MRI脂肪抑制技术方法

MRI脂肪抑制技术方法

很多,如磁共振波谱技术,频率选择脂肪饱和技术,短反转时间反转恢复技术(STIR),Dixon技术及化学位移成像(CSI)技术等,其中临床上应用较多的是STIR,频率选择脂肪饱和及CSI技术。磁共振化学位移成像(chemicashiftimaging,CSI)即同相位/反相位成像(IPI/OPI)技术对于检测病灶内少量的脂质更为敏感,1984年Dixon首先提出化学位移成像,它利用水(-OH)和脂肪(-CH2)氢质子有不同的共振频率,在一定条件下,脂肪和水以相同或相反相位发生共振,所获的相应图像为同相(in phase,IP)或反相(opposed phase,OP)像,IP像上脂肪和水信号相加;而在OP像上两者信号相互抵消。因此观测IP和OP像上组织信号有无下降可推测该组织是否含有脂质。

相位一致+相位反向=水质子像;相位一致-相位反向=脂肪质子像。

肝内含有脂肪成分的病灶并不多见,主要有脂肪瘤,血管肌脂瘤,肝细胞癌伴有脂肪变,腺瘤,假性结节脂肪浸润以及某些肝内转移性肿瘤。另外,肝结节内脂肪变性被认为是癌前病灶转化成肝癌的一个重要恶变标志,是肝癌演变中的一个偶然发生的过程,因而早期发现肝内结节的脂肪变性并与其它病变的鉴别在临床诊断和追踪评估中非常重要。

无肝脂肪变的病例中,同、反相位上肝与病灶相对信噪比无明显差异,显示肝内占位病变能力相似,然而,在肝脂肪变的病例中,肝脂肪变在反相位上呈低信号与其它低信号病灶如肝癌或血管瘤等易混淆导致误诊或漏诊,在同相位上肝脂肪变与正常肝实质呈等或稍高信号,常难以诊断而漏诊,此时两者缺一不可。因此,对肝脏T1加权扫描,应行常规同、反相位梯度回波T1加权扫描,此外,在肝脂肪变的病例中,反相位和脂肪抑制序列的T1WI上有时可见肝癌或血管瘤周边环状高信号带,而在同相位上肿块周边无此环状高信号带,可能是由肿块与浸润脂肪间存在残留的正常肝实质所致。

上腹部脏器中多数病变,如肝脏血管瘤,局灶性结节增生,肝细胞癌(多数),胆管细胞癌,肾上腺嗜铬细胞瘤,肾细胞癌,转移性肿瘤中通常不含有脂质成分;而有些局灶性病变中可含有脂质成分,这些病变主要由两种含脂形式,一种是病灶内含有不同量的成熟脂肪组织,脂肪组织主要由脂肪细胞构成,这类病变主要有肝脏脂肪瘤、肝脏血管平滑肌脂肪瘤、肾上腺髓样脂肪瘤及肾脏血管

平滑肌脂肪瘤,另一种是病变组织发生脂肪变性,脂滴可出现于细胞内或细胞外间隙,这类病变主要有局灶性脂肪肝、肝细胞腺瘤(部分)、肝细胞癌(部分)、肾上腺腺瘤等。因此,上腹部脏器局灶病变中是否含有脂质,脂质存在形式的准确监测,对于病变的定性诊断具有非常重要的意义;如果病灶内含有体积较大的成熟脂肪组织成分,那么脂肪成分的检出非常容易;而当病灶内仅含有体积很小的成熟脂肪组织或病灶内仅有脂肪变性,则脂质成分的检出对MR技术有着更高的要求

常规脂肪抑制技术有三种:

反转回复序列(STIR),频率选择预饱和法,正相位、反相位技术。这三种脂肪抑制各有优缺点,STIR的优点是对主磁场均匀度及场强要求不是很高;缺点是扫描时间长,信号抑制的选择性较低,对某些与值接近于脂肪组织的组织(如亚急性血肿)也可能被抑制为低信号。频率选择预饱和法优点是:

特异性强,主要抑制脂肪组织信号,对其他组织的信号影响较小;可用多种序列,自旋回波及梯度回波T1及T2均可用,缺点是对主磁场均匀性及场强要求高,视野周边区域脂肪抑制效果差。水和脂肪中氢质子的相位随改变而成同方向或反方向。这样在同相位上两者矢量相加,信号强度增高;反相位上两者矢量相减,信号强度减低。由此可见反相位序列显示有脂肪的组织信号强度减低是通过水和脂肪中氢质子的去相位作用形成,故在理论上其显示混有脂肪和水的组织信号强度减低较脂肪饱和成像技术更明显,因此在肝脏脂肪变性时水中的氢质子与脂肪中的氢质子混合在一起,反转回复序列和频率选择预饱和法脂肪抑制技术效果不佳,而正相位、反相位技术能达到很好的脂肪抑制效果,尤其在反相位图像上可很容易区分正常肝组织和脂肪变的区域,大大提高了核磁共振对脂肪组织的检出率,弥补了超声与检查对局限型脂肪肝或肝脏弥漫性脂肪变中残留局灶性正常肝组织的诊断难点。

磁共振序列及技术

自旋回波序列类 1.SE (常规自旋回波序列)(Spin Echo)(西门子也称SE) 根据TR的TE的不同组合,可得到T1加权像(T1WI ),质子加权像(PDWI),T2加权像(T2WI)。T1WI 现正在广泛使用于日常工作中,而PDWI和T2WI因扫描时间太长几乎完全被快速SE取代。 2.FSE (快速自旋回波序列)(Fast Spin Echo)(欧洲厂家西门子和飞利浦以“turbo”来表 示快速,故称之为TSE(Turbo Spin Echo)) 该序列的优点是(1)速度快,图像对比不降低,所以现在尤其在T2加权成像方面几乎已经完全取代了常规SE序列而成为临床标准序列。(2)与常规SE序列一样,对磁场的不均匀性不敏感; 该序列的缺点有(1)如采集次数不变,S/N有所降低,一般多次采集;(2)T2加权像上脂肪信号比常规SE像更亮,显得有些发白,易对图像产生干扰,解决的方法主要是用化学法或STIR序列进行脂肪抑制;(3)当ETL>8以后,图像高频部分缺失,导致一种滤波效应产生模糊,常在相位编码方向上出现图像的细节丢失;(4)RF射频能量的蓄积;(5)磁化转移效应等。 3.SS-FSE (单次发射快速SE)(Single shot FSE RARE)(西门子称SS-TSE) 4.HASTE (半傅里叶单发射快速SE序列)(half-fourier acquisition single-shot turbo spin-echo)(西门子也称HASTE) 该序列的有效回波时间可较短,例如80ms,提高了信噪比和组织对比。 HASTE序列应用越来越广泛,除用于不能配合检查的患者外,还因速度快,在腹部成像中应用较多。如用于不能均匀呼吸又不能屏气的病例,,磁共振胰胆管成像(MRCP)、磁共振尿路成像(MRU)、肝脏扫描中增加囊性病变与实性病变的对比、显示肠壁增厚和梗阻性肿块、肿块表面和肠壁受侵犯情况、MR结肠造影等。 5.FRFSE (fast recovery) (快速恢复快速自旋回波序列)(西门子为TSE-Restore)(1)在实际工作中,经常会遇到T2WI扫描时TR不能降低,但扫描层次却较少的场合,比如脊柱,颈椎矢状位等,此时梯度的工作周期远未接近100%,此时采用FRFSE序列,减少TR,可提高工作效率,或改善图像质量(增加采集次数)。 (2)在实际工作中,例如1.5T MR头颅扫描时TR常选2500ms,但选择FRFSE后,TR可短至1300ms,图像质量并无明显降低。 使用方法:西门子公司机器的TSE有两种,一种是普通TSE;另一种是TSE-Restore。在参数调整界面的“contrast”卡中勾选“Restore Magn.”项,如不勾选,即为普通TSE 6.IR (inversion recovery)(反转恢复序列)(西门子也称IR) 7.FIR ( fast inversion) (快速反转恢复序列)(西门子称作TIR/IR-TSE) 反转恢复序列引入RARE技术,提高了扫描速度。 但这里有一问题应引起注意。在FIR(或TIR)成像过程中,水平X轴上方有“magnitude detection”与X轴下方“phase sensitive detection”呈对应关系。如检到X轴下方组织信号,但在图像上以其幅度绝对值来表示,可以想像,图像中只有相当于X轴水平的信号值是最低的,图像中无物体的空白背景处应该呈低信号黑色。这时西门子公司将此序列称之为TIRM (turbo inversion recovery (modulus) magnitude);而如同样的信号不以幅度绝对值来表达,而是以实际的值来显示,此时图像背景仍然相当于X轴水平的信号值,但却是灰色(即中等信号),成像组织中的信号有可能低于背景的信号,此时称之为TIR Real。

磁共振脂肪抑制序列意义

磁共振脂肪抑制序列意义 磁共振成像(MRI)是一种非侵入性的医学影像技术,广泛应用于临床诊断和研究领域。脂肪抑制序列是MRI中常用的一种技术,旨在通过抑制脂肪信号,提高对其他组织结构的可视化程度。本文将详细介绍磁共振脂肪抑制序列的意义及其临床应用。 一、磁共振脂肪抑制序列的原理 磁共振脂肪抑制序列的原理基于脂肪和水信号在磁场中的不同特性。脂肪具有高信号强度,而其他组织如肌肉、骨骼和血液等信号较低。通过特殊的脉冲序列和参数设置,可以有效抑制脂肪信号,使其他组织结构更加清晰可见。 二、磁共振脂肪抑制序列的临床应用 1. 肿瘤检测与评估 磁共振脂肪抑制序列在肿瘤检测与评估中具有重要意义。脂肪抑制可以提高肿瘤周围组织的可视化程度,有助于确定肿瘤的大小、边界和浸润范围。此外,脂肪抑制还可以帮助区分良性肿瘤和恶性肿瘤,提供更准确的诊断信息,对于治疗方案的选择和预后评估具有重要指导意义。 2. 骨关节疾病诊断

磁共振脂肪抑制序列在骨关节疾病的诊断中也有广泛应用。例如,在关节炎、关节滑膜炎和骨折等疾病中,脂肪抑制可以清晰显示关节腔、滑膜和软骨病变情况,有助于评估病变的严重程度和范围,指导临床治疗和手术决策。 3. 炎症和感染性疾病诊断 磁共振脂肪抑制序列对于炎症和感染性疾病的诊断也具有重要意义。炎症和感染性病变常伴随有水肿、渗出和血管扩张等特征,这些信号可以通过脂肪抑制来突出显示。因此,磁共振脂肪抑制序列可以帮助医生确定病变的位置、范围和严重程度,指导治疗方案的制定和效果评估。 4. 血管疾病诊断 磁共振脂肪抑制序列在血管疾病的诊断中也有重要作用。脂肪抑制可以消除脂肪信号的干扰,使血管结构更加清晰可见。例如,在肾动脉狭窄和颈动脉狭窄等血管疾病中,磁共振脂肪抑制序列可以帮助医生评估病变的程度和位置,指导治疗和手术决策。 三、磁共振脂肪抑制序列的优势与局限 磁共振脂肪抑制序列具有许多优势,如高分辨率、多平面成像、无辐射等。然而,也存在一些局限性,如对扰动敏感、扫描时间较长等。因此,在临床应用中需要根据具体情况综合考虑,选择合适的

脂肪抑制

MRI脂肪抑制技术的原理与临床应用 在磁共振成像(以下简称MRI)中,由于人体内脂肪组织中的氢质子和其它组织中的氢质子所处的分子环境不同,使得它们的共振频率不相同;当脂肪和其它组织的氢质子同时受到射频脉冲激励后,它们的弛豫时间也不一样。在不同的回波时间采集信号,脂肪组织和非脂肪组织表现出不同的信号强度。利用人体内不同组织的上述特性,磁共振物理学家们开发出了多种用于抑制脂肪信号的脉冲序列。下面对四种脂肪抑制序列的基本原理、特点及临床应用价值作一个简单的介绍。 一脂肪饱和序列 1. 基本原理 脂肪饱和(Fat Saturation,FATSAT)方法是一种射频频率选择性脂肪抑制技术。它的基本原理是利用脂肪和水共振频率的微小差异,通过调节激励脉冲的频率和带宽,有选择地使脂肪处于饱和状态,脂肪质子不产生信号,从而得到只含水质子信号的影像。在FATSAT序列开始时,先对所选择的层面用共振频率与脂肪相同的90°射频脉冲(饱和脉冲)进行激励,使脂肪的宏观磁化矢量翻转至横向(XOY)平面,在激励脉冲之后,立即施加一个扰相(相位破坏)梯度脉冲,破坏脂肪信号的相位一致性,紧接着施加成像脉冲。由于回波信号采集与饱和脉冲之间时间很短 (<100ms),使脂肪质子无足够时间恢复纵向磁化矢量,没有信号产生,从而达到脂肪抑制的目的。 2. 脂肪饱和序列的特点及临床应用 FATSAT技术是在常规成像脉冲序列之前,先用一频率和脂类质子共振频率相同的饱和脉冲对所选择的层面进行激励,因此,该技术可用在所有的MR成像脉冲序列中。FATSAT序列的突出优点是只抑制脂肪信号,而其它组织信号不受影响,因此一般认为该序列对脂肪抑制具有特异性,可靠性较高,特别是在较高场强的磁共振成像系统中,只要饱和脉冲的频率和频带宽度选择合适,即可使脂肪组织的信号强度减低或消除,而非脂肪组织信号几乎不受任何影响。脂肪饱和序列最适合显示解剖细节,如有脂肪的软组织病变的显示、骨与关节成像、眼眶内病变的显示等。在对比增强扫描中,可用于对脂肪信号与增强病变之间的鉴别,特别是在含有大量脂肪组织的区域。脂肪饱和序列通常也可用于抑制或消除化学位移引起的伪影。 3. 影响脂肪抑制效果的因素 当静磁场强度不均匀时,脂肪和水的进动频率会受局部磁场的影响出现偏差,在这些区域,饱和脉冲的频率可能不等于脂肪共振频率,由此将导致成像区域的脂肪得不到均匀一致的抑制,某些局部的脂肪信号仍然存在,影响对病变组织的诊断与鉴别诊断。目前认为,磁场非均匀性可通过缩小观察野,将兴趣区置于磁场中心和对主磁场进行匀场得到消除。磁场非均匀性多由于局部磁化率不同而引起,如鼻窦骨与空气交界处、右前横膈膜区域,空气与脂肪及肝脏交界处,在兴趣区周围如果存在金属异物或空气积聚也可造成磁场非均匀性,另外磁场非均匀性还可发生在那些解剖结构形态出现明显变化的区域。 另外,射频脉冲频率和带宽选择不当会影响脂肪抑制效果。除此之外,

【科研进展】IDEAL IQ精准水脂分离和定量化技术介绍

【科研进展】IDEAL IQ精准水脂分离和定量化技术介绍 脂肪组织不仅质子密度较高,且T1值很短,T2值较长,因此在T1WI和T2WI上呈现高信号。脂肪组织的这些特性会降低MR图像的质量,从而影响病变的检出,包括脂肪组织引起的运动伪影,水脂肪界面上的化学位移伪影,脂肪组织所造成的图像对比度降低,以及影响增强扫描的效果。因此MRI中脂肪抑制的主要目的在于减少运动伪影、化学位移伪影或其他相关伪影。通过抑制脂肪组织信号,增加图像的组织对比度,改善增强扫描的效果以及鉴别病灶内是否含有脂肪,为鉴别诊断提供信息。MRI脂肪抑制技术主要基于脂肪和水的化学位移以及脂肪与其他组织的纵向弛豫差别。关于化学位移现象,同一种磁性原子核,处于同一磁场环境中,如果不受其他因素干扰,其进动频率应该相同。但是我们知道,一般的物质通常是以分子形式存在的,分子中的其他原子核或电子将对某一磁性原子核产生影响。那么同一磁性原子核如果在不同分子中,即便处于同一均匀的主磁场中,其进动频率将出现差别。在磁共振学中,我们把这种现象称为化学位移现象。化学位移的程度与主磁场的强度成正比,场强越高,化学位移越明显。常规MRI时,成像的对象是质子,处于不同分子中的质子的进动频率也将出现差异,也即存在化学位移。在人体组织中,最典型的质子化学位移现象存在

于是水分子与脂肪之间。这两种分子中的质子进动频率相差约3.5ppm,在3T场强下相差440Hz,1.5 T的场强下相差约220Hz。脂肪和水中质子的进动频率差别为脂肪抑制技术提供了一个切入点。另外,在人体正常组织中,脂肪的纵向弛豫速度最快,T1值最短。脂肪组织与其他组织的T1值差别也为脂肪抑制技术提供了一个新的角度。一、传统脂肪抑制技术 针对上述脂肪组织的特性,MRI可采用多种技术进行脂肪抑制。不同场强的MRI仪宜采用不同的技术,同一场强的扫描机也可因检查的部位、目的或扫描序列的不同而采用不同的脂肪抑制技术。1频率选择饱和法频率选择饱和法是最常用的脂肪抑制技术之一,该技术利用的就是脂肪与水的化学位移效应。由于化学位移,脂肪和水分子中质子的进动频率将存在差别。如果在成像序列的激发脉冲施加前,先连续施加数个预脉冲,这些预脉冲的频率与脂肪中质子进动频率一致,这样脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加真正的激发射频脉冲,脂肪组织因为饱和不能再接受能量,因而不产生信号,而水分子中的质子可被激发产生信号,从而达到脂肪抑制的目的。频率选择脂肪抑制技术对磁场的均匀度要求很高。由于该技术利用的是脂肪中质子的进动频率与水分子中质子的进动频率的微小差别,如果磁场不均匀,则将直

【MRI小问】脂肪抑制成像的作用及各种序列介绍

【MRI小问】脂肪抑制成像的作用及各种序列介绍 往期相关内容链接: 【如何简单理解、认识MRI图像】 【MRI小问】磁共振检查前须知 【MRI小问】MR对比剂的应用须知 【MRI小问】如何分辨T1WI与T2WI? 一、为什么要进行脂肪抑制成像 脂肪抑制(fat suppression, FS)是指通过应用特殊技术,使MR 图像中的脂肪组织表现为低信号。 FS即可在T1WI(如Gd对比剂增强扫描),也可在T2WI(如区别水与脂肪的高信号)实现。 压脂后背景信号明显变暗,黑白反差增大,高信号病变更易于显示。 不仅有利于显示病变,还能为疾病鉴别诊断提供依据,可提高诊断准确性。 在FS T2WI,如病变组织含水较多,高信号将更明显,易于识别; 在FS T1WI增强扫描时,由于没有脂肪信号的干扰,将更容易观察和评价病变的强化程度,这对显示肌骨系统和眼眶病变尤为重要。 能够抑制脂肪信号的MRI技术有: ①反相位成像(Dixon技术,体素内水脂相位大小相减);

②频率选择性脂肪抑制,常用的技术有CHEMSAT(通用电气)、FATSAT(西门子)、SPIR和SPAIR(飞利浦),前二者常被称为化学饱和法(CHESS); ③T1恢复时间依赖脂肪抑制,又称短时反转恢复(STIR); ④其他,包括选择性水激励成像(3D-FATS,Proset,Quick Fatsat)、层面选择梯度反转技术以及一些将脉冲序列混合应用的成像技术。 二、反相位成像脂肪抑制是如何实现的? 相位指氢质子围绕外磁场进动时,每一个磁矩在进动轨迹上的位置。 同相位指组织中所有进动质子的磁矩在某一时刻处于处于同一位置,失相位指组织中质子的磁矩不能保持在同一位置而逐渐离散的过程,反相位指两种组织的磁矩在某一时刻处于180°相反方向的状态。 在静磁场中脂肪和水质子的共振频率存在轻微差异,他们之间的化学位移是3.5ppm。 利用脂肪和水质子的相位处于180°相反方向或相同方向时分别采集MR信号,就可以产生反相位或同相位图像。 反相位图像可以在一定程度上抑制或减弱脂肪组织的信号(实质是单个体素内组织的较大水质子信号减去较小脂肪质子信号,即水和脂肪质子的净磁矩在180°相反方向部分抵消,由二者的净磁矩之差形

MRI脂肪抑制技术

MRI脂肪抑制技术 意义:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。 方法 (一)频率选择饱和法:最常用的脂肪抑制技术之一。 由于化学位移,脂肪和水分子中质子的进动频率存在差别,在成像序列的RF施加前,先连续施加数个预脉冲,如果预脉冲的频率与脂肪中质子进动频率一致,脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加RF,脂肪组织因为饱和不能再接受能量,因而不产生信号,从而达到脂肪抑制的目的。 特点:(1)高选择性。主要抑制脂肪组织信号,对其他组织的信号影响较小。(2)可用于多种序列。(3)场强依赖性较大,在中高场强下使用可取得好的脂肪抑制效果。(4)对磁场的均匀度要求很高。(5)进行大FOV扫描时,因梯度场存在,视野周边区域脂肪抑制效果较差。(6)增加了人体吸收射频的能量。(7)预脉冲将占据TR间期的一个时段,因此会延长扫描时间,并有可能影响图像的对比度。(8)运动区域脂肪抑制效果差。 (二)STIR技术:常用的脂肪抑制技术之一。 STIR技术是基于脂肪组织短T1特性的脂肪抑制技术。由于人体组织中脂肪的T1值短,180°脉冲后其纵向磁化矢量从反向最大到过零点所需的时间也很短,此刻如果选择短TI则可有效抑制脂肪组织的信号。抑制脂肪组织信号的TI等于脂肪组织T1值的69%,不同的场强下脂肪组织的T1值不同,因此抑制脂肪组织的TI值也应作相应调整。在1.5T的MR仪,脂肪组织的T1值约为200~250ms,则TI=140~175ms时可有效抑制脂肪组织的信号。在1.0T仪上TI应为125~140ms;在0.5T仪上TI应为85~120ms,在0.35T仪上TI应为75~100ms。 特点:(1)场强依赖性低。低场MRI仪也能取得较好的脂肪抑制效果。(2)与频率选择饱和法相比,磁场的均匀度要求较低。(3)大FOV扫描能取得较好的脂肪抑制效果。(4)信号抑制的选择性较低。如果某种组织的T1值接近于脂肪,其信号将被抑制,故一般不能应用增强扫描。(5)由于TR延长,扫描时间较长。 (三)频率选择反转脉冲脂肪抑制技术:一种新的脂肪抑制技术。 在真正RF激发前,先对被检区进行预脉冲激发,这种预脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,仅有脂肪组织被激发,且这一脉冲略大于90°,脂肪组织会出现一个较小的反方向纵向磁化矢量,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向磁化矢量将发生从反向到零,然后逐渐恢复到正向直至平衡状态。预脉冲仅略大于90°,因此从反向到零需要的时间很短,选择很短的TI (10~20ms),仅需要一次预脉冲激发就能对三维扫描容积内的脂肪组织进行很好的抑制,因此采集时间也仅略有延长。该抑制技术一般用于三维快速GRE序列。 特点:(1)仅少量增加扫描时间。(2)一次预脉冲激发即完成三维容积内的脂肪抑制。(3)几

磁共振脂肪抑制技术及其临床应用的价值

磁共振脂肪抑制技术及其临床应用的价值 郑玲;刁强;李林;张军 【摘要】目的:探讨磁共振脂肪抑制技术(化学位移选择法和短T1反转恢复序列)及其临床应用价值.方法:收集2008-03-2008-07行磁共振检查中实施脂肪抑制技术73例,检查主要包括头颅、颅底、鼻咽部、颈部、骨关节以及腹部盆腔等部位,对比研究图像的质量得出压脂技术的应用对临床诊断的价值.结果:头颅病变7例;眼部疾病6例;颅底病变10例:其中鼻咽癌8例、口咽部病变2例;颈部病变16例:其中神经源性肿瘤6例、淋巴瘤3例、转移瘤5例、脂肪瘤2例;椎体及骨关节病变中,骨挫伤8例、转移瘤3例、血管瘤3例、脂肪瘤堆积1例;腹部盆腔病变11例,肝脏病变4例,胰腺痛变4例、盆腔病变8例;合理地应用脂肪抑制技术能够使病灶的边缘勾画得更加清楚,清楚地鉴别出含脂肪组织的病变,增强扫描对病变施加脂肪抑制使病灶更加突出,提供较常规MRI检查更多的信息.结论:采用脂肪押制技术可以明显地改善图像质量,提高病变的诊断率,是磁共振检查的一项重要技术. 【期刊名称】《医疗卫生装备》 【年(卷),期】2010(031)001 【总页数】3页(P80-81,83) 【关键词】磁共振;化学位移选择法;短T;反转恢复序列;脂肪抑制 【作者】郑玲;刁强;李林;张军 【作者单位】210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科;210002,南京,南京军区南京总医院医学影像科

【正文语种】中文 【中图分类】R445 1 引言 磁共振成像中,由于脂肪组织具有短T1和中等T2弛豫时间的物理特性,在T1和T2加权图像中脂肪组织呈现高信号和中高信号,这种信号会掩盖邻近正常及病变 组织的信号显示,主要表现为它会给在T1加权图像中识别脂质组织中的小病灶,或在T2加权图像的高信号组织中鉴别液体带来很大困难[1-2],因此采用脂肪抑 制技术消除这些高信号的干扰会对诊断起到很大作用。目前应用比较广泛的技术主要有2种:频率选择饱和法与短T1反转恢复序列(short T1 inversion recover,STIR),本文就这2种技术进行讨论。 2 资料和方法 2.1 研究对象 2007-06—2008-07行磁共振检查中实施脂肪抑制 73例。其中检查的部位包 括头颅、眼部、颅底、颈部、椎体及骨关节、腹部盆腔等部位,根据检查部位及临床诊断的需要选择合理的脂肪抑制技术。 2.2 方法 应用GE公司1.5T(signa cv/i)单梯度超导磁共振成像仪。新型GE设备中有4 种不同的脂肪抑制技术可供选择,不同的序列可以选用不同的脂肪抑制技术,本文应用的脂肪抑制技术主要为:(1)Fat。在序列的定位界面就可以选择,即频率 选择饱和法脂肪抑制技术,它不是采用连续的4个90脉冲进行饱和,而是采用略大于90脉冲[3]。(2)短T1反转恢复序列(STIR)。需选用IR-FSE序列,然 后根据不同的场强设置合适的TI,以达到良好的脂肪抑制的效果。

MR常用技术及相关概念

快速采集---并行采集技术 GE公司ASSET技术;飞利浦的SENSE技术:在成像脉冲扫描前先行参考扫描〔reference scan〕,获得相控阵线圈敏感度信息,然后进行成像脉冲序列SENSE扫描〔在调整扫描参数时,在Resolution 栏目中选择AENSE选项并设置SENSE因子〕,扫描结束后电脑将利用参考扫描得到的相控阵线圈敏感度信息自动进行去除卷褶的运算,重建出来的即为去除卷褶的图像。 临床应用:1、加快采集速度,缩短采集时间,多用于耐受性较差不能坚持坚持的病例;2、高分辨力扫描;3、年老体弱的屏气体部成像;4、心脏成像;5、用于单次激发EPI,减少磁敏感伪影并提高图像质量;6、用于单次激发的FSE序列,提高回波链的质量;7、用于3.0T高场机,大大减少SAR值。 快速采集---局部回波技术 类似半K空间技术,需要采集每个回波的一半多一点〔一般60%〕,这种技术称为局部回波〔partial echo或fractional echo〕技术或半回波〔half echo)技术。 MRI脂肪抑制技术 1、MRI检查使用脂肪抑制技术的意义: 脂肪组织的特性会降低MR图像的质量,从而影响病变的检出。具体表现在:〔1〕脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,那么图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,外表线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。〔2〕水脂肪界面上的化学位移伪影。〔3〕脂肪组织的存在降低了图像的比照。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏比照,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的根底上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的比照,影响小病灶的检出。〔4〕脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射比照剂后被增强的组织或病变也呈现高信号,两者之间比照降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信号,两者之间因此缺乏比照,影响增强效果。

【放射技师考试】第十五章第二节MR特殊检查技术

第十五章第二节MR特殊检查技术 一、脂肪抑制成像技术 在MR成像中,为了更好地显示感兴趣区,经常采用一些特殊的方法使某一局部组织的信号减小或消失,最常使用的方法就是饱和技术。饱和技术包括空间饱和技术、化学位移频率选择饱和技术、化学位移水-脂反相位饱和成像技术。除了饱和技术,还有水激励技术。 1.化学位移频率选择饱和技术:同一元素的原子由于化学结构的差异,在相同强度的磁场中其拉莫频率不同,这种频率的差异称为化学位移。如水分子中的氢原子与脂肪分子中的氢原子其化学位移为3.5ppm,在不同场强的磁场中其频率相差不同。 化学位移脂肪饱和抑制技术就是利用这种频率的差异,在信号激发前,预先发射具有高度频率选择性的预饱和脉冲,使脂肪频率的信号被饱和,只留下其他感兴趣组织的纵向磁化,这是脂肪抑制技术的主要手段。通过这种方法,可以获得纯水激发图像。 2.化学位移水脂反相位饱和成像技术:由于化学位移效应,水质子较脂肪质子的进动频率稍快,因此,每过若干时间水质子与脂肪质子进动相位就会出现在相反的方向上,这种状态称为水-脂反相位。再过一定时间,如每过水比脂肪快整周所需的时间,水和脂的进动相位又一致,此为水-脂同相位。同相位时水和脂的信号相加,反相位时水和脂的信号相减、抵消,使信号幅度低者(脂肪)消失或降低,因此含有水和脂的部位信号下降明显。这种技术常被用于诊断肝脏的脂肪浸润。 场强不同,水与脂的频率差则不同,获取同相位和反相位图像的回波时间TE则不同。 在1.0T场强中:水脂的频差∆f=3.5ppm×42.5MHz=148Hz;水较脂快一周时所用时间t=1000ms/148=6.8ms;同相位时TE=3.4×2n;反相位时TE=3.4×(2n-1)。

MRI脂肪抑制技术方法

MRI脂肪抑制技术方法 很多,如磁共振波谱技术,频率选择脂肪饱和技术,短反转时间反转恢复技术(STIR),Dixon技术及化学位移成像(CSI)技术等,其中临床上应用较多的是STIR,频率选择脂肪饱和及CSI技术。磁共振化学位移成像(chemicashiftimaging,CSI)即同相位/反相位成像(IPI/OPI)技术对于检测病灶内少量的脂质更为敏感,1984年Dixon首先提出化学位移成像,它利用水(-OH)和脂肪(-CH2)氢质子有不同的共振频率,在一定条件下,脂肪和水以相同或相反相位发生共振,所获的相应图像为同相(in phase,IP)或反相(opposed phase,OP)像,IP像上脂肪和水信号相加;而在OP像上两者信号相互抵消。因此观测IP和OP像上组织信号有无下降可推测该组织是否含有脂质。 相位一致+相位反向=水质子像;相位一致-相位反向=脂肪质子像。 肝内含有脂肪成分的病灶并不多见,主要有脂肪瘤,血管肌脂瘤,肝细胞癌伴有脂肪变,腺瘤,假性结节脂肪浸润以及某些肝内转移性肿瘤。另外,肝结节内脂肪变性被认为是癌前病灶转化成肝癌的一个重要恶变标志,是肝癌演变中的一个偶然发生的过程,因而早期发现肝内结节的脂肪变性并与其它病变的鉴别在临床诊断和追踪评估中非常重要。 无肝脂肪变的病例中,同、反相位上肝与病灶相对信噪比无明显差异,显示肝内占位病变能力相似,然而,在肝脂肪变的病例中,肝脂肪变在反相位上呈低信号与其它低信号病灶如肝癌或血管瘤等易混淆导致误诊或漏诊,在同相位上肝脂肪变与正常肝实质呈等或稍高信号,常难以诊断而漏诊,此时两者缺一不可。因此,对肝脏T1加权扫描,应行常规同、反相位梯度回波T1加权扫描,此外,在肝脂肪变的病例中,反相位和脂肪抑制序列的T1WI上有时可见肝癌或血管瘤周边环状高信号带,而在同相位上肿块周边无此环状高信号带,可能是由肿块与浸润脂肪间存在残留的正常肝实质所致。 上腹部脏器中多数病变,如肝脏血管瘤,局灶性结节增生,肝细胞癌(多数),胆管细胞癌,肾上腺嗜铬细胞瘤,肾细胞癌,转移性肿瘤中通常不含有脂质成分;而有些局灶性病变中可含有脂质成分,这些病变主要由两种含脂形式,一种是病灶内含有不同量的成熟脂肪组织,脂肪组织主要由脂肪细胞构成,这类病变主要有肝脏脂肪瘤、肝脏血管平滑肌脂肪瘤、肾上腺髓样脂肪瘤及肾脏血管

第二节 MRI脂肪抑制技术

第二节MRI脂肪抑制技术 脂肪抑制是MRI检查中非常重要的技术,合理利用脂肪抑制技术不仅可以明显改善图像的质量,提高病变的检出率,还可为鉴别诊断提供重要信息。 一、MRI检查使用脂肪抑制技术的意义 脂肪组织不仅质子密度较高,且T1值很短(1.5T场强下约为200 250ms),T2值较长,因此在T1WI上呈现很高信号,在T2WI呈现较高信号,在目前普遍采用的FSE T2WI图像上,其信号强度将进一步增高(详见FSE序列)。 脂肪组织的这些特性在一方面可能为病变的检出提供了很好的天然对比,如在皮下组织内或骨髓腔中生长一个肿瘤,那么在T1WI上骨髓组织或皮下组织因为富含脂肪呈现很高信号,肿瘤由于T1值明显长于脂肪组织而呈现相对低信号,两者间形成很好的对比,因此病变的检出非常容易。 从另外一个角度看,脂肪组织的这些特性也可能会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影(详见MRI伪影一节)。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信号,两者之间因此缺乏对比,影响增强效果。 因此MRI中脂肪抑制的主要意义在于:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。如肾脏含成熟脂肪组织的肿瘤常常为血管平滑肌脂肪瘤,肝脏内具有脂肪变性的病变常为高分化肝细胞癌或肝细胞腺瘤等。 二、与脂肪抑制技术相关的脂肪组织特性 MRI脂肪抑制技术多种多样,但总的来说主要基于两种机制:(1)脂肪和水的化学位移;(2)脂肪与其他组织的纵向弛豫差别。 (一)化学位移现象 同一种磁性原子核,处于同一磁场环境中,如果不受其他因素干扰,其进动频率应该相

MRI脂肪抑制与水激发技术在膝关节骨挫伤中的临床应用

MRI脂肪抑制与水激发技术在膝关节骨挫伤中的临床应用 背景 膝关节骨挫伤是一种常见的膝关节损伤,可导致疼痛、肿胀和功能障碍,严重 影响患者的生活质量。临床上,MRI(磁共振成像)已成为诊断膝关节疾病的主要 方法之一。MRI脂肪抑制技术和水激发技术是MRI成像中的两个重要技术,能够 提高MRI成像的分辨率和对病变的识别能力,因此被广泛应用于膝关节骨挫伤的 诊断中。 MRI脂肪抑制技术 MRI脂肪抑制技术是利用特殊的脉冲序列抑制成像区域内脂肪的信号,在短时 间内提高MRI成像的分辨率和对病变的识别能力。该技术可通过两种方法实现: 化学抑制和选择性抑制。 化学抑制 化学抑制是利用一些化学剂如光敏剂等,在成像区域内破坏脂肪分子,从而抑 制脂肪的信号。这种技术有很高的抑制效果,但是会引起组织的光敏性损伤,因此目前已经逐步被淘汰。 选择性抑制 选择性抑制是利用脉冲序列对不同的信号进行选择性抑制,从而实现对脂肪信 号的抑制。该技术不仅可以抑制脂肪信号,还可以保留其他信号如水、浆液等非脂肪信号,因此在MRI诊断中广泛应用。 水激发技术 水激发技术是利用特殊的脉冲序列强制水分子与磁场方向垂直,从而提高MRI 成像对水信号的敏感度。该技术可用于多种MRI成像模式,如T1加权成像和T2 加权成像等,可提高成像的分辨率和对病变的识别能力。 临床应用 MRI脂肪抑制和水激发技术在膝关节骨挫伤的临床应用中具有重要意义。以下 是应用效果的介绍。 MRI脂肪抑制在膝关节骨挫伤中的应用 MRI脂肪抑制技术可提高对膝关节软骨和骨髓病变的分辨率和对病变的敏感度。骨挫伤通常伴随有软骨磨损和水肿,而软骨和水肿均含有大量的脂肪,因此MRI

脂肪抑制技术Dixon法

脂肪抑制技术Dixon法 Dixon法,该技术方法是由Dixon提出,其基础原理和Opposed-phase法相同,是利用自旋回波序列,在不一样回波时间,分别采集水和脂肪质子In Phase 和Opposed-phase两种回波信号,两种不一样相位信号相加,去除脂肪信号,产生一幅纯水质子影像,从而达成脂肪抑制目标。Dixon法缺点是需要采集两组数据,成像时间长,而且受磁场非均匀性影响较大,所以,现在该方法在临床应用极少。多年来对Dixon法进行了改善,即所谓三点Dixon法(Three-point Dixon),该方法是在脂肪和水共振频率相位移分别为0o、180o、-180o三个点采集回波信号,因为增加了一个信号采集点用于修正磁场均匀性偏差引发信号误差,很好地克服了磁场非均匀性对脂肪抑制效果影响。据Bredella等报道,经改良后三点Dixon法在低场强开放式磁共振系统中应用,脂肪抑制效果满意,诊疗关节软骨损伤敏感性和特异性均较高,是一个十分有用检验技术。 脂肪抑制技术是磁共振成像中常见技术方法之一,关键用于对一些病变组织判别,如肾上腺瘤、骨髓渗透、脂肪瘤、脂肪浸润及皮脂腺瘤等,改善增强后组织间对比度、消除脂肪信号对病灶掩蔽(如眶内病变),或用脂肪抑制技术测量组织内脂肪含量,降低化学位移伪影等。理想脂肪抑制技术应能依据脂肪含量及信号强度,判别该信号所代表特定组织。脂肪饱和序列关键用于抑制有大量脂肪存在部位和对比增强扫描中,它关键缺点是对磁场非均匀性较敏感,不适适用于低场强磁共振成像系统。短TI翻转恢复序列对磁场非均匀性不敏感,可在低场强磁共振成像系统中使用,多用于抑制纯脂肪组织和球状脂肪组织,但该序列特异性较差,对含有长T1和短T1组织信号强度难于区分。反相位成像是一个快速、有效脂肪抑制技术,该序列被推荐用于判别含有少许脂肪病灶,关键缺点是对被脂肪包围小肿瘤检测可靠性差。最初Dixon法因为成像时间长,对磁场非均性敏感、易受呼吸运动影响等缺点,临床应用较少。改善后Three-point Dixon法克服了上述缺点,可用于低场强开放式磁共振系统中,对关节软骨损伤是很有效诊疗手段。本文所介绍多个关键脂肪抑制序列,各有优缺点,临床应用各有侧重,在

MR常用技术及相关概念总结

快速采集--- 并行采集技术 GE公司ASSET技术;飞利浦的SENSE技术:在成像脉冲扫描前先行参考扫描(reference scan),获得相控阵线圈敏感度信息,然后进行成像脉冲序列SENSE扫描(在调整扫描参数时,在Resolution 栏目中选择AENSE选项并设置SENSE因子),扫描结束后计算机将利用参考扫描得到的相控阵线圈敏感度信息自动进行去除卷褶的运算,重建出来的即为去除卷褶的图像。 临床应用:1、加快采集速度,缩短采集时间,多用于耐受性较差不能坚持坚持的病例;2、高分辨力扫描;3、年老体弱的屏气体部成像;4、心脏成像;5、用于单次激发EPI,减少磁敏感伪影并提高图像质量;6、用于单次激发的FSE序列,提高回波链的质量;7、用于 3.0T高场机,大大减少SAR值。 快速采集--- 部分回波技术 类似半K空间技术,需要采集每个回波的一半多一点(一般60%),这种技术称为部分回波(partial echo或fractional echo)技术或半回波(half echo)技术。 MRI 脂肪抑制技术 1、MRI检查使用脂肪抑制技术的意义:脂肪组织的特性会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪 影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI 上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上, 慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSET 2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间

MRI脂肪抑制技术

MRI脂肪克制技术 意义:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)克制脂肪组织信号,增长图像的组织对比;(3)增长增强扫描的效果;(4)鉴别病灶内是否具有脂肪,由于在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪克制技术可以判断是否含脂,为鉴别诊断提供信息。 方法 (一)频率选择饱和法:最常用的脂肪克制技术之一。 由于化学位移,脂肪和水分子中质子的进动频率存在差别,在成像序列的RF施加前,先连续施加数个预脉冲,假如预脉冲的频率与脂肪中质子进动频率一致,脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加RF,脂肪组织由于饱和不能再接受能量,因而不产生信号,从而达成脂肪克制的目的。 特点:(1)高选择性。重要克制脂肪组织信号,对其他组织的信号影响较小。(2)可用于多种序列。(3)场强依赖性较大,在中高场强下使用可取得好的脂肪克制效果。(4)对磁场的均匀度规定很高。(5)进行大FOV扫描时,因梯度场存在,视野周边区域脂肪克制效果较差。(6)增长了人体吸取射频的能量。(7)预脉冲将占据TR间期的一个时段,因此会延长扫描时间,并有也许影响图像的对比度。(8)运动区域脂肪克制效果差。 (二)STIR技术:常用的脂肪克制技术之一。 STIR技术是基于脂肪组织短T1特性的脂肪克制技术。由于人体组织中脂肪的T1值短,180°脉冲后其纵向磁化矢量从反向最大到过零点所需的时间也很短,此刻假如选择短TI则可有效克制脂肪组织的信号。克制脂肪组织信号的TI等于脂肪组织T1值的69%,不同的场强下脂肪组织的T1值不同,因此克制脂肪组织的TI值也应作相应调整。在1.5T的MR仪,脂肪组织的T1值约为200~250ms,则TI=140~175ms时可有效克制脂肪组织的信号。在1.0T仪上TI应为125~140ms;在0.5T仪上TI应为85~120ms,在0.35T仪上TI应为75~100ms。 特点:(1)场强依赖性低。低场MRI仪也能取得较好的脂肪克制效果。(2)与频率选择饱和法相比,磁场的均匀度规定较低。(3)大FOV扫描能取得较好的脂肪克制效果。(4)信号克制的选择性较

MR常用技术及相关概念

MR常用技术及相关概念LT

象的程度与主磁场强度成正比。在高场强下,脂肪和水中的质子进动频率差别较大,因此选择性施加一定频率的预脉冲进行脂肪抑制比较容易。但在低场强下,脂肪和水中的质子进动频率差别很小,执行频率选择脂肪抑制比较困难。因此该方法在1.0 T以上的中高场强扫描机上效果较好,但在0.5 T以下的低场强扫描机上效果很差,因而不宜采用。(2)对磁场的均匀度要求很高。由于该技术利用的是脂肪中质子的进动频率与水分子中质子的进动频率的微小差别,如果磁场不均匀,则将直接影响质子的进动频率,预脉冲的频率将与脂肪中质子的进动频率不一致,从而严重影响脂肪抑制效果。因此在使用该技术进行脂肪抑制前,需要对主磁场进行自动或手动匀场,同时应该去除病人体内或体表有可能影响磁场均匀度的任何物品。(3)进行大FOV扫描时,视野周边区域脂肪抑制效果较差,这也与磁场的均匀度及梯度线性有关。(4)增加了人体吸收射频的能量。(5)预脉冲将占据TR间期的一个时段,因此施加该技术将减少同一TR内可采集的层数,如需要保持一定的扫描层数则需要延长TR,这势必会延长扫描时间,并有可能影响图像的对比度。如在1.5 T扫描机中,SE T1WI,如果选择TR=500ms,TE=8ms,在不施加脂肪抑制技术时,最多可采集26层,如果施加脂肪抑制技术,则最多只能采集12层。 4.2STIR技术 STIR序列短反转时间的反转恢复(short TI inversion recovery,STIR),主要用于T2WI的脂肪抑制是基于脂肪组织短T1特性的脂肪抑制技术,也是目前临床上常用的脂肪抑制技术之一。STIR技术可用IR或FIR序列来完成,目前多采用FIR序列。 STIR技术的优点在于:(1)场强依赖性低。由于该技术基于脂肪组织的T1值,所以对场强的要求不高,低场MRI仪也能取得较好的脂肪抑制效果;(2)与频率选择饱和法相比,STIR技术对磁场的均匀度要求较低。(3)大FOV扫描也能取得较好的脂肪抑制效果。 STIR技术的缺点表现为:(1)信号抑制的选择性较低。如果某种组织(如血肿等)的T1值接近于脂肪,其信号也被抑制。(2)由于TR延长,扫描时间较长。(3)一般不能应用增强扫描,因为被增强组织的T1值有可能缩短到与脂肪组织相近,信号被抑制,从而可能影响对增强程度的判断。 4.3频率选择反转脉冲脂肪抑制技术 近年来在三维超快速梯度回波成像序列(如体部三维屏气扰相GRE T1WI或CE-MRA)中,推出一种新的脂肪抑制技术,即频率选择反转脉冲脂肪抑制技术。该技术既考虑了脂肪的进动频率,又考虑了脂肪组织的短T1值特性。该种技术在GE公司生产的扫描机上称之为SPECIAL(spectral inversion at lipids),

MR常用技术及相关概念

MR常用技术及相关概念

快速采集---并行采集技术 GE公司ASSET技术;飞利浦的SENSE技术:在成像脉冲扫描前先行参考扫描(reference scan),获得相控阵线圈敏感度信息,然后进行成像脉冲序列SENSE扫描(在调整扫描参数时,在Resolution 栏目中选择AENSE选项并设置SENSE因子),扫描结束后计算机将利用参考扫描得到的相控阵线圈敏感度信息自动进行去除卷褶的运算,重建出来的即为去除卷褶的图像。 临床应用:1、加快采集速度,缩短采集时间,多用于耐受性较差不能坚持坚持的病例;2、高分辨力扫描;3、年老体弱的屏气体部成像;4、心脏成像;5、用于单次激发EPI,减少磁敏感伪影并提高图像质量;6、用于单次激发的FSE 序列,提高回波链的质量;7、用于3.0T高场机,大大减少SAR值。 快速采集---部分回波技术 类似半K空间技术,需要采集每个回波的一半多一点(一般60%),这种技术称为部分回波(partial echo或fractional echo)技术或半回波(half echo)技术。 MRI脂肪抑制技术 1、MRI检查使用脂肪抑制技术的意义: 脂肪组织的特性会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信

相关主题
相关文档
最新文档