多元函数的偏导数

多元函数的偏导数
多元函数的偏导数

多元函数的偏导数

以二元函数为例。

二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念。.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识。

定义1 设f(x,y)为定义在点集D?R2上的二元函数,P0∈D(P0或者是D的聚点,或者是D的孤立点),对于任给的正数ε,总存在相应的正数δ,只要P∈U(P0,δ)∩D,就有f P?f(P0)<ε,则称f(x,y)关于集合D在点P0连续。定义2 设函数z=f x,y,(x,y)∈D,若(x0,y0∈D且f x,y0在x0的某一邻域内

有定义,则当极限limΔx→0?x f(x0,y0)

?x =limΔx→0f x0+?x,y0?f(x0,y0)

?x

存在时,则称这

个极限为函数f x,y在点x0,y0关于x的偏导数,记作ef

ex(x

0,y0)

定义3 设函数z=f x,y在点P0x0,y0某邻域U(P0,δ)内有定义,对于U(P0,δ)中的点P x,y=(x0+?x,y0+?y),若函数f x,y在点P0x0,y0处的全增量可表示为?z=f x0+?x,y0+?y?f x0,y0=A?x+B?y+O(ρ),其中A、B是仅与点P0x0,y0有关的常数,ρ= ?x2+?y2,O(ρ)是较ρ高阶的无穷小量,则称函数f x,y在点P0x0,y0处可微。

二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导。定理1:若z=f x,y在点x,y可微,则z=f x,y在点x,y一定连续。

定理2:若二元函数z=f x,y在其定义域内一点P0x0,y0处可微,则f x,y在该点关于每个自变量的偏导数都存在,且A=f x x0,y0,B=f y x0,y0。

定理3:若二元函数z=f x,y的偏导数在点P0x0,y0的某邻域内存在,且

f x x 0,y 0 与f y x 0,y 0 在点 x 0,y 0 处连续,则函数f x ,y 在点 x 0,y 0 处可微。 定理4:若z =f x ,y 在U (P 0,δ)内f x (x ,y )存在,且f x (x ,y )P 0 x 0,y 0 在连续,f y (x ,y )在P 0 x 0,y 0 存在,则z =f x ,y 在P 0 x 0,y 0 可微。

二元函数在某点连续,不一定可微,但可微一定连续。这与一元函数有相同的结论。二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件。二元函数中,偏导数存在不一定可微;可微则偏导数存在,这与一元函数中可微与可导等价有区别。

历年真题

1、

设函数u ,x ,y =φ x ,y +φ x ?y + ψ(t)dt x +y

x?y ,其中函数φ具有二阶导数,ψ有一阶导数,则必有

(A )?2u

?x =??2u

?y (B )?2u

?x =?2u ?y (C )?2u

?x ?y =

?2u ?y (D )?2u

?x ?y =

?2u ?x

(2005,数一,4分)

【解析】

eu

ex =φ′ x ,y +φ′ x ?y +ψ x +y ?ψ x ?y eu

ey =φ′ x ,y ?φ′ x ?y +ψ x +y +ψ x ?y e2u

=φ′′ x ,y +φ′′ x ?y +ψ′ x +y ?ψ′ x ?y e2u

2=φ′′ x ,y +φ′′ x ?y +ψ′ x +y ?ψ′ x ?y e2u =φ′′ x ,y ?φ′′ x?y

+ψ′ x +y +ψ′ x ?y 所以e2u

ex 2=e2u

ey 2,应选(B )。

2、设有三元方程xy ?zlny +e xz =1,根据隐函数存在定理,存在点(0,1,1)的

一个邻域,在此邻域内该方程

(A)只能确定一个具有连续偏导数的隐函数z=z(x,y)。

(B)可以确定两个具有连续偏导数的隐函数x=x(y,z)和·z=z(x,y)。

(C)可以确定两个具有连续偏导数的隐函数y=y(x,z)和·z=z(x,y)。

(D)可以确定两个具有连续偏导数的隐函数x=x(y,z)和·y=y(x,z)。

(2005,数一,4分)

【解析】

F x,y,z=xy?zlny+e xz?1

F x′=y+e xz z

z

F y′=x?

F z′=?lny+e xz x

F x′0,1,1=2

F y′0,1,1=?1

F z′(0,1,1)=0

因此以确定两个具有连续偏导数的隐函数x=x(y,z)和·y=y(x,z)。

应选(D)。

=

3、设f(u,v)是二元可微函数,z=f(x y,y x),则ez

ex

(2007,数一,10分) 【解析】

ez

=f u′?yx y?1+f v′?y x lny。

ex

=

4、设f(u,v)具有二阶连续偏导数函数,z=f(x,xy),则e2z

exey

(2009,数一,4分) 【解析】

ez

=f u′+f v′y

ex

e2z

exey

=xf u v′′+f v′+xyf v v′′

5、设函数z=z(x,y)由方程F(y

x ,z

x

)确定,其中F为可微函数,且F z′′≠0,则

xez ex +yez

ey

=

(2010,数一,4分)

【解析】

ez ex =?

F x′

F z′

=?

F1′? ?y

x2

+F2′? ?z

x2

F2′?(1

x

)

=

F1′?y

x

+F2′?z

x

F2′

ez ey =?

F y′

F z′

=?

F1′?1

x

F2′?(1

x

)

=?

F1′

F2′

x ez

+y

ez

=

F1′?y+F2′?z

2

?

F1′

2

=

F2′?z

2

=z

6、设函数z=z(x,y)由方程e z+xyz+x+cosx=2确定,则dz(0,1)=

(2015,数一,4分) 【解析】

当x=0,y=1时,z=0。

令F x,y,z=e z+xyz+x+cosx?2

F x′x,y,z=yz+1+sinx

F y′x,y,z=xz

F z′x,y,z=e z+xy

ez

ex(0,1)=?

F x′

F z′

=?1

ez

(0,1)=?

F y′

z

=0

dz(0,1)=?dx

第二节二元函数的一阶、二阶偏导数

第二节 二元函数的一阶、二阶偏导数 一、二元函数的一阶偏导数 1、在某点处的一阶偏导数——已知二元函数 z f(x ,y) 在点(x ,y 0)处及其附近有定 义,若一元函数z f(x ,y 0)在点x 0处对x 可导,则称此导数值为二元函数 z f(x ,y)在点(x 0,y 0)处对x 的一阶偏导数,记作 f x (x 0,y 0) ,或z x |x x 0,或 y y 0 f(x 0,y 0) z ; ,或 |x x x x yy 若一元函数z f(x ,y 0 )在点y 0处对y 可导,则称此导数值为二元函 数 z f (x ,y) 在点(x 0,y 0)处对y 的一阶偏导数,记作 f y (x 0,y 0),或z y |x x 0,或 f(x 0,y 0) ,或 y y y 0 z x 0。 |x yy y 0 2、可导与连续关系:尽管在某点处两个一阶偏导数都存在,却不能保证在该点处连续。 3、在某区域上的一阶偏导数——若二元函数 z f(x ,y)在区域E 上每一点(x ,y)处都 有对x ,对y 的一阶偏导数,则对于区域 E 上每一点(x ,y)都有一个对x 的一阶偏导 数值和一个对 y 的一阶偏导数值与之对应,于是得到两个新的二元函数,这两个新 的二 元函数分别称 为 z f (x ,y)对x ,对y 的一阶偏导函数,简称一阶偏导数,分别记作 f x (x ,y),或z x ,或 f(x ,y) z ,或 和f y (x ,y),或z y ,或f(x ,y),或z 。 x x y y 二、二阶偏导数 1、定义——二元函数 z f(x ,y)一阶偏导数的一阶偏导数称为二元函数 z f (x ,y) 的二阶偏导数,共有四个,分别记作 f xx (x ,y) (f x (x ,y))x ,或z xx ,或 f 2 (x ,y) 2z x 2 ,或 x 2 2 , 2 f xy (x ,y) (f x (x ,y))y ,或z xy ,或 f(x y),或 z y x x y 2 , 2

3.2.1几个常用函数的导数教案

3.2.1几个常用函数的导数教案 教学目标: 1. 能够用导数的定义求几个常用函数的导数; 2. 利用公式解决简单的问题。 教学重点和难点 1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。 教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。 教学过程: 一 复习 1、函数在一点处导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的步骤。 二 新课 例1.推导下列函数的导数 (1) ()f x c = 解:()()0y f x x f x c c x x x ?+?--===???, '00()lim lim 00x x y f x x ?→?→?===? 1. 求()f x x =的导数。 解: ()()1y f x x f x x x x x x x ?+?-+?-===???, '00()lim lim 11x x y f x x ?→?→?===?。 '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则' 1y =可以解释为某物体做瞬时速度为1的匀速运动。 思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢? (2).函数(0)y kx k =≠增的快慢与什么有关? 可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快. 2. 求函数2()y f x x ==的导数。

解: 22 ()()()2y f x x f x x x x x x x x x ?+?-+?-===+????, ''00 ()lim lim (2)2x x y y f x x x x x ?→?→?===+?=?。 '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化: (1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x>0时,随着 x 的增加,2y x =增加得越来越快。 3. 求函数1()y f x x ==的导数。 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x -?+?--+?+?====-???+??+??, ''220011()lim lim ()x x y y f x x x x x x ?→?→?===-=-?+?? 思考:(1)如何求该曲线在点(1,1)处的切线方程? '(1)1k f ==-,所以其切线方程为2y x =-+。 (2)改为点(3,3),结果如何? (3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。 三 例题 1. 试求函数()y f x = 解: ()()y f x x f x x x ?+?-==??= ''0()lim lim x x y y f x x ?→?→?====? 2. 已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求与直线PQ 平行的曲线 的切线方程。 解:'2y x =,设切点为00(,)M x y ,则0'02.x x y x ==

二元函数的连续、偏导数、可微之间的关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1二元函数连续、偏导数、可微三个概念的定义 (1) 2二元函数连续、偏导数、可微三个概念之间的关系 (2) 2.1二元函数连续与偏导数存在之间的关系 (2) 2.2二元函数连续与可微之间的关系 (3) 2.3二元函数可微与偏导数存在之间的关系 (3) 2.4二元函数可微与偏导数连续之间的关系 (4) 二元函数连续、偏导数、可微的关系图 (6) 参考文献 (7) 致谢 (8)

本科生毕业论文 2 二元函数的连续、偏导数、可微之间的关系 摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性. 关键词 二元函数 连续 偏导数 可微 The Relationship among Continuation, Partial Derivatives and Differentiability in Binary Function Abstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common.. Key words binary function continuation partial derivatives differentiability 引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系. 1 二元函数连续、偏导数、可微三个概念的定义 定义1 设f 为定义在点集2D R ?上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ?∈, 就有0)||()(f P f P ε<-,则称f 关于集合 D 在点0P 连续. 定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内 有定义,则当极限00000000(,))(,) (,lim lim x x x f x y f x y f x x y x x ?→?→+-=????存在时,则称这个极限 为函数f 在点00,)(y x 关于x 的偏导数,记作0 (,) |x y f x ??. 定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义, 对于0()U P 中的点00,)(,)(y P x y x x y ++=??,若函数f 在点0P 处的全增量可表示为

3-2-1 几个常用函数的导数及基本初等函数的导数公式

基础巩固强化 一、选择题 1.设y =e 3,则y ′等于( ) A .3e 2 B .e 2 C .0 D .以上都不是 [答案] C [解析] ∵y =e 3是一个常数,∴y ′=0. 2.(2012~2013学年度陕西宝鸡中学高二期末测试)函数y =sin x 的导数是( ) A .y =sin x B .y =-cos x C .y =cos x D .y =-sin x [答案] C [解析] ∵(sin x )′=cos x , ∴选C. 3.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 [答案] B [解析] ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有两条. 4.若y =cos 2π 3,则y ′=( ) A .-3 2 B .-12

C .0 D.12 [答案] C [解析] 常数函数的导数为0. 5.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D.12 [答案] D [解析] ∵y ′=1x ,∴y ′|x =2=1 2,故图象在x =2处的切线斜率为12. 6.y =x α在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 [答案] B [解析] y ′=(x α)′=αx α-1, 由条件知,y ′|x =1=α=-4. 二、填空题 7.曲线y =ln x 与x 轴交点处的切线方程是__________. [答案] y =x -1 [解析] ∵曲线y =ln x 与x 轴的交点为(1,0) y ′|x =1=1,∴切线的斜率为1, ∴所求切线方程为:y =x -1. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于____________.

多元复合函数求导法则【包含偏导数】

§8.4 多元函数求导法则 【定理】若函数及都在点可导; 函数在对应点具有连续偏导数, 则复合函数在点可导,且其导数为 (1) 证明:设获得增量,这时的对应增量为,函数 的对应增量为。 据假定,函数在点具有连续偏导数,从而有 这里,当时,。 上式两边除以得 而当时,有,从而 所以 故复合函数在点可导,其导数可用(1)式计算。 用同样的方法,可把定理推广到复合函数的中间变量多于两个的情形。 例如, 设与复合而得到 函数。 若在点可导, 对具有连续偏导数, 则复合函数在点可导, 且 (2)在公式(1)与(2)中的导数称为全导数。

上述定理还可推广到中间变量不是一元函数而是多元函数的情形。 例如, 设 与 复合而得到 函数 ,若 在点 具有对及的偏导数, 函数 在对应点具有连续偏导数, 则在点的两个偏导数存在, 且 (3) 事实上,求时,看作常量,因此中间变量及仍可看作一元函数而应用上述定理。 但均是的二元函数,所以应把(1)式中的 直导数记号改为偏导数的记号,再将换成,这样便得到了(3)式。 类似地, 设及 均在点具有对及的偏 导数,而函数在对应点具有连续偏导数,则复合函数 在点的两个偏导数都存在,且 (4) 例如,若有连续偏导数,而 偏导数存在,则复合函数 可看作上述情形中当的特殊情形, 因此 (4)式变成

等式两边均出现了 或,尽管记号一样,但其意义有本质的差别,以第一式加以阐明: 左边的是将复合函数 中的看作常数,而对求偏导数; 右边的是把函数中的及看作常数,而对 求偏导数。 因此,为了避免麻烦, 我们往往将上述两式的形式写为 由该复合函数变量间的关系链,可对此求(偏)导数法则作如下解释: 求,可沿第一条线路对求导, 再沿第二条线路对求导, 最后把两个结果相加。 而沿第一条线路对 求导,相当于把分别视为常量,就成了的函数,而又是的 函数,求导结果自然是 ( 这与一元复合函数求导法则很类似);而沿第二条线路对 求导,相当于把分别视为常量,就成了的函数,而又是的 函数,求导结果自然是。

多元函数的一阶偏导数练习1

多元函数的一阶偏导数练习题 1.Z=ln(e x+e y),y=2x3,求dZ/dx。 2.设Z=arctan(v/u),u=xsiny,v=xcosy,求Z'x,Z'y。

3.z=f(u,v),u=2x2-3y2,v=e x,求dz/dx,dz/dy。 4.设Z=f(2x2-y2,3x+2y),求Z'x,Z'y。

5.设z3+2xyz=33,求?z/?x,?z/?y。 6.设函数z=z(x,y)由方程x+y2-e^2-3z=0所确定,求?z/?y。

7.设函数z=z(x,y)由方程x3+y3+z3-2xyz+2=0所确定,求?z/?x,?z/?y。 8.(x+2)/z=lnz/y,求?z/?x,?z/?y。

9.设u=3x+sin(y/2)+e xyz+33,求?u/?x,?u/?y,?u/?z。 10.u=xyz*e^(x2+2y2+3z2),求?u/?x,?u/?y,?u/?z。

参考答案: 1.dZ/dx=(e x+6x2*e y)/(e x+e y). 2.Z'x=(ucosy-vsiny)/(u2+v2),Z'y=-x(usiny+vcosy)/(u2+v2). 3.dz/dx=4xf'u+e^xf'v,dz/dy=-6yf'u. 4.Z'x=4xf1'+3f2',Z'y=-2yf1'+2f2'. 5.?z/?x=-2yz/(3z2+2xy),?z/?y=-2xz/(3z2+2xy). 6.?z/?y=2y/3. 7.?z/?x=(3x2-2yz)/(2xy-3z2),?z/?y=(3y2-2xz)/(2xy-3z2). 8.?z/?x=y/(1+lnz),?z/?y=(x+2)/(1+lnz). 9.?u/?x=3+yze xyz,?u/?y=(1/2)cos(y/2)+xze xyz,?u/?z=xye xyz. 10. ?u/?x=yz*(1+2x2)e^(x2+2y2+3z2), ?u/?y=xz*(1+4y2)e^(x2+2y2+3z2), ?u/?z=xz*(1+6z2)e^(x2+2y2+3z2).

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

多元复合函数的一阶`二阶偏导数的求法

多元复合函数的一阶`二阶偏导数的求法课程名称高等数学授课周次第15周第2次授课方式课堂讲授 第六章、第六节复合函数与隐函数的微分法(1) 2 章(节) 课时名称 教学目的使学生掌握多元复合函数的一阶、二阶偏导数的求法 教学重点多元复合函数的一阶、二阶偏导数的求法 教学难点多元抽象复合函数的二阶偏导数的求法 一、教学引导: 现在要将一元函数微分学中复合函数的求导法则推广到多元复合函数的情形。多元复合函数的求导法则在多元函数微分学中也起着重要作用。 二、学生课前准备: 复习一元复合函数的求导法则;预习多元复合函数的求导法则 三、课堂教学过程: 第一节课:多元复合函数的求导法则: 1, 复合函数的中间变量均为一元函数的情形: 定理1 如果函数u,,(t)及v,,(t)都在点t可导~函数z,f(u~ v)在对应点(u~ v)具有连续偏导数~则复合函数z,f[,(t)~ ,(t)]在点t可导~且有 dz,zdu,zdv,,,, ,称为全导数 dt,udt,vdt dzyz,x,x,sint,y,cost,例1 设求全导数 dt 2, 复合函数的中间变量均为多元函数的情形: 定理2 如果函数u,,(x~ y)~ v,,(x~ y)都在点(x~ y)具有对x及y的偏导

数~函数z,f(u~ v)在对应点(u~ v)具有连续偏导数~则复合函数z,f [,(x~ y)~ ,(x~ y)]在点(x~ y)的两个偏导数存在~且有 教学过程,z,z,u,z,v,z,z,u,z,v,,,,,,,, ~ , ,x,u,x,v,x,y,u,y,v,y设计推广: 设z,f(u~ v~ w )~ u,,(x~ y)~ v,,(x~ y)~ w,,(x~ y)~则,z,z,u,z,v,z,w,z,z,u,z,v,z,w,,,,,,,,,,,, ~ , ,x,u,x,v,x,w,x,y,u,y,v,y,w,y ,z,zu 例2 设 z,esin v~ u,xy~ v,x,y~求和, ,x,y 讨论: ,z,z, (1)设,(~ )~ ,(~ )~ ,()~则,, zfuvu,xyv,y,,x,y ,z,z,u,z,z,u,zdv,,,,,, 提示: ~ , ,x,u,x,y,u,y,vdy ,z,z, (2)设z,f(u~ x~ y)~且u,,(x~ y)~则,, ,,x,y ,f,f,f,f,z,u,z,u,,,,提示: ~ , ,x,u,x,x,y,u,y,y ,f,z,z这里与是不同的~是把复合函数z,f[,(x~ y)~ x~ y]中的y看 作 ,x,x,x ,f不变而对x的偏导数~是把f(u~ x~ y)中的u及y看作不变而对x的偏导 ,x ,f ,z,z,u,z,v,z,z,u,z,v,z,,,,数, 与也朋类似的区 别,; ,,,,,x,u,x,v,x,y,y,u,y,v,y,y 222 ,u,u2x,y,zz,xsiny例3设~而, 求和 u,f(x,y,z),e,x,y 3(复合函数的中间变量既有一元函数~又有多元函数的情形 定理3 如果函数,(~ )在点(~ )具有对及对的偏导数~函数u,xyxyxy v,,(y)在点y可导~函数z,f(u~ v)在对应点(u~ v)具有连续偏导数~则复合函

几个常用函数的导数(教案)

3.2.1几个常用函数导数 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程: 【合作探究】 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数? 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试:求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数 定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 【典型例题】 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y ?→?→?'=== c 0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim 11x x y y ?→?→?'=== 函数

多元函数偏导数(第七讲)

第七讲 多元函数偏导数与最值问题 一、多元函数偏导数(抽象函数、隐函数、方程组) 例1.设函数(,,)f x y z 是k 次齐次函数,即(,,)(,,)k f tx ty tz t f x y z =,k 为某一常数,求证:(,,)f f f x y z kf x y z x y z ???++=???. 证明:令, ,u tx v ty w tz ===,则(,,)(,,)k f tx ty tz t f x y z =化为 (,,)(,,)k f u v w t f x y z =, 上式两边对t 求导得 1(,,)k f u f v f w kt f x y z u t v t w t -??????++=??????, 又 ,u v w x y z t t t ???===??? 有 1(,,)k f f f x y z kt f x y z u v w -???++=??? 上式两边同乘以t ,得 (,,)k f f f tx ty tz kt f x y z u v w ???++=??? 即有 (,,)f f f u v w kf u v w u v w ???++=??? 于是得 (,,)f f f x y z kf x y z x y z ???++=???. 例2.设(,,)u f x y z =,2(,,)0y x e z j =,sin y x =,其中,f j 具有一阶连续偏导数,且 0x j ?1?,求du dx . 解:这是有显函数,隐函数构成的复合函数的求导问题,见复合关系图: 有复合关系,有 x y z du u u dy u dz dy dz f f f dx x y dx z dx dx dx ???¢¢¢=++=++??? x y z x y x u U n R e g i s t e r e d

第四节 多元复合函数的求导法则

第四节 多元复合函数的求导法则 要求:熟练地计算复合函数的一阶偏导数,会计算抽象函数的二阶偏导数计算。 重点:各种类型复合函数的求导与计算。 难点:抽象函数的二阶偏导数计算。 作业:习题8-4(36P )2)3)2)2)3)4)2,4,6,8,10,11,12,13 一.多个中间变量,一个自变量情况 定理1 如果函数()u t ?=及()v t ψ=都在点t 可导,且函数),(v u f z =在对应点具有连续偏导数,则复合函数[](),()z f t t ?ψ=在点t 可导,且其导数公式为 d z z d u z d v d t u d t v d t ?? = + ?? (全导数) 证明 设t 有增量t ?,相应函数()u t ?=及()v t ψ=的增量为 ,u v ??,此时函数),(v u f z =相应获得的增量为z ?. 又由于函数),(v u f z =在点(,)u v 处可微,于是由上节定理3证明有 12f f z u v u v u v εε???= ?+ ?+?+??? 这里,当0,0u v ?→?→时,120,0εε→→,上式除以t ?得 1 2z f u f v u v t u t v t t t εε???????=+++???????. 当0t ?→时,0,0u v ?→?→,,u du v dv t dt t dt ??→ →??, 所以 0l i m t d z z f d u f d v d t t u d t v d t ?→??? ==+???,即 d z f d u f d v z d u z d v d t u d t v d t u d t v d t ?? ? ?= + =+????. 此时,dz z du z dv dt u dt v dt ??=+ ??从形式上看是全微分z z dz du dv u v ??= + ??两端除以d t 得到 的,常将 d z d t 称为全导数. 推论 若),,(w v u f z =,()u t ?=,()v t ψ=,)(t w w =复合而的复合函数 [](),(),()z f t t w t ?ψ=满足定理条件,则有全导数公式 d z z d u z d v z d w d t u d t v d t w d t ?? ? = + +?? ? 例1.设函数y x u =,而t x e =,sin y t =,求全导数dt du .

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4 x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2. 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=??? ?1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3)′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =1 2x 2上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k P A =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴P A 的直线方程为y -8=4(x -4), 即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组????? y =4x -8,y =-2x -2,得????? x =1,y =-4. ∴A (1,-4).

几个常用函数的导数

321几个常用函数导数 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用教学过程:【合作探究】 探究任务一:函数y f(x) c的导数. 问题:如何求函数y f(x) c的导数 新知:y 0表示函数y c图象上每一点处的切线斜率为______________ . 若y c表示路程关于时间的函数,则y ______ ,可以解释为________________ 即一直处于静止状态. 试试:求函数y f (x) x的导数 反思:y 1表示函数y x图象上每一点处的切线斜率为______________ . 若y x表示路程关于时间的函数,则y ______ ,可以解释为________________ 探究任务二:在同一平面直角坐标系中,画出函数y 2x,y 3x,y 4x的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么 (2)这三个函数中,哪一个增加得最快哪一个增加得最慢 (3)函数y kx(k 0)增(减)的快慢与什么有关 【典型例题】 1 .函数y f (x) c的导数 根据导数定义,因为亠f(x x) f(x)口0 x x x 所以y lim lim 0 0 x 0 x x 0 y 0表示函数y c图像上每一点处的切线的斜率都为0?若y c表示路程关于时间的函 数,则y 0可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数y f (x) x的导数 因为_y f (x x) f (x) xxx 1 x x x 所以y

几个常见函数的导数

§1.2.1几个常见函数的导数 【学情分析】: 本节重要是介绍求导数的方法.根据导数定义求导数是最基本的方法.但是,由于最终总会归结为求极 限,而本章并没有介绍极限知识,因此, 教科书只是采用这种方法计算21 ,,,, y c y x y x y y x =====这五个常见函数的导数.学生只要会用导数公式和求简单函数的导数即可. 【教学目标】: (1)用导数定义, 求函数2 1 ,,,, y c y x y x y y x =====. (2)能用基本初等函数的导数公式和导数运算法则求简单函数的导数. (3)理解变化率的概念,解决一些物理上的简单问题,培养学生的应用意识. 【教学重点】: 能用导数定义, 求函数21 ,,,, y c y x y x y y x =====. 【教学难点】: 能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数.

3 (4)(0) y x x =>

练习与测试: A .基础题. 1.求下列函数的导数: (1)12 y x = (2)y = (3)41 y x = (4)y = 答案:(1)'11 12y x = (2)' y = (3)' 5 4y x -=- (4)2' 5 35 y x -= 2.已知函数2 ()f x x =,则' (3)f =( ) (A )0 (B )2x (C )6 (D )9 答案:C 3.已知函数1()f x x =,则' (2)f -=( ) (A )4 (B )14 (C )4- (D )1 4 - 答案:D

4.已知函数3 ()f x x =的切线的斜率等于3,则其切线方程有( ) (A )1条 (B )2条 (C )多余2条 (D )不存在 答案:B B .难题 1.已知(1,1),(2,4)P Q -是曲线2 y x =上两点,求与直线PQ 平行的曲线2 y x =的切线方程. '(1,1),(2,4)121 11,24 11424410PQ P Q k y x x y y x x y -∴=====- =---=解:令得所以曲线的切线方程为:即 2.设曲线3 y x =过点3 (,)a a 的切线与直线,0x a y ==所围成的三角形面积为 1 3 ,求a . 3'2 332233 3()|3(,)3()320 2 0,;,3 12 ()1 231 x a k x a a a y a a x a a x a y y x a x a y a S a a a a ===∴-=---======-=∴=±解:过点的切线方程为即令得得

第二节二元函数的一阶、二阶偏导数

第二节 二元函数的一阶、二阶偏导数 一、二元函数的一阶偏导数 1、 在某点处的一阶偏导数——已知二元函数)(y x f z ,=在点)(00y x ,处及其附近有定 义,若一元函数)(0y x f z ,=在点0x 处对x 可导,则称此导数值为二元函数)(y x f z ,=在点)(00y x ,处对x 的一阶偏导数,记作)(00y x f x ,',或00|y y x x x z ==',或x y x f ??)(00,,或00 |y y x x x z ==??; 若一元函数)(0y x f z ,=在点0y 处对y 可导,则称此导数值为二元函数) (y x f z ,=在点)(00y x ,处对y 的一阶偏导数,记作)(00y x f y ,',或00|y y x x y z ==',或y y x f ??)(00,,或0 0|y y x x y z ==??。 2、 可导与连续关系:尽管在某点处两个一阶偏导数都存在,却不能保证在该点处连续。 3、 在某区域上的一阶偏导数——若二元函数)(y x f z ,=在区域E 上每一点)(y x ,处都 有对x ,对y 的一阶偏导数,则对于区域E 上每一点)(y x ,都有一个对x 的一阶偏导数值和一个对y 的一阶偏导数值与之对应,于是得到两个新的二元函数,这两个新的二元函数分别称为)(y x f z ,=对x ,对y 的一阶偏导函数,简称一阶偏导数,分别记作)(y x f x ,',或x z ',或 x y x f ??)(,,或x z ??和)(y x f y ,',或y z ',或y y x f ??)(,,或y z ??。 二、二阶偏导数 1、 定义——二元函数)(y x f z ,=一阶偏导数的一阶偏导数称为二元函数) (y x f z ,=的二阶偏导数,共有四个,分别记作 x x xx y x f y x f ))(()(''='',,,或xx z '',或22)(x y x f ??,,或22x z ?? y x xy y x f y x f ))(()(''='',,,或xy z '',或y x y x f ???)(2,,或y x z ???2

多元复合函数的求导法则

多元复合函数的求导法 则 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

第四节 多元复合函数的求导法则 要求:熟练地计算复合函数的一阶偏导数,会计算抽象函数的二阶偏导数计算。 重点:各种类型复合函数的求导与计算。 难点:抽象函数的二阶偏导数计算。 作业:习题8-4(36P )2)3)2)2)3)4)2,4,6,8,10,11,12,13 一.多个中间变量,一个自变量情况 定理1 如果函数()u t ?=及()v t ψ=都在点t 可导,且函数),(v u f z =在对应点具有连续偏导数,则复合函数[](),()z f t t ?ψ=在点t 可导,且其导数公式为 dz z du z dv dt u dt v dt ??=+ ?? (全导数) 证明 设t 有增量t ?,相应函数()u t ?=及()v t ψ=的增量为 ,u v ??,此时函数),(v u f z =相应获得的增量为z ?. 又由于函数),(v u f z =在点(,)u v 处可微,于是由上节定理3证明有 这里,当0,0u v ?→?→时,120,0εε→→,上式除以t ?得 12 z f u f v u v t u t v t t t εε???????=+++???????. 当0t ?→时,0,0u v ?→?→,,u du v dv t dt t dt ??→→ ??, 所以 0lim t dz z f du f dv dt t u dt v dt ?→???==+ ???,即 dz f du f dv z du z dv dt u dt v dt u dt v dt ????=+=+ ????. 此时,dz z du z dv dt u dt v dt ??=+ ??从形式上看是全微分z z dz du dv u v ??=+??两端除以dt 得到的,常将dz dt 称为全导数. 推论 若),,(w v u f z =,()u t ?=,()v t ψ=,)(t w w =复合而的复合函数 [](),(),()z f t t w t ?ψ=满足定理条件,则有全导数公式 例1.设函数y x u =,而t x e =,sin y t =,求全导数 dt du .

几个常用函数的导数练习

第一章 1.2 1.2.1 几个常用函数的导数 1.2.2 基本初等函数的导数公式及导数的运算法则(一) 课后强化演练 一、选择题 1.若f (x )=cos π 6,则f ′(x )等于( ) A . 32 B .0 C .12 D .-12 答案:B 2.给出下列结论: ①若y =1x 3,则y ′=-3x 4;②若y =x ,则y ′=1 2x ;③若y =2x ,则y ′=2x ;④若f (x )=log a x (a > 0且a ≠1),则f ′(x )=log a e x .其中正确的有( ) A .①② B .①②③ C .②③④ D .①②④ 答案:D 3.已知曲线y =x 24-3ln x 的一条切线的斜率为1 2,则切点的横坐标为( ) A .3 B .2 C .1 D .12 解析:设切点的横坐标为x 0(x 0>0), ∵y ′=x 2-3 x , ∴y ′|x =x 0=x 02-3x 0=1 2,整理得:x 20-x 0-6=0,解得x 0=3或x 0=-2(舍). 答案:A 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A .????0,π 4 B .???? 3π4,π C .????0,π4∪??? ?3π 4,π D .????0,π4∪????π2,3π 4 解析:设P (x 0,y 0),∵y ′|x =x 0=cos x 0,∴直线l 的斜率k =cos x 0∈[-1,1].又直线l 的倾斜角α∈[0,π),∴0≤α≤π4或3π 4 ≤α<π.

答案:C 5.若f (x )=x 2,g (x )=x 3,则g ′(x )-f ′(x )>0的解集为( ) A .(-∞,0)∪????23,+∞ B .??? ?0,2 3 C .??? ?-2 3,0 D .? ???-∞,-2 3∪(0,+∞) 解析:∵g ′(x )=3x 2,f ′(x )=2x ,由g ′(x )-f ′(x )>0,得3x 2-2x >0,得x >2 3或x <0. 答案:A 6.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 解析:∵f ′(x )=2f ′(1)+2x ∴f ′(1)=2f ′(1)+2,f ′(1)=-2, ∴f ′(x )=2×(-2)+2x =2x -4. ∴f ′(0)=-4. 答案:D 二、填空题 7.函数y =x -1 在(1,1)处的切线方程为________. 解析:∵y ′|x =1=-1,∴切线方程为y -1=-(x -1),即x +y -2=0. 答案:x +y -2=0 8.若曲线y =x a +1(a ∈R )在点(1,2)处的切线经过坐标原点,则a =________. 解析:由题意知:y ′| x =1=a =2-0 1-0=2. 答案:2 9.曲线y =ln x 在点M (e,1)处的切线的斜率是________,切线方程为________. 解析:∵y ′=(ln x )′=1x ,∴y ′|x =e =1 e . ∴切线方程为y -1=1 e (x -e),即x -e y =0. 答案:1 e x -e y =0 三、解答题 10.已知f (x )=ln x ,g (x )=x 2,求适合f ′(x )+1=g ′(x )的x 值. 解:∵f ′(x )=1 x ,g ′(x )=2x ,

多元函数的偏导数

多元函数的偏导数 以二元函数为例。 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念。.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识。 定义1 设f(x,y)为定义在点集D?R2上的二元函数,P0∈D(P0或者是D的聚点,或者是D的孤立点),对于任给的正数ε,总存在相应的正数δ,只要P∈U(P0,δ)∩D,就有f P?f(P0)<ε,则称f(x,y)关于集合D在点P0连续。定义2 设函数z=f x,y,(x,y)∈D,若(x0,y0∈D且f x,y0在x0的某一邻域内 有定义,则当极限limΔx→0?x f(x0,y0) ?x =limΔx→0f x0+?x,y0?f(x0,y0) ?x 存在时,则称这 个极限为函数f x,y在点x0,y0关于x的偏导数,记作ef ex(x 0,y0) 。 定义3 设函数z=f x,y在点P0x0,y0某邻域U(P0,δ)内有定义,对于U(P0,δ)中的点P x,y=(x0+?x,y0+?y),若函数f x,y在点P0x0,y0处的全增量可表示为?z=f x0+?x,y0+?y?f x0,y0=A?x+B?y+O(ρ),其中A、B是仅与点P0x0,y0有关的常数,ρ= ?x2+?y2,O(ρ)是较ρ高阶的无穷小量,则称函数f x,y在点P0x0,y0处可微。 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导。定理1:若z=f x,y在点x,y可微,则z=f x,y在点x,y一定连续。 定理2:若二元函数z=f x,y在其定义域内一点P0x0,y0处可微,则f x,y在该点关于每个自变量的偏导数都存在,且A=f x x0,y0,B=f y x0,y0。 定理3:若二元函数z=f x,y的偏导数在点P0x0,y0的某邻域内存在,且

第二节 二元函数的一阶、二阶偏导数

第二节 二元函数的一阶、二阶偏导数 一、二元函数的一阶偏导数 1、 在某点处的一阶偏导数——已知二元函数)(y x f z ,=在点)(00y x ,处及其附近有定 义,若一元函数)(0y x f z ,=在点0x 处对x 可导,则称此导数值为二元函数)(y x f z ,=在点)(00y x ,处对x 的一阶偏导数,记作)(00y x f x ,',或0 |y y x x x z ==',或x y x f ??) (00,,或 0|y y x x x z ==??; 若一元函数)(0y x f z ,=在点0y 处对y 可导,则称此导数值为二元函数)(y x f z ,=在点)(00y x ,处对y 的一阶偏导数,记作)(00y x f y ,',或0 |y y x x y z ==',或 y y x f ??) (00,,或 0|y y x x y z ==??。 2、 可导与连续关系:尽管在某点处两个一阶偏导数都存在,却不能保证在该点处连续。 3、 在某区域上的一阶偏导数——若二元函数)(y x f z ,=在区域E 上每一点)(y x ,处都 有对x ,对y 的一阶偏导数,则对于区域E 上每一点)(y x ,都有一个对x 的一阶偏导数值和一个对y 的一阶偏导数值与之对应,于是得到两个新的二元函数,这两个新的二元函数分别称为)(y x f z ,=对x ,对y 的一阶偏导函数,简称一阶偏导数,分别记作 )(y x f x ,',或x z ',或 x y x f ??) (,,或 x z ??和)(y x f y ,',或y z ',或 y y x f ??) (,,或 y z ??。 二、二阶偏导数 1、 定义——二元函数)(y x f z ,=一阶偏导数的一阶偏导数称为二元函数) (y x f z ,=的二阶偏导数,共有四个,分别记作 x x xx y x f y x f ))(()(''='',,,或xx z '',或 2 2 ) (x y x f ??,,或 2 2 x z ?? y x xy y x f y x f ))(()(''='',,,或xy z '',或 y x y x f ???)(2 ,,或 y x z ???2 x y yx y x f y x f ))(()(''='',,,或yx z '',或x y y x f ???)(2 ,,或x y z ???2

相关文档
最新文档