两阶段最小二乘法操作

两阶段最小二乘法操作
两阶段最小二乘法操作

2SLS HATCO SPSS and SHAZAM Example

by Eddie Oczkowski

August 2001

This example illustrates how to use SPSS to estimate and evaluate a 2SLS latent variable model. The bulk of the example relates to SPSS, the SHAZAM code is provided on the final page. We employ data from Hair et al (Multivariate Data Analysis, 1998). The data pertain to a company called HATCO and relate to purchase outcomes from and perceptions of the company. The models presented may not necessarily be good models, we simply use them for presentation purposes. Consider a model which has a single dependent variable (usage) and two latent independent variables (strategy and image). Dependent variable

X9:Usage Level (how much of the firm’s total product is purchased from HATCO).

Latent Independent Variables

Strategy

X1:Delivery Speed (assume this is the scaling variable)

X2:Price Level

X3:Price Flexibility

X7:Product Quality

Image

X4:Manufacturer’s Image (assume this is the scaling variable)

X6:Salesforce image

2SLS Estimation

The 2SLS option is gained via:

Analyze ? Regression ? 2-Stage Least Squares

For our basic model (usage against strategy and image) the variable boxes are filled by: Dependent Variable: X9

Explanatory Variables: X1 and X4 (these are our scaling variables) Instrumental Variables: X2, X3, X7 and X6 (these are our non-scaling variables)

For the diagnostic testing of the model it is useful to save the residuals and predictions from this model using Options.

Part of the output from this 2SLS model is:

Two-stage Least Squares

Equation number: 1

Dependent variable.. X9

Multiple R .58798

R Square .34573

Adjusted R Square .33224

Standard Error 6.61991

Analysis of Variance:

DF Sum of Squares Mean Square

Regression 2 2246.2000 1123.1000

Residuals 97 4250.8496 43.8232

F = 25.62798 Signif F = .0000

------------------ Variables in the Equation ------------------

Variable B SE B Beta T Sig T

X1 5.362919 .834134 .787978 6.429 .0000

X4 2.284282 .735917 .287522 3.104 .0025 (Constant) 15.261425 4.877526 3.129 .0023

The following new variables are being created:

Name Label

FIT_1 Fit for X9 from 2SLS, MOD_2 Equation 1

ERR_1 Error for X9 from 2SLS, MOD_2 Equation 1

Comments: The R-Square is 0.34 and F-statistic being significant indicates reasonable overall fit. The two independent variables are both statistically significant with expected positive signs. Two variables have been created: FIT_1 is the IV ‘fitted value’ variable while ERR_1 is the IV residual.

2SLS as two OLS Regressions

Consider now the 2 step method for calculating estimates. This should be employed to get the 2SLS forecasts and residuals for later diagnostic testing.

The first step is to run a regression for each scaling variable against all instruments and save predictions.

OLS Regression: X1 against X2, X3, X6, X7, save predictions.

OLS Regression: X4 against X2, X3, X6, X7, save predictions.

Recall the R-square values from these runs can be examined to ascertain the possible usefulness of the instruments.

The standard OLS option is gained via:

Analyze ? Regression ? Linear

The 1st regression is:

OLS Regression: X1 against X2, X3, X6, X7, save predictions.

Save the predictions in the Save box.

Part of the output from the regression is: Regression

Comments: The R-square exceeds 0.10 and some variables are significant, this indicates some instrument acceptability. Note, however, that Price Level appears not to be a good instrument. A new variable with the predictions has been saved here: pre_1.

The same approach is used for the other scaling variable.

OLS Regression: X4 against X2, X3, X6, X7, save predictions.

Part of the output from this regression is:

Regression

Comments: The R-square is much better here,and so the instruments appear to be better for image rather than strategy. Here clearly Salesforce Image is the key instrument for the image scaling variable. A new variable with the predictions has been saved here: pre_2.

The final step in the process is to OLS regress the dependent variable (X9) on the two

new prediction variables (pre_1 and pre_2).

To produce the 2SLS forecasts and residuals we need to use the Save option:

Part of the output from the 2nd stage regression is:

Regression

Comments: Note how the parameter estimates are the same between this regression and the initial 2SLS model. Also note how the standard errors (and hence t and significance

GR) generalized R-square referred to levels) are different. The reported R-square is the (2

in the notes and this indicates how 28.1% of the variation in the data is explained. This is different to the initially presented R-square in the 2SLS model of 34.6%. Two new variables have been saved: pre_3 which are the 2SLS forecasts and res_1 which are the 2SLS residuals.

Over-identifying Restrictions Test

To perform this test we perform a regression of the IV residuals (err_1) against all the instruments: X2, X3, X6, X7. Note the R-square from this regression and multiply it by the sample size (N = 100) to get the test statistic. In this case the degrees of freedom (no. of instruments less no. of RHS variables) is (4 – 2 = 2). At the 5% level of significance

the critical value for a chi-square with d.f. = 2 is: 5.99

The relevant regression window is:

Part of the output from this regression is: Regression

Comments: The R-square is 0.462 and so the test statistic is: N * R-Square = 100 (0.462) = 46.2, this far exceeds the critical value of 5.99 and therefore we conclude that there is a model specification problem or the instruments are invalid. There is a major problem here. Note, all the instruments are significant in this equation illustrating how the instruments can explain significant amounts of the variation in the residuals.

RESET (Specification Error Test)

To perform this test we first need to compute the square of the 2SLS forecasts. That is we need to compute: pre_3 *pre_3. We can call the new variable whatever we want, say, pre_32.

To do this we use the option:

Transform ? Compute

The new variable pre_32 is now added to the original 2SLS model. That is, we employ the original dependent, independent and instrumental variables, but we add to the independent variables and instrumental variables pre_32. Part of the output from this 2SLS regression is:

Two-stage Least Squares

Dependent variable.. X9

Multiple R .48849

R Square .23863

Adjusted R Square .21483

Standard Error 8.68198

------------------ Variables in the Equation ------------------

Variable B SE B Beta T Sig T

X1 8.950208 8.336701 1.315060 1.074 .2857

X4 3.877008 3.794486 .487998 1.022 .3095

PRE_32 -.007123 .016422 -.360003 -.434 .6655 (Constant) 9.590647 14.521680 .660 .5106 Comments: The test statistic is the t-ratio for pre_32. In this case the t-ratio is –0.434 with a p-value of 0.6655. This is highly insignificant. This implies that there are no omitted variables and the functional form can be trusted. Taken together with the previous test, this may imply that the problems with the model relate to inadequate instruments.

Heteroscedasticity Test

To perform this test we initially have to square the IV residuals using the compute option: err_12 = err_1 * err_1

This new variable (err_12) is then regressed against the 2SLS forecasts (pre_32) and the t-ratio on the forecast variable represents the test statistic.

The output from this regression is:

Regression

The t-ratio on pre_32 is 0.684 with a p-value of 0.496, this is highly insignificant indicating the absence of heteroscedastcity.

Interaction Effects

To illustrate interaction effects, assume that strategy and image interact to create a new interaction latent independent variable. This variable is in addition to the original two independent variables. To create the new variables we employ the transform ? compute option. For the new independent variable we multiply the scaling variables by each other: say X1X4 = X1*X4

The instruments for this new variable are the products of all the remaining non-scaling variables across the two constructs. Since there is only one non-scaling variable for image we simply multiply it with the non-scaling variables for strategy to get our instruments:

X2X6 =X2*X6X3X6 = X3*X6 X7X6 = X7*X6

Thus the original 2SLS model is run again with one new explanatory variable X1X4 and three new instrumental variables X2X6, X3X6, X7X6.

Part of the output from this 2SLS regression is:

Two-stage Least Squares

Dependent variable.. X9

Multiple R .59043

R Square .34861

Adjusted R Square .32826

Standard Error 6.67686

------------------ Variables in the Equation ------------------

Variable B SE B Beta T Sig T

X1 8.295013 4.662882 1.218792 1.779 .0784

X4 4.506761 3.536422 .567265 1.274 .2056

X1X4 -.555352 .859773 -.519850 -.646 .5199 (Constant) 3.577392 19.010684 .188 .8511 Comments: Note, this model appears to be inferior to the original specification. All the variables are now insignificant, including the new interaction term X1X4.

Non-nested Testing

To illustrate these tests consider two models:

Model A: Usage ? Strategy

Model B: Usage ? Image

Assume we wish to ascertain which variable better explains usage. We will conduct a paired test alternating the role of Models A and B.

Case 1

H0: Null model: Usage ? Strategy

H1: Alternative model: Usage ? Image

In terms of our notation, our x’s are the strategy indicators while the w’s are the image indicators. The three steps are:

1. Regression: X4 on X6 and save the predictions (pre_4).

2. 2SLS regression X9 on X1 and pre_4 (instruments: X2, X3, X7 and pre_4).

3. The t-ratio on the pre_4 variable is the test statistic.

The output from this 2SLS regression is:

Two-stage Least Squares

Dependent variable.. X9

Multiple R .58664

R Square .34415

Adjusted R Square .33062

Standard Error 6.47420

------------------ Variables in the Equation ------------------

Variable B SE B Beta T Sig T

X1 5.095873 .822486 .748740 6.196 .0000

PRE_4 1.998917 .735642 .198320 2.717 .0078 (Constant) 17.697687 4.564165 3.878 .0002

Comments: The t-ratio for Pre_4 is 2.717 with a p-value of 0.0078, this is highly significant. This implies that the alternative model H1 image rejects the null model H0 strategy.

Case 2

H0: Null model: Usage ? Image

H1: Alternative model: Usage ? Strategy

In terms of our notation our, x’s are the image indicators while the w’s are the strategy indicators. The three steps are:

1. Regression: X1 on X2,X3,X7 and save the predictions (pre_5).

4. 2SLS regression X9 on X4 and pre_5 (instruments: X6 and pre_5).

5. The t-ratio on the pre_5 variable is the test statistic.

The output from this 2SLS regression is:

Two-stage Least Squares

Dependent variable.. X9

Multiple R .53666

R Square .28800

Adjusted R Square .27332

Standard Error 7.68902

------------------ Variables in the Equation ------------------

Variable B SE B Beta T Sig T

X4 3.227772 .886499 .406279 3.641 .0004

PRE_5 6.010515 1.032240 .515718 5.823 .0000 (Constant) 8.033696 6.596728 1.218 .2262 Comments: The t-ratio for Pre_5 is 5.823 with a p-value of 0.0000, this is highly significant. This implies that the alternative model H1 strategy rejects the null model H0 image.

In summary these results combined imply that both models reject each other and

therefore it is erroneous to use either in isolation.

2SLS HATCO SHAZAM EXAMPLE

This section presents the SHAZAM code corresponding to the SPSS example. * Original 2SLS model

2SLS X9 X1 X4 (X2 X3 X7 X6) / PREDICT=FIT_1 RESID=ERR_1

* 2 step OLS version to get 2SLS predictions, residuals and GR^2

OLS X1 X2 X3 X6 X7 / PREDICT=PRE_1

OLS X4 X2 X3 X6 X7 / PREDICT=PRE_2

OLS X9 PRE_1 PRE_2 / PREDICT=PRE_3 RESID=RES_1

* Over-identifying restrictions test

OLS ERR_1 X2 X3 X6 X7

*RESET test

GENR PRE_32=PRE_3*PRE_3

2SLS X9 X1 X4 PRE_32 (X2 X3 X7 X6 PRE_32)

* Heteroscedasticity Test

GENR ERR_12=ERR_1*ERR_1

OLS ERR_12 PRE_32

* Interactions Model Specification

GENR X1X4=X1*X4

GENR X2X6=X2*X6

GENR X3X6=X3*X6

GENR X7X6=X7*X6

2SLS X9 X1 X4 X1X4 (X2 X3 X7 X6 X2X6 X3X6 X7X6)

* Non-nested Test Case 1

OLS X4 X6 / PREDICT=PRE_4

2SLS X9 X1 PRE_4 (X2 X3 X7 PRE_4)

* Non-nested Test Case 2

OLS X1 X2 X3 X7 / PREDICT=PRE_5

2SLS X9 X4 PRE_5 (X6 PRE_5)

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

最小二乘法及其应用

最小二乘法及其应用 最小二乘法是一个比较古老的方法,早在十八世纪,就由高斯首先创立并成功地应用于天文观测和大地的测量工作中。此后,近三百年来,它已被广泛应用于科学实验与工程技术中。随着现代电子计算机的普及与发展,这个古老的方法更加显示出其强大的生命力。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可以用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 最小二乘法拟合曲线的基本原理是:成对等精度地测得一组数据x,只(i=l,2,…,n),试找出一条最佳的拟合曲线,使得这条拟合曲线上的各点的值与测量值的差的平方和在所有拟合曲线中最小。所谓“拟合”,即不要求所作的曲线完全通过所有的数据点,只要求所得的曲线能反映数据的基本趋势。曲线拟合的几何解释是:求一条曲线,使数据点均在离此曲线的上方或下方不远处。 用最小二乘法拟合的曲线较为精确,接近于实际曲线。因而,最小二乘法拟合曲线在实际生活和科学研究中有着重要的意义,并渗透到各个领域,在物理、气象、化学、医学等方面有着广泛的应用。例如,在物理方面,我们通常通过实验测得数据,然后根据这些实验数据拟合曲线,从而总结出某种现象的规律或者变化趋势,进而采取相应的措施避免或加强其变化程度。这对于指导我们了解物理现象,并深刻理解物理知识是非常有帮助的。又如,在气象方面,在温室效应的研究中,科学家们通过对1860年到1980年的11个地球平均温度增加值的分析,利用最小二乘法进行曲线拟合,通过精确计算,建立了地球平均温度增加值与时间之间的函数关系。从而得出在2080年左右,地球的平均温度会比1980年上升约6℃,从而会引起诸如冰川后退、海平面上升等一系列严重的环境问题。到时极地冰盖就会融化,从而引起大量的洪水泛滥和大片的陆地被淹没,这一认识对进行环境质量评价和提出保护地球的措施具有重要的理论意义。

SPSS数据分析—两阶段最小二乘法

传统线性模型的假设之一是因变量之间相互独立,并且如果自变量之间不独立,会产生共线性,对于模型的精度也是会有影响的。虽然完全独立的两个变量是不存在的,但是我们在分析中也可以使用一些手段尽量减小这些问题产生的影响,例如采用随机抽样减小因变量间的相关性,使其满足假设;采用岭回归、逐步回归、主成分回归等解决共线性的问题。以上解决方法做都会损失数据信息,而且似乎都是采取一种回避问题的态度而非解决问题,当碰到更复杂的情况例如因变量和自变量相互影响时,单靠回避是无法得到正确的分析结果的,那么有没有更好的直接解决问题的方法呢?接下来介绍的 两阶段最小二乘法和路径分析就是解决此类问题比较好的方法。当因变量与自变量存在相互作用时,会直接违反传统回归模型的基本假设,也就无法再使用普通最小 二乘法,解决此类问题的方法是:首先确定和因变量有相互作用的自变量,将这些自变量作为因变量拟合回归方程,该方程中的自变量和原始因变量无关,用这些自变量的估计值代替原值进行分析,由于估计值是根据与原始因变量无关的变量预测而来,因此可以认为这些估计值也和因变量的作用是单向的,从而避免了相互作用的影响,整个过程用了两次最小二乘法,因此成为两阶段最小二乘法。当然,还有三阶或多阶最小二乘法。 两阶段最小二乘法在SPSS中有一个单独的过程: 分析—回归—两阶段最小二乘法 我们通过一个例子来说明其用法 现在想研究受教育年限、种族、年龄对收入的影响,表面上看,可以采用以教育年限、种族、年龄为自变量,收入为因变量的多重线性回归进行分析,但是根据常识,教育年限和收入存在双向的影响,这使得线性模型的基本假定被否定,分析结果可能不正确。此时,我们可以采用二阶段最小二乘法进行分析,为此,我们找到了父亲和母亲的受教育年限这两个变量,以此来估计原始变量的受教育年限,我们把这种在第一阶段用于预测自变量的变量称为工具变量,而被预测的自变量,称为内生变量。

2--整式的乘法公式的几何解释

整式的乘法公式的几何解释 ——“数形结合”思想 1、边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形. (1)请你分别表示出图1阴影部分的面积S1,图2阴影部分的面积S2 (2)请问以上结果可以验证哪个乘法公式? 2、如图1,边长为(a+b)的正方形,按图2所示分割.请用不同的方法来表示大正方形的面积,从而验证了哪个因式分解公式? 图1图2

3、图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形. (1)图②中的阴影部分的面积为; (2)观察图②请你写出三个代数式2 m n -、mn之间的等量 () () m n +、2 关系是. (3)若6 -=. xy=,则x y +=-, 2.75 x y 4、如图,现有2张边长为b的正方形纸片,3张长为b、宽为a的长方形纸片和1张边长为a的正方形纸片,试一试,能否将这些纸片拼成一个长方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹)?由此你发现了什么? 、

5、(2014?宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是______(用a、b的代数式表示). 6、如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2). (1)图2中的阴影部分的面积为______; (2)观察图2请你写出(a+b)2、(a-b)2、ab之间的等量关系是______ ; (3)根据(2)中的结论,若x+y=5,x?y=1.25,则x-y=______;(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有发现的等式为:.

第五章--最小二乘问题的解法

第五章 最小二乘问题的解法 1.最小二乘问题 1)回归方程问题 []T i i l i y t t )() ()(1 ,,...,,m i ,...,2,1=是m 个实验点。现要根据这些点确定y 与l 个物理量 l t t t ,...,,21之间的关系式。 设这种关系式为),...,,,...,(11n l x x t t F y =,其中n x x ,...,1是方程中需要待定的n 个参数(系数)。 因此问题是如何通过)(n m m >个实验点,确定方程中的系数。 由于实验点的个数大于待定系数的个数,因此方程中系数的确定是一个超静定问题,无法按一般的方法进行求解。 此时将实验点到曲面距离最短的那个曲面作为所求曲面,从而求取该曲面方程。 即求解[]∑=-m i i i y x t F 12 )()(),(min ,这就是最小二乘问题。 2)非线性方程组问题 求解非线性方程组?? ? ?? ??===0),...,(. 0 ),...,(0 ),...,(11211n n n n x x f x x f x x f 可转化为求解如下形式的最小二乘问题。 ∑ =m i n i x x f 1 12 ),...,(min 显而易见,最小二乘法的一般形式可写为)()(min x f x f T 最小二乘法问题实际上是具有n 个变量的无约束极小化问题,前面解无约束优化问题的方法均可应用。 但是最小二乘问题具有一定的特殊性,即目标函数的表达式是由多个表达

式的平方和组成,理应有更、更有效的方法。这正是最小二乘解法要解决的问题。 2.线性最小二乘问题的解法 最小二乘法的一般形式可写为)()(min x f x f T 特别地,当b Ax x f -= )(,即)(x f 为线性函数时,则最小二乘问题可表示为: 2 min b Ax - 1) 线性最小二乘问题解的条件 定理1:*x 是线性最小二乘问题极小点的充要条件是*x 满足b A Ax A T T =。 证明:(1)必要性 令2 )(b Ax x s -= ,于是有: b b Ax b b A x Ax A x b Ax b A x b Ax b Ax x s T T T T T T T T T T +--=--=--=))(()()()( 由于b A x T T 是一个数,而一个数的转置是它的本身,因此有: Ax b A x b b A x b A x T T T T T T T T T T ===) () ( 故上式可化为:b b Ax b Ax A x x s T T T T +-= 2)( b A Ax A x s T T 22)(-=? 若*x 是)(x s 的极小点,则必有0)(=?x s ,则必有:b A Ax A T T = (2)充分性 若*x 满足b A Ax A T T =* ,即0)(*=-b Ax A T 考虑任一点n R z x v ∈+=*,计算

最小二乘法原理

最小二乘法原理 1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 2. 原理 给定数据点pi(xi,yi),其中i=1,2,…,m 。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差最小。近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。 常见的曲线拟合方法: 1. 是偏差绝对值最小 11min (x )y m m i i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小 min max (x )y i i i i φδ?=- 3. 是偏差平方和最小 2211min ((x )y )m m i i i i i φδ?===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 01...k k y a a x a x =+++ 2. 各点到这条曲线的距离之和,即偏差平方和如下: 2 2 011(...)m k i i k i i R y a a x a x =??=-+++??∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了: 011 2(...)0m k i k i i y a a x a x =??--+++=??∑ 011 2(...)0m k i k i i y a a x a x x =??--+++=??∑

…….. 0112( 0 k k i k i i y a a x a x x =??--+++=??∑ 4. 将等式简化一下,得到下面的式子 01111...n n n k i k i i i i i a n a x a x y ===+++=∑∑∑ 2 1011111...n n n n k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ …… 12011111...n n n n k k k k i i k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵: 11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====??????????????????????=?????????????????????? ∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到: 0111122 21...1...1...k k k k n n n a y x x a y x x a y x x ??????????????????=????????????????????

乘法公式(基础)知识讲解

乘法公式(基础) 【学习目标】 1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义; 2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘 法运算; 3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】 要点一、平方差公式 平方差公式:22 ()()a b a b a b +-=- 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征: 既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型: (1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+ (6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式 完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两 数的平方和加(或减)这两数之积的2倍.以下是常见的变形: ()2222a b a b ab +=+-()2 2a b ab =-+ ()()22 4a b a b ab +=-+ 要点三、添括号法则 添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号, 括到括号里的各项都改变符号. 要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下 (见图中的散点),假如模型()的参数估计量已经求得到, 为^0β和^ 1β,并且是最合理的参数估计量,那么直线方程(见 图中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n 应该能够最 好地拟合样本数据。其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ????1021 10212?,?1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== 为什么用平方和因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^1^012 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^0β、^ 1β的一阶偏导数为0时,Q 达到最小。即

0011001100?,?1 ?,?0 =??=??====ββββββββββQ Q 容易推得特征方程: ()0)??(0?)??(1011 10==--==-=--∑∑∑∑∑==i i i i n i i i i i i n i i e x x y x e y y x y ββββ 解得: ∑∑∑∑∑+=+=2^ 1^0^1^0i i i i i i x x x y x n y ββββ () 所以有:???? ?????-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 10121 21121111??)())(()()()(?βββ () 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 ∑=-i x n x 1 ∑=-i y n y 1 y y y x x x i i i i -=-= ()的参数估计量可以写成

第15章 工具变量与两阶段最小二乘

第15章 工具变量估计与两阶段最小二乘法 在本章中,我们进一步研究多元回归模型中的内生解释变量(endogenous explanatory variable )问题。在第3章中,我们推导出,遗漏一个重要变量时OLS 估计量的偏误;在第5章中,我们说明了在遗漏变量(omitted variable )的情况下,OLS 通常是非一致性的。第9章则证明了,对未观测到的解释变量给出适宜的代理变量,能消除(或至少减轻)遗漏变量偏误。不幸的是,我们不是总能得到适宜的代理变量。 在前两章中,我们解释了存在不随时间变化的遗漏变量的情况下,对综列数据如何用固定效应估计或一阶差分来估计随时间变化的自变量的影响。尽管这些方法非常有用,可我们不是总能获得综列数据的。即使能获得,如果我们的兴趣在于变量的影响,而该变量不随时间变化,它对于我们也几无用处:一阶差分或固定效应估计排除了不随时间变化的变量。此外,迄今为止我们已研究出的综列数据法还不能解决与解释变量相关的随时间而变化的遗漏变量的问题。 在本章中,我们对内生性问题采用了一个不同的方法。你将看到如何用工具变量法(IV )来解决一个或多个解释变量的内生性问题。就应用计量经济学中线性方程的估计而言,两阶段最小二乘法(2SLS 或TSLS )是第二受人欢迎的,仅次于普通最小二乘。 我们一开始先说明,在存在遗漏变量的情况下,如何用IV 法来获得一致性估计量。此外,IV 能用于解决含误差变量(errors-in-variable )的问题,至少是在某些假定下。下一章将证明运用IV 法如何估计联立方程模型。 我们对工具变量估计的论述严格遵照我们在第1篇中对普通最小二乘的推导,其中假定我们有一个来自基本总体的随机样本。这个起点很合人意,因为除了简化符号之外,它还强调了应根据基本总体来表述对IV 估计所做的重要的假定(正如用OLS 时一样)。如我们在第2篇中所示,OLS 可以应用于时间序列数据,而工具变量法也一样可以。第15.7节讨论IV 法应用于时间序列数据时出现的一些特殊问题。在第15.8节中,我们将论述在混合横截面和综列数据上的应用。 15.1 动机:简单回归模型中的遗漏变量 面对可能发生的遗漏变量偏误(或未观测到的异质性),迄今为止我们已讨论了三种选择:(1)我们可以忽略此问题,承受有偏、非一致性估计量的后果;(2)我们可以试图为未观测到的变量寻找并使用一个适宜的代理变量;(3)我们可以假定遗漏变量不随时间变化,运用第`13与14章中的固定效应或一阶差分方法。若能把估计值与关键参数的偏误方向一同给出,则第一个回答是令人满意的。例如,如果我们能说一个正参数(譬如职业培训对往后工资的影响)的估计量有朝零偏误 ,并且我们找到了一个统计上显著的正的估计值,那么我们还是学到了一些东西:职业培训对工资有正的影响,而我们很可能低估了该影响。不幸的是,相反的情况经常发生,我们的估计值可能在数值上太大了,以致我们要得出任何有用的结论都非常困难。 第9.2节中讨论的代理变量解也能获得令人满意的结果,但并不是总可以找到一个好的代理。该方法试图通过用代理变量取代不可观测的变量,来解决遗漏变量的问题。 另一种方法是将未观测到的变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法。这便是工具变量法所要做的。 举例来说,考虑成年劳动者的工资方程中存在未观测到的能力的问题。一个简单的模型为: ,)log(210e abil educ wage +++=βββ 其中e 是误差项。在第9章中,我们说明了在某些假定下,如何用诸如IQ 的代理变量代替能力,从而通过以下回归可得到一致性估计量 )log(wage 对IQ educ , 回归

乘法公式的应用解析

乘法公式的几何背景 1、如图所示可以验证哪个乘法公式用式子表示为. 第2题 2、如图所示,用该几何图形的面积可以表示的乘法公式是. 3、如图,图①是边长为a的正方形中有一个边长是b的小正方形,图②是将图①中的阴影部分剪拼成的一个等腰梯形,比较图①和图②阴影部分的面积,可验证的是. 第4题图 4、用该几何图形的面积可以表示的等量关系是. 5、如图:边长为a,b的两个正方形,边保持平行,如果从大正方形中剪去小正方形,剩下的图形可以分割成4个大小相等的梯形.请你计算出两个阴影部分的面积,同时说明可以验证哪一个乘法公式的几何意义. 6、如图1,A、B、C是三种不同型号的卡片,其中A型是边长为a的正方形,B型是长为 b、宽为a的长方形,C是边长是b的正方形. 7、小杰同学用1张A型、2张B型和1张C型卡片拼出了一个新的图形(如图2).请根据这个图形的面积关系写出一个你所熟悉的公式是.8、图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形.

(1)你认为图1的长方形面积等于; (2)将四块小长方形拼成一个图2的正方形.请用两种不同的方法求图2中阴影部分的面积. 方法1: 方法2: (3)观察图2直接写出代数式(a+b)2、(a-b)2、ab之间的等量关系; (4)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含m、n的代数式表示). 9、如图,ABCD是正方形,P是对角线BD上一点,过P点作直线EF、GH分别平行于AB、BC,交两组对边于E、F、G、H,则四边形PEDG,四边形PHBF都是正方形,四边形PEAH、四边形PGCF都是矩形,设正方形PEDG的边长是a,正方形PHBF的边长是b.请动手实践并得出结论: (1)请你动手测量一些线段的长后,计算正方形PEDG与正方形PHBF的面积之和以及矩形PEAH与矩形PGCF的面积之和. (2)你能根据(1)的结果判断a2+b2与2ab的大小吗? (3)当点P在什么位置时,有a2+b2=2ab?

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

最小二乘法原理及应用【文献综述】

毕业论文文献综述 信息与计算科学 最小二乘法的原理及应用 一、国内外状况 国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。北京市统计学会、山东省统计学会,分别组团参加了这次大会。中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。 数理统计方面。数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。本届大会也不例外。 二、进展情况 数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。 数理统计学的发展大致可分 3 个时期。① 20 世纪以前。这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。后一阶段可算作是数理统计学的幼年阶段。首先,强调了推断的地位,而摆脱了单纯描述的性质。由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。这是数理统计学蓬勃发展达到成熟的时期。许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。③战后时期。这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。

乘法公式的几何背景

学案三、乘法公式的几何背景 1. 通过计算几何图形的面积可表示代数恒等式,下图可表示的代数恒等式是:( ) A .()2222——b ab a b a += B .()2222b ab a b a ++=+ C .()ab a b a a 2222+=+ D .()()22——b a b a b a =+ 2.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下部分拼成一个矩形,计算面积,验证 了一个等式( ) A .(a+b )2=a 2+2ab+b 2 B .a 2-b 2=(a+b )(a-b ) C .(a-b )2=a 2-2ab+b 2 D .a 2-ab=a (a-b ) 3. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( ) A.a 2-b 2=(a+b )(a-b ) B .(a+b )2=a 2+2ab+b 2 C .(a-b )2=a 2-2ab+b 2 D .a 2-b 2=(a-b ) 2 第1题图 第2题图 第3题图 4. 如图,将完全相同的四个矩形纸片拼成一个正方形,则可得出一个等式为( ) A .(a+b )2=a 2+2ab+b 2 B .(a-b )2=a 2-2ab+b 2 C .a 2-b 2=(a+b )(a-b ) D .(a+b )2=(a-b )2+4ab 5. 如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a >b ),则这两个图形能验证的式子是( ) A .(a+b )2-(a-b )2=4ab B.(a 2+b 2)-(a-b )2=2ab C .(a+b )2-2ab=a 2+b 2 D .(a+b )(a-b )=a 2-b 2 6.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片 张才能用它们拼成一个新的正方形. 第4题图 第5题图 第6题图 7.如下图,把正方形的方块,按不同的方式划分,计算其面积,便可得到不同的数学公式. 按图1所示划分,计算面积, 便得到一个乘法公式: 若按图2那样划分,,通过计算图中的面积, 得到一个公式:

最小二乘法原理

最小二乘法 最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法公式: 设拟合直线的公式为 , 其中:拟合直线的斜率为: ;计算出斜率后,根据 和已经确定的斜率k,利用待定系数法求出截距b。

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y 直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。 令: φ= ∑(Yi - Y计)² (式1-2) 把(式1-1)代入(式1-2)中得: φ= ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)²最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即 m a0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于1 越好;“F”的绝对值越大越好;“S”越趋近于0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数

浙教版七年级数学下册 乘法公式教案

《乘法公式》教案 教学目标 1、经历探究两数和乘以这两数的差的过程来推导平方差公式,理解平方差公式的结构特征,并能有意识地用平方差公式进行简单的运算;了解平方差公式的几何背景; 2、在探究平方差公式的过程中,发展学生的符号感和推理、概括能力;通过平方差公式的几何背景的了解,体会代数与几何的内在统一; 3、学生通过推导两数和的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数和的平方公式; 4、学生通过推导两数差的平方公式,了解公式的几何背景,理解并掌握公式的结构特征,并能进行简单的计算,能用文字、字母表达两数差的平方公式. 重点难点 重点 平方差公式的应用; 两数和、两数差的平方的公式. 难点 (1)平方差公式的结构特征及其有效地应用; (2)平方差公式的几何意义; (3)对公式中字母a、b的广泛含义的理解与正确应用. 教学设计 活动一 竞赛激智,建立模型,揭示公式 问题1看谁能又快又准地回答下面4个小题的计算结果. (5+3)(5-3)﹦________; (0.5+0.3)(0.5-0.3)﹦_______; (5+0.3)(5-0.3)﹦________; (0.5+3)(0.5-3)﹦_______. (全部结果出来后)追问:你是如何计算的? 设计意图:以通过竞赛为载体,以自主参与为教学形式,使学生从计算的快慢中产生疑惑:总是那几个算得快,我怎么也能象他们那样?进而激发学生的求知的热情. 问题2:请计算下列多项式的积: (1)(x+1)(x-1)﹦____________; (2)(m+2)(m-2)﹦___________;

最小二乘法基本原理

该方程的参数估计步骤如下: 取n 组观测值n i x x x y ki i i i ,,2,1),,,,(211 =代入上式中可得下列形式: ?????????++??+++=++??+++=++??+++=m mk k m m m k k k k u x x x y u x x x y u x x x y ββββββββββββ2211022222211021 112211101 (2) (2)的矩阵表达形式为: U B X y += (3) 对于模型(3),如果模型的参数估计值已经得到,则有: ^^B X y = (4) 那么,被解释变量的观测值与估计值之差的平方和为: ∑∑==--==-==n i i i n i i B X Y B X Y e e y y e Q 1 ^ '^'2^12)()()( (5) 根据最小二乘法原理,参数估计值应该是下列方程: 0)()(^' ^^=--??B X Y B X Y B (6) 的解。于是,参数的最小二乘估计值为: Y X X X B '1'^)(-= ( 7)

多变量预测模型是以多元线性回归方程为基础,其一般形式为: i ki k i i i u x x x y +++++=ββββ 22110 (8) 其中:k n i ;,,2,1 =为解释变量的数目;k x x x ,,,21 为解释变量,)1(+k 为解释变量的数目;k βββ ,,21为待估参数;u 为随机干扰项;i 为观测值下标。 统计检验是依据统计理论来检验模型参数估计值的可靠性。主要包括方程显著性检验(F 检验)和变量显著性检验(F 检验)。前者计算出F 统计量的数值;给定一个显著性水平α,查F 分布表,得到一个临界值),1,(--k n k F α当)1,(-->k n k F F α时,通过F 检验。后者计算出t 统计量的数值;给定一个显著性水平α,查t 分布表,得到一个临界值)1(2/--k n t α,当)1(||2/-->k n t t α时,通过t 检验。

知识点060 平方差公式的几何背景(选择)

知识点060 平方差公式的几何背景(选择) 1、(2010?达州)如图所示,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( ) A .(a-b )2=a2-2ab+b2 B .(a+b )2=a2+2ab+b2 C .a2-b2=(a+b )(a-b ) D .a2+ab=a (a+b ) 考点:平方差公式的几何背景. 分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式. 解答:解:正方形中,S 阴影=a2-b2; 梯形中,S 阴影=2 1(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键. 2. (2009?内江)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .(a+b )2=a2+2ab+b2 B .(a-b )2=a2-2ab+b2 C .a2-b2=(a+b )(a-b ) D .(a+2b )(a-b )=a2+ab-2b2 考点:平方差公式的几何背景. 分析:利用正方形的面积公式可知:阴影部分的面积=a2-b2=(a+b )(a-b ). 解答:解:阴影部分的面积=a2-b2=(a+b )(a-b ). 故选C . 点评:此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式. 3. (2006?襄阳)如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ) A .(a-b )(a+2b )=a2-2b2+ab B .(a+b )2=a2+2ab+b2 C .(a-b )2=a2-2ab+b2 D .(a-b )(a+b )=a2-b2

第五章 异方差性 答案

第五章 异方差性 一、判断题 1. 在异方差的情况下,通常预测失效。( T ) 2. 当模型存在异方差时,普通最小二乘法是有偏的。( F ) 3. 存在异方差时,可以用广义差分法进行补救。(F ) 4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。(F ) 5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。( T ) 二、单项选择题 方法用于检验( A ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性 2.在异方差性情况下,常用的估计方法是( D ) A.一阶差分法 B.广义差分法 C.工具变量法 D.加权最小二乘法 检验方法主要用于检验( A ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性 4.下列哪种方法不是检验异方差的方法( D ) A.戈德菲尔特——匡特检验 B.怀特检验 C.戈里瑟检验 D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B ) A.重视大误差的作用,轻视小误差的作用 B.重视小误差的作用,轻视大误差的作用 C.重视小误差和大误差的作用 D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差i e 与i x 有显著的形式 i i i v x e +=28715.0的相关关系(i v 满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. i x B. 21i x C. i x 1 D. i x 1 7.设回归模型为i i i u bx y +=,其中()2i 2i x u Var σ=,则b 的最有效估计量为( D )

相关文档
最新文档