动势和内阻

实验五 用补偿法测电源电动势和内阻 一、教学目标 学习一种基本实验方法——比较法,即电压补偿法; 掌握电势差计的补偿法测量未知电势差的原理; 掌握用电势差计测量干电池的电动势和内阻的方法。 二、重点与难点 重点:由补偿法对未知电动势进行测量 难点:用补偿法校准工作电流,理解校准工作电流的目的和意义 三、原理 四、课上讨论题 1.为什么测量前要校准工作电流? 先将标准电池E s 接入,根据E s 的大小确定R s 的值(即确定c 、d 的位置,使cd 间电压值刚好为E s ), 然后调节可变电阻R ,使检流计G 指零,只是工作电路中已具有工作电流I 0=E s /R s ,校准工作即完成。工作电流校准后,才可以进行测量。测量时,用待测电池Ex 取代E s 接入电路,保持R 不变(即保持I 0不变),再调节c 、d 的位置,使检流计G 再度指零,则有: x s s x s R R E R I E ==0 ,此时对应的电压值即为待测电动势值 2.原理图中,E 、E S 、E X 的极性是否可以全部反接?为什么? 电源E 、E S 、E X 的极性是可以全部反接。因为能满足电压补偿的条件,使检流计指零。 3.原理图中,若其中一个(或两个)E 、E S 、E X 的极性反接是否可以?会有什么现象?为什么? 若其中一个(或两个)电源的极性反接,是不可以的;否则会发生检流计指针始终朝一个方向偏转的现象,因为这时不能满足电压补偿的条件。 五、实验中易出现的问题及解决方法: 1、 检流计不发生偏转,检查补偿回路是否通路。 2、 检流计不能回零位,这时检查工作回路是否通路,或电源的极性是否正确。校准总向一边偏,电源或标准电池极性接反了。 3、 在测量电源电动势时,不能把标准电阻接入。 4、 在测内阻时,标准电阻位置接错。这是应提醒学生把标准电阻直接并联在待测电源两端即可。 5、 有的学生实验开始时校准一次工作电流,以后直至实验结束都不对工作电流进行校准。教师应在学生测量前强调每测量一次电压,校准一次工作电流。 6、 有时学生测出的 与 值基本一样。这说明 实际上没有接上。 7、 将学生型电位差计 盘拧过头,损坏了仪器。教师应课前提醒学生当旋盘拧不动时,就应往回拧了。 8、盘的读数窗口很小,读数易读错。应让学生事先搞清往哪个方向读数增大,哪个方向读数减小。 六、教学法 1、 本实验的关键在于学生是否正确理解和掌握补偿法原理。了解每一实验步骤的目的。特别是校准和测量这两个步骤。因此,在实验开始前教师就进行必要的辅导和提问,检查学生的预习情况。

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

测量电源电动势和内阻教案

《测量电源的电动势和内阻》教案 一.教学目标: (一)知识与技能 1.掌握伏安法测量电源电动势和内阻的实验原理,实验器材,实验步 骤及注意事项; 2.学会用图像法科学的处理数据。 (二)过程与方法 注重培养实验动手意识及综合分析问题的能力。 (三)情感态度与价值观 ? 培养实事求是的科学态度、严谨的逻辑推理和运算能力。 二.教学重难点: (一) 重点:伏安法测量电源电动势和内阻的方法 (二) 难点:用电源的U-I 图像处理数据 三.教学用具: 多媒体设备和相关的实验器材 四.教学方法: 多媒体教学与讲授法结合,小组合作讨论交流,学生演示实验等 ' 五.课程类型: 新授课 六.课时按排 1课时 七.教学过程 (一)实验目的: (1)学会用伏安法测量电源电动势和内阻,掌握实验原理,会选取实验器材,熟悉实验步骤。 (2)掌握测量数据的处理,特别是用U-I 图像处理数据。 — (二)实验原理 小组讨论:通过预习课本本节内容,结合导学案,讨论用伏安法测量电源电动势和内阻所依据的原理。 学生展示:根据闭合电路欧姆定律 可得出: 改变外电路电阻R ,可得到不同的路端电压U. 学生讨论并设计:用伏安法测量电源电动势和内阻的实验电路图。 & r R E I += I r E U -=

教师讲解:移动滑动变阻器的滑片P ,改变其接入电路中的阻值,当其接入电路中阻值分别是R 1、R 2时,对应的在电路中的电流为I 1、I 2,路端电压为U 1、U 2,代入,即可获得一组方程: r I E U r I E U 2211-=-= 计算得出211221I I U I U I E --= I U I I U U r ??=--=2112 — (三)实验器材 被测电源(两节干电池串联组成的电源) 伏特表(量程0~3V )、滑动变阻器(20Ω,2A ),安培表(0 ~ 0.6A )、电键、导线。 (四)实验步骤 (1)教师指导一名学生在讲台上根据实验电路图连接实物图,通过摄像装置将连接过程同步投影到大屏幕上,其它同学能详细的观察到讲台上同学的操作过程。 (2)测量之前另一名学生检查电路连接是否正确,滑动变阻器接入电路中阻值是否调到最大.,电表的指针是否指零;电流是否从电表正接线柱流入,负接线柱流出;量程选择是否合适等。 (3)两名同学配合完成实验数据采集,闭合电键,调节滑动变阻器滑片的位置) @ 1 2 3 4 5 6 U/V $ I/A [ (4)断开电键,拆除电路,整理好器材。 (五)注意事项

电阻测量的方法及误差分析

电阻测量的方法及误差分析 测量电阻的实验,因其能较好的体现《高中物理教学大纲》中有关实验能力的要求,因此在近几年的高考试题中频繁出现。通过引导学生对电阻测量实验的思考与分析有利于培养和提高学生设计实验能力、创新能力等诸多实验能力。 一、电阻测量的基本——伏安法 伏安法测电阻,其电路结构有两种可能的情况:当R V >>R X 时,采用图1的电路测量R X 会更精确些,但是其测量值I U R x =,仍会小于其真实值 V I I U R -=0;当R X >>R A 时采用图2的电路测量R X 会更精确些,但是其测量值I U R x =仍会大于真实值 I U U R A -=0。这就要求在测量前要先判断是采用安培表内接法,还是采用安培表外接法。由此可知:伏安 法测电阻将无法避免地存在系统误差。 二、测量的基本仪器——欧姆表 欧姆表的工作原理图如图3所示:其满偏电流对 应于R X =0,即g g R r R E I ++=;电流为0时对应于R X →∞;而当R X 为某一值时有X g g R R r R E I +++= :,由此可知I 随R X 的增大而减小,I 与R X 存在着对应的关系,这样如果将G 表中的电流刻度值改刻为对应的电阻值,那么原本为电流计的G 表就成了一个测量电阻的仪器——欧姆表。

由X g g R R r R E I +++=可知,因I 不与RX成反比,故欧姆表上的刻度不可能是均匀的,这样势必带来读数时较大的偶然误差;又因为I 与E 、r 均有关,而当电池用久之后E 、r 都要发生变化,这样必然带来系统误差。 综上可知:上述两种测量电阻的方法虽然是基本的、学生容易掌握的方法,但是都将不可避免的带来系统误差。为了减小误差,从伏安法测电阻的原理出发,引导学生设计一些更为完善的实验方法来测电阻,这样有利于拓展学生的思维,培养学生的创造能力。 三、用伏特表或安培表测电阻 由伏安法测电阻可知:其系统误差来源于安培表、电压表的内阻,因此减少它们的内阻给实验带来的影响成为改进实验的主要思路。 1、 用安培表测电阻。 如图4,根据串、并电路的有关特点,易得: I 1R X +I 1R A1=I 2R+I 2R A2,若R A1= R A2=0,即两表均是 理想表,则有I 1R X = I 2R :。可见,若我们选择相同的 两个理想的安培表,那么图4所示的实验的误差则只 是偶然误差了(1999年高考题19题就是由此而改编的)。 在图4的实验中要找到:R A1= R A2=0的两个理想 安培表是有一定困难的,因此系统误差也是不可避免 的。若必用图5所示的实验,当调节电阻箱R 2的阻 值使G 表的电流为零时,则A 、B 两点的电势相等, 由串、并联电路的特点和性质,易得R 2R X = R 1R 2: 。图 4 图5

相关文档
最新文档