磁共振脂肪抑制技术及其临床应用的价值

磁共振脂肪抑制技术及其临床应用的价值

郑玲;刁强;李林;张军

【摘要】目的:探讨磁共振脂肪抑制技术(化学位移选择法和短T1反转恢复序列)及其临床应用价值.方法:收集2008-03-2008-07行磁共振检查中实施脂肪抑制技术73例,检查主要包括头颅、颅底、鼻咽部、颈部、骨关节以及腹部盆腔等部位,对比研究图像的质量得出压脂技术的应用对临床诊断的价值.结果:头颅病变7例;眼部疾病6例;颅底病变10例:其中鼻咽癌8例、口咽部病变2例;颈部病变16例:其中神经源性肿瘤6例、淋巴瘤3例、转移瘤5例、脂肪瘤2例;椎体及骨关节病变中,骨挫伤8例、转移瘤3例、血管瘤3例、脂肪瘤堆积1例;腹部盆腔病变11例,肝脏病变4例,胰腺痛变4例、盆腔病变8例;合理地应用脂肪抑制技术能够使病灶的边缘勾画得更加清楚,清楚地鉴别出含脂肪组织的病变,增强扫描对病变施加脂肪抑制使病灶更加突出,提供较常规MRI检查更多的信息.结论:采用脂肪押制技术可以明显地改善图像质量,提高病变的诊断率,是磁共振检查的一项重要技术.

【期刊名称】《医疗卫生装备》

【年(卷),期】2010(031)001

【总页数】3页(P80-81,83)

【关键词】磁共振;化学位移选择法;短T;反转恢复序列;脂肪抑制

【作者】郑玲;刁强;李林;张军

【作者单位】210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科

【正文语种】中文

【中图分类】R445

1 引言

磁共振成像中,由于脂肪组织具有短T1和中等T2弛豫时间的物理特性,在T1和T2加权图像中脂肪组织呈现高信号和中高信号,这种信号会掩盖邻近正常及病变

组织的信号显示,主要表现为它会给在T1加权图像中识别脂质组织中的小病灶,或在T2加权图像的高信号组织中鉴别液体带来很大困难[1-2],因此采用脂肪抑

制技术消除这些高信号的干扰会对诊断起到很大作用。目前应用比较广泛的技术主要有2种:频率选择饱和法与短T1反转恢复序列(short T1 inversion recover,STIR),本文就这2种技术进行讨论。

2 资料和方法

2.1 研究对象

2007-06—2008-07行磁共振检查中实施脂肪抑制 73例。其中检查的部位包

括头颅、眼部、颅底、颈部、椎体及骨关节、腹部盆腔等部位,根据检查部位及临床诊断的需要选择合理的脂肪抑制技术。

2.2 方法

应用GE公司1.5T(signa cv/i)单梯度超导磁共振成像仪。新型GE设备中有4

种不同的脂肪抑制技术可供选择,不同的序列可以选用不同的脂肪抑制技术,本文应用的脂肪抑制技术主要为:(1)Fat。在序列的定位界面就可以选择,即频率

选择饱和法脂肪抑制技术,它不是采用连续的4个90脉冲进行饱和,而是采用略大于90脉冲[3]。(2)短T1反转恢复序列(STIR)。需选用IR-FSE序列,然

后根据不同的场强设置合适的TI,以达到良好的脂肪抑制的效果。

3 结果

头颅病变12例:颅内出血4例、头颅脂肪瘤3例,脑出血及怀疑脂肪成分占位的患者T1、T2加权像上都为高信号,出血应用脂肪抑制后仍为高信号,周围可见低信号的含铁血黄素,脂肪病变则呈现低的信号,如图1所示。眼部疾病6例,压脂后病变周围脂肪信号消失,病变显示更加清楚,如图2所示。颅底病变中,鼻咽癌8例、口咽癌2例,应用脂肪抑制后病变边缘清楚,可以了解病变对颅底是否侵犯,增强扫描后压脂能够使病变显示更加清楚;颈部病变中,神经源性肿瘤6例、淋巴瘤3例、转移瘤5例、脂肪瘤2例。由于颈部脂肪较多,且结构复杂,T1加权像肿瘤或淋巴结信号往往与周围的肌肉组织信号相似,脂肪抑制后脂肪信号完全消失,肿瘤和淋巴结显示更加清楚,如图3所示。椎体及骨关节病变中,骨挫伤8例、转移瘤3例、血管瘤3例、脂肪堆积1例,骨挫伤在T2WI加权脂肪抑制序列中病变部位明显呈高信号,结合常规T1加权像以及外伤史明确诊断为骨挫伤;骨转移瘤在脂肪抑制序列中呈明显高信号,如图4所示。若是脂肪的浸润,压制后信号变低。腹部盆腔病变11例,肝脏病变中肝脏血管瘤2例,脂肪抑制后可以呈现出明显的“灯泡征”,这是与其他肝脏占位的一个主要鉴别点,如图5所示。局灶性结节2例、肝细胞癌3例,应用脂肪抑制后病变边界清楚,提高了对肿瘤边界的区分。肝癌病变可见明显的假包膜。胰腺病变4例中,胰腺癌2例,增强后脂肪抑制可以明显显示病变的边界以及对周围其他组织的侵润情况。胰腺炎2例,压制后清楚可见胰腺周围的炎性渗出等。盆腔前列腺病变5例,子宫附件病变3例,应用脂肪抑制后前列腺及子宫附件显示清楚,其中1例脂肪抑制后病变内可见不均匀的低信号,其内含有的脂肪成分被诊断为畸胎瘤,如图6所示。

4 讨论

不同场强的MRI采用的脂肪抑制技术不同,同一设备也可因检查部位、目的或扫

描序列的不同而采用不同的脂肪抑制技术[4]。应用脂肪抑制后可以减少运动、化

学位移伪影;提高图像的信噪比;抑制脂肪组织的信号,增加图像的组织的对比度;判断病灶是否含有脂肪。因为在T1WI和T2WI上除脂肪外,含有蛋白的液体、出血等均可表现为高信号,脂肪抑制技术可以判断是否含有脂肪,为鉴别诊断提供信息,如血管平滑肌脂肪瘤、畸胎瘤等都常含有脂肪组织,脂肪抑制技术可以为其提供鉴别。频率选择饱和法是最常用的脂肪抑制技术之一,也被称为化学位移选择饱和技术,该技术利用的就是脂肪和水的化学位移效应。该技术的优点是高的选择性主要抑制脂肪的信号,对周围的组织影响很小,可用于多种序列,在中高场的磁共振设备中可以取得很好的脂肪抑制效果。频率选择饱和法脂肪抑制技术也存在一些缺点:(1)场强的依赖性较大。(2)对磁场的均匀度要求很高。(3)较大

FOV扫描时,周边脂肪抑制效果比较差。STIR技术的主要优点是:场强的依赖性低,由于该技术是基于脂肪组织的TI值,因此对场强的要求不高,低场的MRI设备也能取得较好的脂肪抑制效果。与频率选择饱和法相比,其对场强的要求较低,大的FOV扫描也能取得较好的脂肪抑制效果。STIR的不足之处主要表现在:脂肪抑制的选择性较低,如果某种组织的TI值接近脂肪,其信号也被抑制,扫描时间

较长,不能用于增强扫描[5]。总之,磁共振脂肪抑制技术主要应用于鉴别含有脂

肪组织的病变以及病变处于含脂肪比较多的部位,只有合理地选用序列才能使病变更加清楚,诊断更为准确。

颅内病变增强后加脂肪抑制可以发现脑实质以外的更多病灶,如脑膜、颅骨、软组织等。一般选用频率选择饱和法,因为当鉴别到出血和脂肪组织如垂体瘤卒中时[6],血肿组织的TI值与脂肪组织的TI值接近,其信号也会被抑制,无法完成鉴别诊断的目的。颅底、眼眶及鼻咽部位结构复杂、成分多样,其周围又有颌面部皮下脂肪等,容易产生化学位移伪影且病变累及周围结构时与脂肪分解不清,因此扫描

需要应用脂肪抑制[7-8],脂肪抑制可以选用短T1反转恢复序列和频率选择饱和法。当临床怀疑视神经炎时,采用STIR技术可观察视神经的形态、信号及脑白质的病变。当增强扫描时,由于顺磁性造影剂可能使组织的TI值缩短到与脂肪组织相近

而被抑制,因此增强扫描一般只用频率选择饱和法;颈部脂肪组织的抑制一直是比较困难的部位,一般应用STIR技术,颈部扫描要求的FOV比较大,颈部前方为

食管气管等中空组织,给匀场带来很大困难,因此应用频率选择饱和法得到的图像一般不理想,起不到诊断的效果。行椎体MRI检查时,脂肪抑制也是必需的,尤

其是当怀疑转移肿瘤、外伤以及脊髓病变时,脂肪抑制后病变部位明显呈高信号,利于诊断[9]。椎体扫描时FOV较大,对磁场的均匀度要求高[10],应用频率选择饱和法时,图像的上下两端由于偏离磁场的中心,脂肪的抑制效果差,如图8所示;而应用STIR后脂肪抑制的效果较好,因此T2WI的椎体扫描压脂一般应用STIR序列,如图4所示。腹部MRI扫描时,常规都会应用脂肪抑制技术;正常肝脏含有脂质及慢性肝病的脂肪变性增加了T2WI上肝实质的信号,势必降低了

T2WI上肝脏实质病变与正常肝组织的对比。另外,皮下脂肪、腹腔脂肪的高信号还会增加运动伪影,低场机一般采用STIR技术,而高场多采用频率选择饱和法。胆道检查对空间分辨率和脂肪抑制的要求更高,特别是观察胆道的非结石性病变要求更高一些,因此应采用频率选择饱和法进行脂肪抑制。胰腺周围富含脂肪组织,高信号的脂肪组织会降低图像的对比,因此无论是T1还是T2,加权像都要采用

脂肪的抑制,胰腺炎的患者还应采用SE序列的T1脂肪抑制,观察胰周围的炎性

渗出[11]。骨关节部位的MRI检查常规都要采用脂肪抑制技术去除脂肪组织的对

变得掩盖。对于细小而复杂的结构,要求空间分辨率高,如腕关节一般采用频率选择饱和法;对于骨髓病变及软组织的病变,STIR具有很高的敏感性;STIR序列也是髋关节扫描的常用序列,它对骨髓病变以及微笑的损伤具有极好的敏感性,较大的FOV扫描脂肪饱和抑制常常不能提供均匀的脂肪抑制效果,如图7所示。

综上所述,合理地利用磁共振脂肪抑制技术可以明显地改善图像的质量,降低运动伪影,消除水脂界面的化学位移伪影,增加图像的对比度及扫描效果,提高病变的检出率,为鉴别诊断提供重要信息。

[参考文献]

【相关文献】

[1] 高元桂,蔡幼铨.磁共振成像诊断学[M].北京:人民军医出版社,1993:43-44.

[2] 刁强,张军,唐晓俊.磁共振胰胆管水成像2D和3D扫描技术及临床应用[J].医学研究生学报,2008,21(10):1 063-1 066.

[3] 杨正汉,冯逢,王霄英.磁共振成像技术指南[M].北京:人民卫生出版社,2005:185-190.

[4] 李国雄.脂肪抑制技术的方法及临床应用[J].临床放射学杂志,1996,15(12):97-101.

[5] 于兹喜.医学影像检查技术[M].北京:人民卫生出版社,2003:214-215.

[6] 杨东奎,郑雷,孙跃龙.垂体瘤的影像学诊断及评优[J].医疗卫生装备,2008,29(1):88-89.

[7] 何立岩,鲜军舫,王振常.MR及动态增强扫描诊断眼眶淋巴瘤的价值[J].中华放射学杂志,2007,41(9):918-921.

[8] 马强华,杨晓萍,叶建军.神经纤维瘤病II型的磁共振诊断价值[J].医疗卫生装备,2008,29(6):85-88.

[9] Georgy B A,Hesselink JR.Evaluation of fat suppression in Contrast-enhanced MR of neoplastic and inflammatory spine disease[J].AJNR,1994,15:409.

[10] Barakos JA,Dillon W P,Chew W M.O rbit,skull base and pharynx:contrast-enhance fatsuppression MR imaging[M].Radiology,1991,179:191.

[11] Yeh T S,Jan Y Y,Tseng JH,et al.malignant perhilar biliary obstruction:magnetic resonance cholangiopancerato graphic finding[J].Am J Gastroenterol,2000,95(2):432-435.

常用脂肪抑制技术解读(二)

常用脂肪抑制技术解读(二) ● 化学位移法脂肪抑制技术 基于化学位移法的选择性脂肪信号抑制:水和脂肪中氢质子周围化学环境的不同导致了它们在进动频率上的微小差别,这个差别用无量纲的ppm表示就是3.5ppm。无论所使用的磁共振成像设备场强是多少,水和脂肪之间这个无量纲差异都是不变的。但到了不同场强的成像设备,根据拉莫尔方程计算出来的以Hz为单位的频率差异就不同了。磁共振成像设备的场强越高,这个频率差异就越大。水和脂肪中氢质子核这种进动频率的差别为化学位移成像奠定了成像基础。利用这种频率上的差异也可以实现选择性的脂肪信号抑制,这就是所说的化学位移法脂肪抑制,通常简称为Fat Sat。与STIR脂肪抑制技术相比,利用化学位移法的脂肪信号抑制具有以下特点: 01 化学位移法脂肪抑制技术的临床优点 相比于短时反转脂肪抑制STIR序列,化学位移法脂肪抑制具有以下两个突出的临床优点: 1)化学位移法选择性脂肪抑制适用于更多的成像序列:与STIR 技术相比,化学位移法脂肪抑制可以作为一个成像技术选项,既可以用于T1加权成像,也可以用于T2加权成像,在序列上也可以同时兼容自旋回波序列家族和梯度回波序列家族。化学位移法脂肪抑制的这种广适性使得它在临床上具有更广泛的应用。 2)化学位移法选择性脂肪抑制属于选择性脂肪抑制技术:这种选择性脂肪抑制技术可以特异性地抑制脂肪信号,这样对于鉴别出血或脂肪具有重要价值。另一方面,这种选择性抑制脂肪信号也确保了组织中水中氢质子信号免受损失,因此相比于STIR脂肪抑制技术,化学位移法脂肪抑制具有更高的信噪比。 02

化学位移法脂肪抑制技术的局限性 相比于STIR脂肪抑制方法,化学位移法脂肪抑制技术也具有几方面自身的局限性: 1)化学位移法选择性脂肪抑制对主磁场强度具有高度依赖性:当主磁场强度很低时,水和脂肪中氢质子核的进动频率从具体的Hz数来看差别就很小,也就是二者的进动频率点相离很近,如在0.2T的磁共振成像设备上,二者频率差异约为29Hz,而通常的射频激励脉冲宽度在数百个Hz或KHz量级,显然,这么窄的频率差异很容易被频率域更宽的射频脉冲所淹没,这是低场磁共振无法实现化学位移法脂肪信号抑制的根本原因。在高场磁共振如1.5T,水和脂肪中氢质子核共振频率差异达到220Hz,在这种情况下就可以先针对脂肪频率点进行选择性激励饱和,然后再施加成像射频脉冲,因为脂肪成分已经事先被饱和掉,从而实现了脂肪抑制的效果。 2)对磁场均匀度具有高度依赖性:尽管在高场磁共振成像设备中水和脂肪中氢质子具有相对更大的频率差异,但这种频率差异在磁场均匀度因某种因素变差时很容易被淹没。这种情况下系统无法准确识别水和脂肪的精准进动频率点,因此也无法精准实现脂肪抑制,而且还可能导致水的信号被错误抑制。对于偏中心的扫描而言,化学位移法脂肪抑制就面临着很大的挑战。另外,在人体一些特殊的解剖区域,如颈部,由于该区域解剖结构复杂、组织间磁化率差别大等因素导致局部磁场均匀度变差,这些区域的化学位移法脂肪抑制就很难保证优异的图像质量。

磁共振脂肪抑制序列意义

磁共振脂肪抑制序列意义 磁共振成像(MRI)是一种非侵入性的医学影像技术,广泛应用于临床诊断和研究领域。脂肪抑制序列是MRI中常用的一种技术,旨在通过抑制脂肪信号,提高对其他组织结构的可视化程度。本文将详细介绍磁共振脂肪抑制序列的意义及其临床应用。 一、磁共振脂肪抑制序列的原理 磁共振脂肪抑制序列的原理基于脂肪和水信号在磁场中的不同特性。脂肪具有高信号强度,而其他组织如肌肉、骨骼和血液等信号较低。通过特殊的脉冲序列和参数设置,可以有效抑制脂肪信号,使其他组织结构更加清晰可见。 二、磁共振脂肪抑制序列的临床应用 1. 肿瘤检测与评估 磁共振脂肪抑制序列在肿瘤检测与评估中具有重要意义。脂肪抑制可以提高肿瘤周围组织的可视化程度,有助于确定肿瘤的大小、边界和浸润范围。此外,脂肪抑制还可以帮助区分良性肿瘤和恶性肿瘤,提供更准确的诊断信息,对于治疗方案的选择和预后评估具有重要指导意义。 2. 骨关节疾病诊断

磁共振脂肪抑制序列在骨关节疾病的诊断中也有广泛应用。例如,在关节炎、关节滑膜炎和骨折等疾病中,脂肪抑制可以清晰显示关节腔、滑膜和软骨病变情况,有助于评估病变的严重程度和范围,指导临床治疗和手术决策。 3. 炎症和感染性疾病诊断 磁共振脂肪抑制序列对于炎症和感染性疾病的诊断也具有重要意义。炎症和感染性病变常伴随有水肿、渗出和血管扩张等特征,这些信号可以通过脂肪抑制来突出显示。因此,磁共振脂肪抑制序列可以帮助医生确定病变的位置、范围和严重程度,指导治疗方案的制定和效果评估。 4. 血管疾病诊断 磁共振脂肪抑制序列在血管疾病的诊断中也有重要作用。脂肪抑制可以消除脂肪信号的干扰,使血管结构更加清晰可见。例如,在肾动脉狭窄和颈动脉狭窄等血管疾病中,磁共振脂肪抑制序列可以帮助医生评估病变的程度和位置,指导治疗和手术决策。 三、磁共振脂肪抑制序列的优势与局限 磁共振脂肪抑制序列具有许多优势,如高分辨率、多平面成像、无辐射等。然而,也存在一些局限性,如对扰动敏感、扫描时间较长等。因此,在临床应用中需要根据具体情况综合考虑,选择合适的

磁共振的临床应用价值

磁共振的临床应用价值 This manuscript was revised by JIEK MA on December 15th, 2012.

磁共振的临床应用价值 1、MRI比较于CT的优势 MRI利用人体中最多的氢质子在磁场中产生的共振效应,通过计算机处理后得到的图像。根据图像的性质不同,一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。而CT是依赖于组织的X线衰减(CT值)。这是它们图像上的基本不同。所以,MRI相对于CT的优势非常明显: 1、MRI有很高的组织对比分辨率:MRI成像主要是考察组织的含水量的多少以及所含水的特性不同。也就是说,含水量不同,MRI图像上就可以明显区分开来,即使含水量一样,由于所含水的特性(比如弛豫特性、流动特性、扩散特性等等)不同,在MRI 的图像上,最终表现出来的信号会完全不同。所以MRI的图像在所有的影像学图像中,是最接近于人体实际解剖结构的,甚至可以说和解剖书上的示图完全一样,非常直观。在考察软组织病变,特别是占位性病变比如脑膜瘤,胶质瘤,垂体腺瘤等等时,MRI的优势巨大。MRI图像上病变边缘会较CT清晰锐利得多,完全可以确定占位性病变的边界,对临床手术及切除后复诊起到极其重要的指导意义。 2、MRI有多种参数的选择与变化从而有可能对各种病变的性质加以判断。CT只能通过CT值的变化来进行诊断,参数只有CT值一个。MRI的参数有几十种之多,经常用到的就有十几种。根据参数选择的不同,MRI的图像就会完全不同。一般可分为T1加权像,T2加权像,质子密度像这三种基本图像。临床上最常用到的是T1加权像(又称解剖像)和T2加权像(又称病理像)。举例来说,脂肪在T1加权像和T2加权像上均为高信号,肌肉、肝脏、胰腺等组织器官在T1加权像上为中等信号,而在T2加权像上则为较低信号,肺组织,大血管,钙化等在上述图像上均为一般均匀低信号,而肾、脾等组织器官在T1加权像上为较低信号,在质子像和T2加权像上均为较高信号。通过选择不同的参数,得到几种不同信号表现的图像,MRI可以将每种组织器官及病变完全区分开来,而不同的组织的CT值有可能完全一样,这时CT的局限性就暴露出来了。 3、MRI没有放射线的损害,MRI使用的是无线电波进行检测,频率也不高,以为例,频率仅为,并且持续时间很短。MRI只产生非常微量的热效应,人体几乎感觉不到。相对于CT所使用的射线,MRI无疑是一种环保的,绿色的影像学检测手段。

MR03-02-01MRI脂肪抑制技术01

MR03-02-01MRI脂肪抑制技术01 喜欢病例的只看病例,要全面了解请看全文。 椎体MR检查使用压脂技术,血管瘤清晰显示

脂肪抑制是MRI检查中非常重要的技术,合理利用脂肪抑制技术不仅可以明显改善图像的质量,提高病变的检出率,还可为鉴别诊断提供重要信息。 一、MRI检查使用脂肪抑制技术的意义 脂肪组织不仅质子密度较高,且T1值很短(1.5T场强下约为200~ 250ms),T2值较长,因此在T1WI上呈现很高信号,在T2WI 呈现较高信号,在目前普遍采用的FSE T2WI图像上,其信号强度将进一步增高(详见FSE序列)。 脂肪组织的这些特性在一方面可能为病变的检出提供了很好的天然对比,如在皮下组织内或骨髓腔中生长一个肿瘤,那么在T1WI上骨髓组织或皮下组织因为富含脂肪呈现很高信号,肿瘤由于T1值明显长于脂肪组织而呈现相对低信号,两者间形成很好的对比,因此病变的检出非常容易。

从另外一个角度看,脂肪组织的这些特性也可能会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影(详见MRI伪影一节)。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI 上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信号,两者之间因此缺乏对比,影响增强效果。 因此MRI中脂肪抑制的主要意义在于:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。如肾脏含成熟脂肪组织的肿瘤常常为血管平滑肌脂肪瘤,肝脏内具有脂肪变性的病变常为高分化肝细胞癌或肝细胞腺瘤等。 二、与脂肪抑制技术相关的脂肪组织特性 MRI脂肪抑制技术多种多样,但总的来说主要基于两种机制:(1)脂肪和水的化学位移;(2)脂肪与其他组织的纵向弛豫差别。 (一)化学位移现象

磁共振脂肪抑制技术及其临床应用探讨

磁共振脂肪抑制技术及其临床应用探讨 摘要:本文主要分析了当前临床中普遍应用到的STIR技术、选择性水或脂肪激 发技术、频率选择饱和法、Dixon技术、频率选择反转脉冲脂肪抑制技术等,并 将它们进行对比,提出了它们各自的使用范围以及优缺点,在临床中只有合理选 择脂肪抑制技术才可以对病变更好的辨别, 关键词:磁共振,脂肪抑制技术,临床应用 到目前为之,有着非常多的磁共振抑制脂肪技术,它们的原理各不相同,若 是没有选择合理的技术就容易导致抑制脂肪失败或是不精确,本文探讨了怎样在 临床中选用合适的技术才能发挥出最大的效果。本人对当前应用于临床中的脂肪 抑制技术做出了相关分析供参考。 1 频率选择饱和法 1.1成像原理 根据水和脂肪化学位移。因为存在有化学位移,那么水分子里的质子以及脂 肪会有进洞频率上的差异。假如成像序列施加射频脉冲以前,多个频率和脂肪里 质子进动频率一样的预脉冲,那么质子就会由于不断激发出现饱和的情况,水分 子里的质子则不会被激发。此时加之真正激发射频脉冲,脂肪组织将不会再出现 信号,水分子里的质子能够出现信号,进而实现脂肪抑制, 1.2优点及缺点 优点有:第一,较高的选择性。此技术大部分都是脂肪组织的信号实现抑制,仅小面积的影响别的组织信号。第二,能够使用多种序列。 缺点有:第一,过于依赖场强,场强高的情况下,水的质子与脂肪进动频率 有很大的差别,所以很容易实现脂肪抑制,如果场强过低,那么就很难完成脂肪 抑制。第二,需要磁场具有均匀性。此技术是通过水分子以及脂肪质子进动频率 细小差别,磁场要是不够均匀,那么就会对质子进动频率造成直接阻碍,不一致 的进动频率会导致脂肪抑制效果大打折扣。第三,开展较大的FOV扫描过程中, 视野边缘位置脂肪抑制效果不佳,一般关系到梯度线性以及磁场均匀度。第四, 使人体射频吸收能量增多[1]。 1.3临床应用 在临床中该技术应用的十分广泛。不但能够用在FSE序列以及SE序列,另外 还可以在扰相GRE以及常规GRE中应用。此方法较为简单,选择脂肪抑制选项于扫描序列前就可以进行。只要信号可以被此方法抑制的成像组织其中一定有脂肪 的成分。通常在中高场机器中应用,不然就会降低脂肪抑制效果,甚至不能完成 脂肪抑制。此外,此方法注重场强的均匀性,所以只可以作用小面积的脂肪抑制,并且需要在磁体中心进行扫描,不可靠近磁体边缘等位置,扫描开始之前还要进 行匀场操作,检查之前需要剥离病人身上所有会对磁场均匀度造成干扰的所有物品,不然很可能发生脂肪抑制不均匀的情况。特别是在扫描位置的周边和对磁场 干扰的部分,甚至会直接导致失败。 2 短反转时间的反转恢复技术 2.1成像原理 作为幅度选择饱和技术,它的原理是人体组织里脂肪最短的T1值,经过180°反向脉冲之后纵向磁化矢量从反向最大过零点用时补偿,假如使用的T1合适那 么就能够很好的抑制脂肪组织信号。 2.2优点及缺点

磁共振脂肪抑制技术及其临床应用的价值

磁共振脂肪抑制技术及其临床应用的价值 郑玲;刁强;李林;张军 【摘要】目的:探讨磁共振脂肪抑制技术(化学位移选择法和短T1反转恢复序列)及其临床应用价值.方法:收集2008-03-2008-07行磁共振检查中实施脂肪抑制技术73例,检查主要包括头颅、颅底、鼻咽部、颈部、骨关节以及腹部盆腔等部位,对比研究图像的质量得出压脂技术的应用对临床诊断的价值.结果:头颅病变7例;眼部疾病6例;颅底病变10例:其中鼻咽癌8例、口咽部病变2例;颈部病变16例:其中神经源性肿瘤6例、淋巴瘤3例、转移瘤5例、脂肪瘤2例;椎体及骨关节病变中,骨挫伤8例、转移瘤3例、血管瘤3例、脂肪瘤堆积1例;腹部盆腔病变11例,肝脏病变4例,胰腺痛变4例、盆腔病变8例;合理地应用脂肪抑制技术能够使病灶的边缘勾画得更加清楚,清楚地鉴别出含脂肪组织的病变,增强扫描对病变施加脂肪抑制使病灶更加突出,提供较常规MRI检查更多的信息.结论:采用脂肪押制技术可以明显地改善图像质量,提高病变的诊断率,是磁共振检查的一项重要技术. 【期刊名称】《医疗卫生装备》 【年(卷),期】2010(031)001 【总页数】3页(P80-81,83) 【关键词】磁共振;化学位移选择法;短T;反转恢复序列;脂肪抑制 【作者】郑玲;刁强;李林;张军 【作者单位】210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科

【正文语种】中文 【中图分类】R445 1 引言 磁共振成像中,由于脂肪组织具有短T1和中等T2弛豫时间的物理特性,在T1和T2加权图像中脂肪组织呈现高信号和中高信号,这种信号会掩盖邻近正常及病变 组织的信号显示,主要表现为它会给在T1加权图像中识别脂质组织中的小病灶,或在T2加权图像的高信号组织中鉴别液体带来很大困难[1-2],因此采用脂肪抑 制技术消除这些高信号的干扰会对诊断起到很大作用。目前应用比较广泛的技术主要有2种:频率选择饱和法与短T1反转恢复序列(short T1 inversion recover,STIR),本文就这2种技术进行讨论。 2 资料和方法 2.1 研究对象 2007-06—2008-07行磁共振检查中实施脂肪抑制 73例。其中检查的部位包 括头颅、眼部、颅底、颈部、椎体及骨关节、腹部盆腔等部位,根据检查部位及临床诊断的需要选择合理的脂肪抑制技术。 2.2 方法 应用GE公司1.5T(signa cv/i)单梯度超导磁共振成像仪。新型GE设备中有4 种不同的脂肪抑制技术可供选择,不同的序列可以选用不同的脂肪抑制技术,本文应用的脂肪抑制技术主要为:(1)Fat。在序列的定位界面就可以选择,即频率 选择饱和法脂肪抑制技术,它不是采用连续的4个90脉冲进行饱和,而是采用略大于90脉冲[3]。(2)短T1反转恢复序列(STIR)。需选用IR-FSE序列,然 后根据不同的场强设置合适的TI,以达到良好的脂肪抑制的效果。

MRI脂肪抑制技术方法

MRI脂肪抑制技术方法 MRI脂肪抑制技术方法很多,如磁共振波谱技术,频率选择脂肪饱和技术,短反转时间反转恢复技术(STIR),Dixon技术及化学位移成像(CSI)技术等,其中临床上应用较多的是STIR,频率选择脂肪饱和及CSI技术。磁共振化学位移成像(chemicashiftimaging,CSI)即同相位/反相位成像(IPI/OPI)技术对于检测病灶内少量的脂质更为敏感,1984年Dixon首先提出化学位移成像,它利用水(-OH)和脂肪(-CH2)氢质子有不同的共振频率,在一定条件下,脂肪和水以相同或相反相位发生共振,所获的相应图像为同相(in phase,IP)或反相(opposed phase,OP)像,IP像上脂肪和水信号相加;而在OP像上两者信号相互抵消。因此观测IP和OP像上组织信号有无下降可推测该组织是否含有脂质。 相位一致+相位反向=水质子像;相位一致-相位反向=脂肪质子像。 肝内含有脂肪成分的病灶并不多见,主要有脂肪瘤,血管肌脂瘤,肝细胞癌伴有脂肪变,腺瘤,假性结节脂肪浸润以及某些肝内转移性肿瘤。另外,肝结节内脂肪变性被认为是癌前病灶转化成肝癌的一个重要恶变标志,是肝癌演变中的一个偶然发生的过程,因而早期发现肝内结节的脂肪变性并与其它病变的鉴别在临床诊断和追踪评估中非常重要。 无肝脂肪变的病例中,同、反相位上肝与病灶相对信噪比无明显差异,显示肝内占位病变能力相似,然而,在肝脂肪变的病例中,肝脂肪变在反相位上呈低信号与其它低信号病灶如肝癌或血管瘤等易混淆导致误诊或漏诊,在同相位上肝脂肪变与正常肝实质呈等或稍高信号,常难以诊断而漏诊,此时两者缺一不可。因此,对肝脏T1加权扫描,应行常规同、反相位梯度回波T1加权扫描,此外,在肝脂肪变的病例中,反相位和脂肪抑制序列的T1WI上有时可见肝癌或血管瘤周边环状高信号带,而在同相位上肿块周边无此环状高信号带,可能是由肿块与浸润脂肪间存在残留的正常肝实质所致。 上腹部脏器中多数病变,如肝脏血管瘤,局灶性结节增生,肝细胞癌(多数),胆管细胞癌,肾上腺嗜铬细胞瘤,肾细胞癌,转移性肿瘤中

磁共振压脂方法及原理应用

磁共振压脂方法及原理应用 磁共振压脂方法主要有频率选择饱和法、反转时间的反转恢复(STIR)技术、频率选择反转脉冲脂肪抑制技术等。 频率选择饱和法是高场磁共振最常用的一种脂肪抑制方法,其成像基础是利用脂肪与水分子中质子的进动频率存在差别。如果在扫描之前连续施加频率与脂肪中质子进动频率一致的脉冲,脂肪组织中的质子会因连续激发而产生饱和现象,而水分子中的质子由于频率不同,不会被激发。这个时候再施加真正的激发射频脉冲,脂肪组织却因为饱和不能再接受能量而不产生信号,而水分子中的质子可能被激发产生信号,从而达到脂肪抑制的目的。这种方法的优点是选择特异性强,选择性高,抑制的组织几乎全部是脂肪信号,另外多种序列均可采用。缺点是对磁场的均匀度、场强的要求比较高,一般主要用于以上的机型。同时大范围扫描时,在大范围内磁场均匀度会发生一定线性变化,所以边缘的的不均匀会导致脂肪抑制效果差,所以一般用在小范围的脂肪抑制中。同时,由于在扫描之前增加了射频,病人所接受的SAR 值会过高,同时扫描的速度会受到明显的影响。 STIR序列实际上是反转恢复(inversion recovery, IR)序列演变而来的。STIR技术的成像基础是基于脂肪组织短T1特性。它基本原理为人体组织中脂肪的T1值最短,180度反向脉冲后其纵向磁化矢量从反向最大到过零点

所需要的时间很短,如果选择合适的T1就能有效抑制脂肪组织的信号。这种技术的优点在于:场强依赖性低,较频率饱和法对磁场的均匀度也较低,同时,大范围FOV扫描也能取得较好的脂肪抑制效果。由于其成像特点,也有自身的一些缺点:选择性差,与脂肪相类似的T1值的组织的信号也会被抑制掉,特别是增强扫描时,被增强的组织T1值有可能缩短到与脂肪信号相同,从而被抑制掉,从而影响增强程度的。同时,由于此方法在扫描之前也要预加反向脉冲,其扫描时间也较长。 频率选择反转脉冲脂肪抑制技术实际是第1、2种压脂方法的组合。在真正成像脉冲施加前,先施加一个预脉冲,这个脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,因此仅有脂肪组织被激发,角度可以随意调整,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向驰豫将发生从反向到零,然后到正向并逐渐增大,直至平衡状态。经过零点时施加真正的成像脉冲,脂肪组织信号将被抑制,这一技术目前应用最为广泛。 以上内容仅供参考,如需更多信息建议查阅相关文献或咨询专业医生。

MRI脂肪抑制与水激发技术在膝关节骨挫伤中的临床应用

MRI脂肪抑制与水激发技术在膝关节骨挫伤中的临床应用 背景 膝关节骨挫伤是一种常见的膝关节损伤,可导致疼痛、肿胀和功能障碍,严重 影响患者的生活质量。临床上,MRI(磁共振成像)已成为诊断膝关节疾病的主要 方法之一。MRI脂肪抑制技术和水激发技术是MRI成像中的两个重要技术,能够 提高MRI成像的分辨率和对病变的识别能力,因此被广泛应用于膝关节骨挫伤的 诊断中。 MRI脂肪抑制技术 MRI脂肪抑制技术是利用特殊的脉冲序列抑制成像区域内脂肪的信号,在短时 间内提高MRI成像的分辨率和对病变的识别能力。该技术可通过两种方法实现: 化学抑制和选择性抑制。 化学抑制 化学抑制是利用一些化学剂如光敏剂等,在成像区域内破坏脂肪分子,从而抑 制脂肪的信号。这种技术有很高的抑制效果,但是会引起组织的光敏性损伤,因此目前已经逐步被淘汰。 选择性抑制 选择性抑制是利用脉冲序列对不同的信号进行选择性抑制,从而实现对脂肪信 号的抑制。该技术不仅可以抑制脂肪信号,还可以保留其他信号如水、浆液等非脂肪信号,因此在MRI诊断中广泛应用。 水激发技术 水激发技术是利用特殊的脉冲序列强制水分子与磁场方向垂直,从而提高MRI 成像对水信号的敏感度。该技术可用于多种MRI成像模式,如T1加权成像和T2 加权成像等,可提高成像的分辨率和对病变的识别能力。 临床应用 MRI脂肪抑制和水激发技术在膝关节骨挫伤的临床应用中具有重要意义。以下 是应用效果的介绍。 MRI脂肪抑制在膝关节骨挫伤中的应用 MRI脂肪抑制技术可提高对膝关节软骨和骨髓病变的分辨率和对病变的敏感度。骨挫伤通常伴随有软骨磨损和水肿,而软骨和水肿均含有大量的脂肪,因此MRI

MRI脂肪抑制技术

MRI脂肪抑制技术 意义:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。 方法 (一)频率选择饱和法:最常用的脂肪抑制技术之一。 由于化学位移,脂肪和水分子中质子的进动频率存在差别,在成像序列的RF施加前,先连续施加数个预脉冲,如果预脉冲的频率与脂肪中质子进动频率一致,脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加RF,脂肪组织因为饱和不能再接受能量,因而不产生信号,从而达到脂肪抑制的目的。 特点:(1)高选择性。主要抑制脂肪组织信号,对其他组织的信号影响较小。(2)可用于多种序列。(3)场强依赖性较大,在中高场强下使用可取得好的脂肪抑制效果。(4)对磁场的均匀度要求很高。(5)进行大FOV扫描时,因梯度场存在,视野周边区域脂肪抑制效果较差。(6)增加了人体吸收射频的能量。(7)预脉冲将占据TR间期的一个时段,因此会延长扫描时间,并有可能影响图像的对比度。(8)运动区域脂肪抑制效果差。 (二)STIR技术:常用的脂肪抑制技术之一。 MR仪,脂肪组织的T1值约为200~250ms,则TI=140~175ms时可有效抑制脂肪组织的信号。在1.0T仪上TI应为125~140ms;在0.5T仪上TI应为85~120ms,在0.35T仪上TI应为75~100ms。 特点:(1)场强依赖性低。低场MRI仪也能取得较好的脂肪抑制效果。(2)与频率选择饱和法相比,磁场的均匀度要求较低。(3)大FOV扫描能取得较好的脂肪抑制效果。(4)信号抑制的选择性较低。如果某种组织的T1值接近于脂肪,其信号将被抑制,故一般不能应用增强扫描。(5)由于TR延长,扫描时间较长。 (三)频率选择反转脉冲脂肪抑制技术:一种新的脂肪抑制技术。 在真正RF激发前,先对被检区进行预脉冲激发,这种预脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,仅有脂肪组织被激发,且这一脉冲略大于90°,脂肪组织会出现一个较小的反方向纵向磁化矢量,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向磁化矢量将发生从反向到零,然后逐渐恢复到正向直至平衡状态。预脉冲仅略大于90°,因此从反向到零需要的时间很短,选择很短的TI (10~20ms),仅需要一次预脉冲激发就能对三维扫描容积内的脂肪组织进行很好的抑制,因此采集时间也仅略有延长。该抑制技术一般用于三维快速GRE序列。 特点:(1)仅少量增加扫描时间。(2)一次预脉冲激发即完成三维容积内的脂肪抑制。(3)几乎不增加人体射频的能量吸收。(4)对场强的强度和均匀度要求较高。 (四)Dixon技术:临床上应用相对较少。 是一种水脂分离成像技术,通过对序列TE的调整,获得水脂相位一致(同相位)图像和水脂相位相反(反相位)的图像。如果把两组图像信息相加或相减可得到水质子图像和脂肪质子图像。把同相位图像加上反相位图像后再除以2,即得到水质子图像;把同相位图像减去反相位图像后再除以2,将得到脂肪质子图像。 (五)预饱和带技术 在RF激发前,先对被检区周围进行预脉冲激发,这种预脉冲的带宽很宽,使质子达到饱和,该

脂肪抑制技术Dixon法

脂肪抑制技术Dixon法 Dixon法,该技术方法是由Dixon提出,其基础原理和Opposed-phase法相同,是利用自旋回波序列,在不一样回波时间,分别采集水和脂肪质子In Phase 和Opposed-phase两种回波信号,两种不一样相位信号相加,去除脂肪信号,产生一幅纯水质子影像,从而达成脂肪抑制目标。Dixon法缺点是需要采集两组数据,成像时间长,而且受磁场非均匀性影响较大,所以,现在该方法在临床应用极少。多年来对Dixon法进行了改善,即所谓三点Dixon法(Three-point Dixon),该方法是在脂肪和水共振频率相位移分别为0o、180o、-180o三个点采集回波信号,因为增加了一个信号采集点用于修正磁场均匀性偏差引发信号误差,很好地克服了磁场非均匀性对脂肪抑制效果影响。据Bredella等报道,经改良后三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊疗关节软骨损伤敏感性和特异性均较高,是一个十分有用检验技术。 脂肪抑制技术是磁共振成像中常见技术方法之一,关键用于对一些病变组织判别,如肾上腺瘤、骨髓渗透、脂肪瘤、脂肪浸润及皮脂腺瘤等,改善增强后组织间对比度、消除脂肪信号对病灶掩蔽(如眶内病变),或用脂肪抑制技术测量组织内脂肪含量,降低化学位移伪影等。理想脂肪抑制技术应能依据脂肪含量及信号强度,判别该信号所代表特定组织。脂肪饱和序列关键用于抑制有大量脂肪存在部位和对比增强扫描中,它关键缺点是对磁场非均匀性较敏感,不适适用于低场强磁共振成像系统。短TI翻转恢复序列对磁场非均匀性不敏感,可在低场强磁共振成像系统中使用,多用于抑制纯脂肪组织和球状脂肪组织,但该序列特异性较差,对含有长T1和短T1组织信号强度难于区分。反相位成像是一个快速、有效脂肪抑制技术,该序列被推荐用于判别含有少许脂肪病灶,关键缺点是对被脂肪包围小肿瘤检测可靠性差。最初Dixon法因为成像时间长,对磁场非均性敏感、易受呼吸运动影响等缺点,临床应用较少。改善后Three-point Dixon法克服了上述缺点,可用于低场强开放式磁共振系统中,对关节软骨损伤是很有效诊疗手段。本文所介绍多个关键脂肪抑制序列,各有优缺点,临床应用各有侧重,在

MRI脂肪抑制与水激发技术在膝关节骨挫伤中的临床应用

MRI脂肪抑制与水激发技术在膝关节骨挫伤 中的临床应用 王凡陈家祥 安徽省马鞍山市中心医院放射科,安徽马鞍 243000 [摘要] 目的探讨pd_tse_spair脂肪抑制和t2_me2d水激发序列在膝关节骨挫伤的临床应用价值。方法回顾性分析膝关节骨挫伤的临床资料和MRI图像,对骨挫伤序列检出能力进行分析,比较同一病灶在不同序列中标准信号强度。结果 pd-tse-spair脂肪抑制和t2-me2d水激发序列是检出膝关节骨挫伤的敏感序列,pd_tse_spair 脂肪抑制在骨挫伤、半月板损伤、韧带损伤的标准信号强度优于t2_me2d水激发序列,特别在骨挫伤的比较中,差异有统计学意义(P<0.05),可作为临床膝关节骨挫伤的首选检查序列。t2_me2d 水激发序列在软骨损伤的标准信号强度优于pd_tse_spair脂肪抑制序列,差异有统计学意义(P<0.05)。结论 MRI脂肪抑制与水激发序列检出膝关节骨挫伤及附属结构病灶非常敏感,能清楚显示损伤部位及病理改变。 关键词骨挫伤;磁共振成像;脂肪抑制;水激发 [中图分类号] R4 [文献标识码] A [文章编号] 1674-0742(2014)07(a)-0008-03 [作者简介] 王凡(1976-),男,安徽马鞍山人,大学本科,主治医师,研究方向:CT/MR诊断。 陈家祥(1963-),男,安徽马鞍山人,大学本科,主任医师,研究

方向:CT/MR诊断。 膝关节是人体结构最复杂,外伤中容易损伤并引起临床症状的部位。磁共振MRI是目前唯一能直接显示膝关节骨髓及附属结构的无创性检查手段,MRI自旋回波、梯度回波及质子加权技术的应用,对骨髓病理改变有极高的敏感度,能进行多序列、多参数、多角度的成像,对骨小梁损伤、隐形骨折及关节附属结构损伤能较清晰显示[1-2],能检出X线、CT均不能发现的膝关节骨挫伤损伤情况。随着MRI新的扫描序列和关节线圈不断开发,精准频率反转恢复脂肪抑制技术(spair)及多回波选择性2D采集水激发技术(me2d)目前得到临床广泛应用,但报道较少。为探讨pd_tse_spair脂肪抑制和t2_me2d 水激发序列在膝关节骨挫伤中的临床应用价值。现分析2021年10月—2021年10月间因外伤于该院行膝关节MRI检查诊断关节挫伤病例60例的临床资料,报道如下。 1 资料与方法 1.1 一般资料 收集因外伤于该院行膝关节MRI检查诊断膝关节挫伤病例60例,其中男性42例,女性28例,年龄21~58岁,平均年龄±标准差为(42±11.5)岁,均有明确外伤史,临床症状主要有关节肿胀、疼痛、部分伴有功能障碍。所有病例均行DR检查,行CT检查,无明显关节骨折、移位 1.2 MRI设备与检查方法 MRI扫描采用德国西门子Siemens Magnetom Avanto1.5T超导高场

第二节 MRI脂肪抑制技术

第二节MRI脂肪抑制技术 脂肪抑制是MRI检查中非常重要的技术,合理利用脂肪抑制技术不仅可以明显改善图像的质量,提高病变的检出率,还可为鉴别诊断提供重要信息。 一、MRI检查使用脂肪抑制技术的意义 脂肪组织不仅质子密度较高,且T1值很短(1.5T场强下约为200 250ms),T2值较长,因此在T1WI上呈现很高信号,在T2WI呈现较高信号,在目前普遍采用的FSE T2WI图像上,其信号强度将进一步增高(详见FSE序列)。 脂肪组织的这些特性在一方面可能为病变的检出提供了很好的天然对比,如在皮下组织内或骨髓腔中生长一个肿瘤,那么在T1WI上骨髓组织或皮下组织因为富含脂肪呈现很高信号,肿瘤由于T1值明显长于脂肪组织而呈现相对低信号,两者间形成很好的对比,因此病变的检出非常容易。 从另外一个角度看,脂肪组织的这些特性也可能会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影(详见MRI伪影一节)。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信号,两者之间因此缺乏对比,影响增强效果。 因此MRI中脂肪抑制的主要意义在于:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。如肾脏含成熟脂肪组织的肿瘤常常为血管平滑肌脂肪瘤,肝脏内具有脂肪变性的病变常为高分化肝细胞癌或肝细胞腺瘤等。 二、与脂肪抑制技术相关的脂肪组织特性 MRI脂肪抑制技术多种多样,但总的来说主要基于两种机制:(1)脂肪和水的化学位移;(2)脂肪与其他组织的纵向弛豫差别。 (一)化学位移现象 同一种磁性原子核,处于同一磁场环境中,如果不受其他因素干扰,其进动频率应该相

MR常用技术及相关概念总结

快速采集--- 并行采集技术 GE公司ASSET技术;飞利浦的SENSE技术:在成像脉冲扫描前先行参考扫描(reference scan),获得相控阵线圈敏感度信息,然后进行成像脉冲序列SENSE扫描(在调整扫描参数时,在Resolution 栏目中选择AENSE选项并设置SENSE因子),扫描结束后计算机将利用参考扫描得到的相控阵线圈敏感度信息自动进行去除卷褶的运算,重建出来的即为去除卷褶的图像。 临床应用:1、加快采集速度,缩短采集时间,多用于耐受性较差不能坚持坚持的病例;2、高分辨力扫描;3、年老体弱的屏气体部成像;4、心脏成像;5、用于单次激发EPI,减少磁敏感伪影并提高图像质量;6、用于单次激发的FSE序列,提高回波链的质量;7、用于 3.0T高场机,大大减少SAR值。 快速采集--- 部分回波技术 类似半K空间技术,需要采集每个回波的一半多一点(一般60%),这种技术称为部分回波(partial echo或fractional echo)技术或半回波(half echo)技术。 MRI 脂肪抑制技术 1、MRI检查使用脂肪抑制技术的意义:脂肪组织的特性会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪 影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI 上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上, 慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSET 2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间

脂肪抑制t2加权涡轮自旋回波序列

脂肪抑制T2加权涡轮自旋回波序列(T2W-TSE-FS)是核磁共振成像中常见的成像序列之一,通过对脂肪信号的抑制,使得成像更清晰、 更具对比度,对某些疾病的诊断具有重要的临床意义。下面,我们将 从不同的角度来探讨脂肪抑制T2加权涡轮自旋回波序列的作用和意义。 一、技术原理 1.1 T2加权成像原理 在T2加权成像中,脂肪信号和水信号具有不同的自旋回波强度。我们知道,脂肪信号具有较短的T2弛豫时间,而水信号具有较长的T2弛 豫时间。在T2加权成像中,脂肪信号将会呈现较暗的信号,而水信号将会呈现较亮的信号。 1.2 脂肪抑制原理 脂肪抑制的目的是通过使用特定的脂肪抑制脉冲,使得脂肪信号被抑制,从而在图像中减少脂肪信号的干扰,使得水信号更为突出。常见 的脂肪抑制脉冲包括短T1脂肪饱和脉冲和化学位移饱和脉冲等。 1.3 涡轮自旋回波序列 涡轮自旋回波序列(TSE)是一种快速序列,通过多个180°脉冲和回 波信号的结合,可以加快成像速度,减少扫描时间,同时提高信噪比 和分辨率。 综合以上原理,脂肪抑制T2加权涡轮自旋回波序列通过抑制脂肪信号,

加快成像速度,使得水信号更为突出,从而在临床应用中有着重要的意义。 二、临床应用 2.1 骨髓炎的诊断 脂肪抑制T2加权涡轮自旋回波序列在骨髓炎的诊断中具有重要作用。由于骨髓炎常伴有脂肪浸润,使用脂肪抑制T2加权序列可以更清晰地观察到水肿、骨髓增生、脓肿等病变,有助于早期诊断和治疗。 2.2 肿瘤的诊断 对于肿瘤的诊断,脂肪抑制T2加权涡轮自旋回波序列同样具有重要价值。肿瘤组织中的脂肪信号常常会干扰水信号的观察,使用脂肪抑制序列可以有效地抑制脂肪信号,使得肿瘤的边界更清晰,有助于评估肿瘤的范围和浸润情况。 2.3 骨折的诊断 在骨折的诊断中,脂肪抑制T2加权涡轮自旋回波序列同样有其独特的价值。由于骨骼中含有大量的脂肪信号,如果不进行脂肪抑制,将会对骨折线的观察造成较大的干扰,而使用脂肪抑制序列可以减少这种干扰,有助于更准确地诊断骨折情况。 三、个人观点 脂肪抑制T2加权涡轮自旋回波序列作为核磁共振成像中的常见序列之

1.5T磁共振全身弥散加权成像技术与全身T2加权成像的脂肪抑制技术联合应用的临床价值

1.5T磁共振全身弥散加权成像技术与全身T2加权成像的脂 肪抑制技术联合应用的临床价值 摘要:目的评价1.5T磁共振全身弥散加权成像技术(whole body diffusion weighted imaging,WB-DWI)与全身 T2加权成像的脂肪抑制技术(whole body T2-weighted imaging-shot TI inversion recovery,WB-T2-STIR)联合应用的临床价值。方法采用西门子Avanto 1.5T超导磁共振成像系统,收集患者56例均采用WB-DWI与WB-T2-STIR技术联合应用获得三维图像,对其临床资料和成像技术进行分析。结果WB-DWI与WB-T2-STIR在全身病变敏感性、检出率、定位及定量方面均优于WB-DWI、正电子发射断层成像(PET)。结论采用1.5T磁共振WB-DWI与WB-T2-STIR技术联合应用对全身各系统的恶性肿瘤具有很高的诊断价值,同时也是一种快速发现全身各系统良性病变的好方法。 关键词:磁共振成像;磁共振全身弥散;加权成像技术与全身;T2加权成像的脂肪抑制技术联合应用;应用价值磁共振全身T2加权成像的脂肪抑制技术(whole body T2-weighted imaging-shot TI inversion recovery,WB-T2-STIR)能够有效地协助全身性寻找病变。我院应用1.5T WB-DWI与WB-T2-STIR技术联合对患者进行检查,本文旨在进一步提高

MRI诊断符合率、诊断效率及临床指导作用。 1资料与方法 1.1一般资料2010年7月~2014年4月在本院应用1.5T WB-DWI与WB-T2-STIR技术联合应用的方法对83例患者进行了检查,对其中56例患者影像资料作回顾性分析,男性32例,女性24例;年龄12~83岁,平均56.3岁。这些患者均已病理结果或临床随访证实,恶性病变53例均在上级医院行PET检查,其中肺癌17例,前列腺癌9例,乳腺癌11例,淋巴瘤5例,鼻咽癌3例,肾癌2例,骨肉瘤3例,子宫颈癌3例;良性病变3例未行PET检查,其中多发性骨纤维结构不良2例,多发性肌炎1例。 1.2仪器、方法及扫描参数采用西门子Avanto 1.5T超导磁共振成像系统,composing成像软件、自动移床技术、头颅矩阵线圈、颈部矩阵线圈、两个大柔表面线圈、一个小柔表面线圈、脊柱矩阵线圈。进行冠状位采集,然后应用composing成像软件,拼接所有T2-STIR图像,自动生成冠状位全身T2-STIR图像,然后选取一张满意的冠状位全身T2-STIR 图像作为定位像行全身弥散扫描。WB-DWI扫描参数:TR:7000ms,TE:84ms,TI:180ms,激励次数(number of excitation,NEX):4次,FOV:50.0mmX50.0mm,层厚:4mm,层间距:0mm,b值分别为50s/mm2及800 s/mm2。进行轴位采集,全身共分6到7段扫描,一次采集50层。自动移床至待扫

【临床应用】磁共振全新多对比度成像解决方案

【临床应用】磁共振全新多对比度成像解决方案 磁共振成像两大信号来源一个是水,一个是脂类物质。脂类物质根据在人体内存在方式又可以区分为成熟脂肪和不成熟脂质。在磁共振临床应用过程中,成像序列有时要抑制脂类物质信号,这样可以提高病变与背景组织之间的对比度,从而更有利于发现病变;而另一方面又需要鉴别脂类物质的性质是成熟脂肪还是不成熟脂质?这是诊断和鉴别诊断的重要依据。 在脂肪抑制方面,尽管传统脂肪抑制技术已经很完善,但这些技术要么对磁场均匀度具有很高的要求,如化学饱和法脂肪抑制;要么存在信噪比低,如短时翻转脂肪抑制(STIR)技术。早在1984年Thomas Dixon教授便提出了Dixon两点法水脂分离技术,这一技术的提出结束了低场强磁共振脂肪抑制只能用SITR的这一局面。但Dixon技术存在很大的局限性,正如Dixon本人在他的文章所说:“The worst problem with this method comes from magnetic field inhomogeneities, which over a whole image, are many times as large as the chemical shift difference between water and fat.”(Simple Proton spectroscopic imaging, Radiology 1984;153:189-194)。事实上,如果能克服Dixon技术对磁场均匀度高度依赖的局限性,这种水脂分离成像技术势必会提供更多的诊断和鉴别诊断信息,甚至改变我们一些传统的诊断思维模式。 正是在这一理念推动之下,几大MR厂商纷纷推出了各自的多对比度成像技术。如GE公司的IDEAL技术、LAVA-Flex技术。其他厂商尽管也有类似的或者接近的成像技术,但受篇幅所限,本文暂不予以讨论。 多序列兼容的多对比度成像解决方案IDEAL IDEAL(Iterative Decomposition of Water and Fat With Echo

相关主题
相关文档
最新文档