碳化硅微粉的应用与生产方法

碳化硅微粉的应用与生产方法
碳化硅微粉的应用与生产方法

毕业设计(论文)

(说明书)

题目:碳化硅微粉的应用与生产

姓名:刘真穆

专业:石油化工生产技术

年级:2011届

学校:辽宁石油化工大学继续教育学院大连函授站

2011年月日

辽宁石油化工大学继续

教育学院毕业设计

(论文)任务书

姓名:刘真穆

专业:石油化工生产技术

班级:2009届

任务下达日期:2011年月日

论文开始日期:2011年月日

论文完成日期:2011年月日

论文题目:碳化硅微粉的应用与生产指导老师:

系(部)主任:

2011年月日

碳化硅微粉的应用与生产

引言:碳化硅的分子式为SiC。最早是由美国人艾奇逊在1891年电熔金刚石实验时,在实验室偶然发现的一种碳化物,当时误认为是金刚石的混合体,故取名金刚砂,1893年艾奇逊研究出来了工业冶炼碳化硅的方法,也就是大家常说的艾奇逊炉,一直沿用至今,以碳质材料为炉芯体的电阻炉,通电加热石英SiO2和碳的混合物生成碳化硅。

碳化硅不象其它矿物质那样有其自身矿藏,它也不会在自然界中自然出现,而需要用精炼炉的冶炼技术控制工艺来实现。早期碳化硅仅是用於研磨和切割用的材料。上一个世纪碳化硅的发展极其缓慢而艰难。以下是碳化硅在发展过程中的几大事件:

1.1905年第一次在陨石中发现碳化硅。

2.1907年第一只碳化硅发光二极管诞生。

3.1955年理论和技术上重大突破,LELY提出生长高品质碳化概念从此将SiC

作为重要的电子材料。

4.1958年在波士顿召开第一次世界碳化硅会议进行学术交流。

5.1978年六、七十年代碳化硅主要由前苏联进行研究。到1978年首次采用

“LELY改进技术”的晶粒提纯生长方法

6.1987年至今以CREE的研究成果建立碳化硅生产线,供应商开始提供商品化的碳化硅晶片。

关键词:碳化硅碳化硅微粉应用工艺

一、碳化硅的性质、种类和应用

1.碳化硅的性质和种类

碳化硅的化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。碳化硅是最早的人造磨料。在陨石和地壳中虽有少量碳化硅存在,但迄今尚未找到可供开采的矿源。纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体

结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC 于2100℃以上时转变为α-SiC。

碳化硅有黑碳化硅和绿碳化硅两个常用品种,分别用C和GC表示。它们都属α-SiC。①黑碳化硅含SiC约98.5%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。②绿碳化硅含SiC99%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于研磨汽缸套和精磨高速钢刀具。此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。

2.碳化硅的应用

由于碳化硅材料具有高硬度、高强度、低膨胀、耐高温、耐磨损、耐腐蚀等一系列优良特性,其在航天、航空、汽车、舰船、核能、电子、冶金、化工、机械等诸多领域的应用越来越广泛,需求也越来越多。

①有色金属冶炼工业的应用

利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。

②钢铁行业方面的应用

利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命。

③冶金选矿行业的应用

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一?

④建材陶瓷,砂轮工业方面的应用

利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

⑤节能方面的应用

利用良好的导热和热稳定性,作热交换器,燃耗减少20%,节约燃料35%,使生产率提高20-30%?特别是矿山选厂用排放输送管道的内放,其耐磨程度是普通耐磨材料的6—7倍?

⑥半导体材料方面的应用

由于碳化硅材料具有宽能级、高击穿电场、高热传导率以及高饱和电子迁移速度等独特、优良的物理和电子特性,使其成为半导体领域的最佳材料。如:蓝色发光二极管、紫外线探测器、高压二级管、大功率微波器、以及各种耐高温的高频器件等。

本文的生产与工艺均为大连信东高技术材料有限公司的生产工艺应用

二、碳化硅微粉的干式制法

1.碳化硅的制法

现代碳化硅的工业制法是用优质石英砂、石油焦和硅石在电阻炉内炼制。炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。

黑碳化硅和绿碳化硅的炼制方法略有不同。其中黑碳化硅的制法是:以石英砂、石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。性脆而锋利。绿碳化硅的制法是以石油焦优质硅石为主要原料以食盐做添加剂通过电阻炉高温冶炼而成。

2.碳化硅微粉的制法:

制备碳化硅微粉的方法有很多,如:机械粉碎法、激光合成法、等离子合成法、CVD法、、溶胶—凝胶法、高温裂解法等。在各种方法中机械粉碎法因其工艺简单、投资小、成本低、产量大,目前仍是制备碳化硅微粉的主要方法。

3.碳化硅微粉的粉碎设备

目前国内对于碳化硅微粉粉碎的设备种类很多。如:搅拌磨机、振动磨机、辊式磨粉机、气流磨粉机及球磨机等等。传统的球磨机应用较早,设备稳定性好,但效率低,能耗大,且不容易得到很细的微粉,加工的微粉粒径分布范围较宽,增加了分级难度。振动磨机粉碎效果还可以,但其能耗较高,工作时噪音大,细磨碳化硅等硬质材料时设备磨损严重。气流磨生产效率较高,生产能力较小,工艺简单,但难以生产5μm以下的微粉,喷嘴极易磨损,设备投资大。而辊式磨机具有处理量大,工作可调,产品粒度便于调节,等优点被作为国内外碳化硅微粉加工的首选设备。而其中最具代表性的就是雷蒙磨。它也是本文中碳化硅微粉粉碎的使用设备。

4.用雷蒙磨加工碳化硅微粉的方法(见图一)

雷蒙磨又叫悬辊式磨机。原料由机体侧面通过振动给料机(H)自动给入机内,辊子由轴悬挂在梅花架上,梅花架在传动装置(J)的带动下绕机体中心轴线高速旋转,与辊子平行的磨环是固定不动的,由于高速公转产生的离心力辊子向磨环压紧并在其上滚动,经过磨辊与磨环之间的物料受到辗压和冲击破碎后落入磨仓(A)底部,粗颗粒由磨仓底部的铲刀铲起并扬到辊子与磨环之间磨碎,外部风机(E1)

鼓动气流从磨环下部以切线方向吹入,把粉碎后的细颗粒吹起,经过辊子和主轴间隙区经风力分级机(B)初分后合格品经旋风收集罐(D)收集,大于分级机设定参数粒度的微粉又落回磨中继续粉碎。

由于雷蒙磨在粉碎过程中也产生较多的超细微粉,而雷蒙磨本身的分级机只能分离出超过设定标准的颗粒,小于设定标准的颗粒也同样被旋风收集罐收集。造成粉碎出的产品粒度分布较宽,细料较多的问题。为了解决这一问题我们在原雷蒙磨粉碎、分级系统的末端添加一台气流分级机(C),通过调整分级机的转速和引风机(E2)风力的大小,把雷蒙加工后的微粉进行二次分级。使大部分细料被引风机吸至降尘室(G),用布袋回收。这种工艺的改进使得加工后的微粉粒度分布更窄,提高了颗粒的均匀性和再加工的有效性。

(本文粉碎生产设备:日本石井22G型3辊式雷蒙磨)

(附图一):雷蒙磨粉碎、分级设备工艺流程简图

(图一)

5.粉碎、分级样品的粒度分析

为了验证二次分级产品的效果,我们在旋风罐出料口和气流分级机出料口分别设置一个取样点。对所取的样品用Multisizet 3型粒度分析仪进行粒度检测。粒度的表示方法多用:dv0%,dv3%,dv50%和dv94%来表示。其中dv0%表示粒度分布段中最大颗粒的粒度;dv50%表示粒度分布段中累积体积50%颗粒的粒度也叫中值,中值也做为粒度检测中的重要依据;dv94%表示粒度分布段中累积体积94%颗粒的粒度,也可做为最细颗粒来分析。

本文粒度分析检测设备:(美国Multisizer 3型粒度分析仪);粒度检测方法为电阻法

(附图二):雷蒙磨粉碎样品和二次分级样品粒度分析图

1.雷蒙磨样品粒度分析图

2.二次分级后样品粒度分析图

本文粒度检测方法依据日本工业标准:JIS R6002 粒径(um)测定方法

(附表1)雷蒙磨样品和二次分级样品累积体积比的粒度分布数据:

从两份样品的粒度分布上来看,雷蒙磨样品和二次分级后样品的累积体积比各部分数据都有明显的变化。雷蒙磨样品的dv0%和dv3%值经二次分级后降低了;雷蒙磨样品的dv50%值(也叫中值)和dv94%值提高了,总体样品的粒度分布变窄了。经过二次分级样品粒度的正态分布要好于雷蒙磨样品粒度的正态分布。由此可见在雷蒙磨磨粉系统中添加气流分级机可以使碳化硅微粉的粒度分布更窄,取得粒度正态分布更好的微粉。

三.碳化硅微粉的水力分级制法

随着碳化硅微粉在各行业、各领域的广泛应用,以及各项高、精、尖端科学技术的迅速发展。市场上对于碳化硅微粉的品质和纯度提出了更高的要求,以往的加工方法加工出的低端产品早已不能适应市场的需求。这就要求我们改变观念,勇于创新,研发出高品质、高纯度的,能在激烈的市场竞争中独具特色的高端产品。而现在国内多数厂家也看到了这种市场趋势,纷纷开始了新工艺、新产品的研发。我国的碳化硅产业也正由最初的原料粗加工逐步细化,生产出了更多的高品质碳化硅微粉和超细微粉。

目前国内对于碳化硅微粉的提纯、分级加工的方法,主要是以日本技术为主导的水力精分选工艺方式又叫水溢流分选方式,行业中普遍叫水力分级。本文所提出的水力精分选工艺方法是大连信东高技术材料有限公司于1996年,学习日本Shineno电气制炼株式会社的最新水力精分选生产工艺流程。本工艺流程在公司的生产中取得了很好的碳化硅微粉精分选应用效果,生产出的碳化硅微粉纯度高,粒度分布窄,品质稳定。并得到了客户的一致肯定与好评,凭借这一技术使该公司的

产品品质一直处于国内领先水平。下表为大连信东高技术材料有限公司的水力分级生产工艺流程。

(附图三)碳化硅微粉的水力分级生产工艺流程

图例:1. 物料流程

2.产品流程

3.副品流程

(图三)

由于碳化硅在冶炼和粉碎过程中不可避免的混入了各种杂质,而这些杂质在碳化硅微粉的使用过程中,对其所加工的产品质量和制造的半导体器件的性能等都有极大的影响,增加制品的不良品率,降低加工品的表面加工质量等等。因此要把碳化硅微粉做精做细首先就要解决去除其中所含杂质的问题。

碳化硅中的杂质主要有碳、三氧化二铁、三氧化二铝、氧化钙和氧化镁以及二氧化硅等等。这些物质在碳化硅微粉做不同的用途时分别产生不同的影响,其中尤其以三氧化二铁为重。而在碳化硅的工艺流程生产中较多的采用加酸除杂质的方式。这种方式的优点是成本较低、除杂率高、

本工艺流程的特点是:把粉碎后,经过二次气流分级的碳化硅微粉用软化水按一定比例配制成搅拌均匀的碳化硅料浆。用渣浆泵把料浆输送至硫酸反应槽,按一定比例加入适当量的浓硫酸(约95%纯度),加酸后将料浆搅拌均匀,并测定PH值(PH值最好是小于2.0)使料浆在槽内反应10小时以上,以除去产品中的杂质(主要为Fe2O3)。以现有原料为例加酸前碳化硅料浆Fe2O3含量较高,经过硫酸处理10小时以后Fe2O3含量降至0.1%以下。可以满足于客户的要示。(见表二)

检测方法依据GB/T 3045-2003碳化硅化学分析方法

(附表2)加酸前后Fe2O3含量的比较

加酸反应原理:Fe2O3+3H2So4=Fe2(So4)3+3H2O

由于加酸后碳化硅料浆PH<2.0呈酸性,为了保证产品的PH值在合格范围内(根据国标或客户需求),要对料浆进行洗酸即流程图中的酸压机脱酸工序。该公序使用的压滤机主要是板框式压滤机。该机的优点是构造简单,制造方便、价格低;过滤面积大、操作简单等,目前在国内碳化硅行业使用较为普遍。脱酸后产品PH 值标准在6.5以上。(也可根据客户要求)

检测方法按照JIS R6129-1976产品的PH值检测标准(6.5~7.9)

把脱酸后的碳化硅料浆转移到调整槽中按一定的比例添加分散剂,使料浆分散均匀,为后序的除细和分级工作做准备。

除细和分级主要的工作原理就是水力精分级原理。这种分级方法主要是通过调节溢流罐的进水流量,借助自下而上的溢出水流的浮力实现对不同碳化硅微粉颗粒的筛选。不同的进水流量会对微粒产生不同的浮力,当微粒受到的浮力和微粒本身

的重力达到平衡状态后,就会使微粒缓慢上浮从而被筛选出来,所以只需要由微粒的直径和密度计算出重力和微粒受到的浮力,就可以控制进水流量筛选出不同粒径的碳化硅微粉颗粒,达到水力精细分级的目的。下图为碳化硅水溢流分选工艺简图(附图四)水溢流分级工艺原理简图

1.溢流罐进水口

2.溢流罐罐体

3.SiC颗粒溢出口

4.集料罐

目前在大连信东的水分线上通过这种方式生产的碳化硅微粉产品型号主要有:700#、800#、1000#、1200#、1500#、2000#、2500#、3000#等8种产品。产品的型号主要是以产品的粒径大小来区分,(见表3)

(附表3)精密研磨用微粉粒度的分布(电阻法)单位:um

注:(2)表示累积高度75%点的粒子径(dv75%值)产品的颗粒直径越大则需要的溢流流量也越大。即不同的产品型号所对应的溢流水流量也不同。在实际生产中必须要控制溢流水流量尽可能的在dv50%对应的流量范围内工作,而且要遍历dv50%范围内的各个流量值,这样才能充分利用原料和获得较好的分级效果。流量范围是根据粒度浮力和重力的关系,把理论计算和现场实践校调后的试验结果,从而得到我们在生产过程中需要的重要流量参数。

综上所述水力精分选溢流生产工艺的主要要求是根据产品需要,实时调节溢流罐入口处的水流量,通过流量的变化将目标粒度的碳化硅颗粒筛选出来。

产品被分选出来以后还是以料浆的形态存在,要想获得微粉产品我们还要把料浆中的水分去掉,这就需要用到压滤和干燥环节。压滤机的使用我们在脱酸时也简单介绍过,这里不再赘诉。干燥主要采用的是箱式干燥器,电加热的方式。烘干后的物料还要再进行一次超声筛筛分,去除压滤和烘干过程中混入的杂物等。最后包装、检验、出成品。

在本工艺流程中特别值得一提的是,碳化硅料浆在一次水分(主要为3000#----1200#)和二次水分(主要为1000#-----700#)后,还有一定数量较粗粒度分布的料浆无法处理。如果重新投入使用会使生产线中的料浆粒度增高,影响产品粒度和分级效果。在本工艺流程的末端加入一部国内碳化硅行业常用的球磨机,把分级后的粗粒度料浆再次进行粉碎。这样就会把余料的粒度加工成适合再生产使用的料浆。由于球磨机在加工过程中不可避免的混入较多铁质,所以我们把经其加工后的料浆直接移入酸槽,进行酸洗除杂后继续投入生产中使用。这样周而复始的循

环利用,很好的节约了原料成本,提高了原料的有效使用性,达到了利用原料最大化的目的。

四.碳化硅微粉未来的发展展望

随着新能源的不断开发和应用,光伏太阳能产业正在兴起。国际咨询公司Frost&Sullivan 2009年11月底发表的研究报告认为,未来一段时间光伏耗材市场将快速增长,预计在2012年,光伏耗材的市场总规模将达到32.5亿美元,年增长率达到43.6%。这就意味着碳化硅做为单晶硅和多晶硅切割主要耗材的需求量也会大幅要求。1.是对切割用微粉的粒度,要求分布非常集中;2.线切割微粉的锋线度;3.线切割微粉的化学成份;4. 线切割微粉的堆积密度;5.线切割的表面清洁度等增长。碳化硅是光伏产业链上游环节——晶硅片生产过程中的专用材料,太阳能电池片——晶硅片切割处于整个太阳能电池产业链的上游,是硅太阳能太阳能电池制造的基础,晶硅电池片切割离不开碳化硅微粉。由于太阳能产业的强力拉动,造成晶硅电池片切割专用碳化硅微粉产品供不应求。适用于晶硅电池片切割的碳化硅微粉,与普通的磨料有很多的不同,质量有了更高的一系列指标都有严格的要求。晶硅片切割刃料一开始都是进口发达国家知名厂家的产品,如日本FUJIMI,SHINONA 德国ESK等厂家。碳化硅微粉作为光伏产品中的一个高端产品,在国际市场呈现出良好的需求态势及市场潜力,目前,我国太阳能发电产业有了突飞猛进的发展。在中华人民共和国《可再生能源中长期发展规划》中,太阳能等可再生能源被列为2010年和2020年可再生能源发展重点领域。国家对太阳能等可再生能源给予极大支持.这一法律的实施为今后中国可再生能源的发展开辟更加广阔的前景。中国对太阳能等可再生能源的大规模开发,可在经济快速发展过程中减少对石油、煤炭等能源的依赖,进一步缓解经济快速发展中能源的供需矛盾,同时取得更大的环境效益。

而碳化硅——自然界最具有使用价值的超硬材料之一,也必将随着世界太阳能产业的发展以及在其它领域的广泛应用取得不可替代的作用。由于碳化硅本身用途极为广泛,因此加强市场的开发,拓宽研发思路,不断开发出碳化硅新制品、新应用是碳化硅行业今后健康、稳定、快速发展的必由之路。

在本论文的编写过程中,得到了大连信东高技术材料有限公司领导和同事的大力协助,并提供了相关的资料、数据和产品样本以及分析结果等,在此对他们表示

由衷的感谢!

参考文献:

1.不详浅谈碳化硅简介及产业发展分析平顶山工业职业技术学院2. 徐南屏碳化硅——未来功率器件材料中国电工技术学会电力电子学会3.余森碳化硅制造机械工业部机床工具总局4.张国旺超细粉碎设备及其应用冶金工业出版社5.不详晶硅片切割专用SiC微粉产业现状及发展中国磨料磨具网

氮化硅结合碳化硅材料的生产与应用_张林

氮化硅结合碳化硅材料的生产与应用 ◆ 张 林 孟宪省 山东工业陶瓷研究设计院 淄博255031 ◆ 赵光华 朱喜仲 水利部丹江口水利枢纽管理局碳化硅总厂 摘 要 阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景。 关键词 氮化硅结合碳化硅,工艺,生产,应用 1 生产工艺与性能 1.1 混料 压制料是按配方称量SiC砂和Si粉,倒入高效混料机,并均匀加入事先称量好且加水稀释的添加剂和临时结合剂。搅拌15~20min,并过筛,放入料仓困料24h以上。 挤出料是根据配方,用上述相似的方法进行混料和困料。并应额外加入可塑剂。 注浆料是先将Si粉放在水池中浸泡48h后,再由泥浆泵抽送到压滤机经压滤处理。根据配方称量SiC砂和Si饼,倒入高速搅拌罐并加入一定量的水、临时结合剂和悬浮剂搅拌2h。 1.2 成型 压制成型是将困好的料准确称量后,均匀布于模具中,振动加压成型,再经真空吸盘转移到储坯车上。 挤出成型是将混合料放入真空练泥机进行真空处理,使泥料均匀混合。泥料用塑料薄膜覆盖严实,困料24h,再经真空挤出成型机挤出。 浇注成型主要是满足异型件要求,由于SiC 砂和Si粉为瘠性料,自身密度大,导致泥浆的悬浮性差,易产生沉淀,使泥浆内颗粒分布不均匀。因此,配方中颗粒不能太粗且比例要适当,同时加入悬浮剂和解胶剂(一般采用明胶),并采用压力注浆。然后把经24h搅拌过的泥浆从储浆罐抽入压力注浆罐中,进行真空处理,注浆罐带有慢速搅拌机,加压后泥浆通过管道输送至浇注台的石膏模内成型;保持一定的压力和时间,待吃浆厚度达到要求后,空浆;坯体巩固后,脱模。 1.3 干燥 成型后粗修和整形的合格坯体,入储坯车至干燥室内。干燥室的热风来自热风炉(或窑炉余热利用),热风温度以100~120℃为好,有条件也可使用电热干燥。应严格控制升温速度,以免坯体出现变形或开裂。坯体干燥3天。达到干燥残余水分(一般<0.5%)后推出冷却,经精修坯体和生坯检查,合格的进入氮化炉烧成。 1.4 烧成 合格干燥品装入窑车进氮化室,对氮化反应空间密封后推入梭式窑,接上充氮管和抽真空管,升温至700~1450℃进行抽真空和氮化烧成。中高温氮化阶段(指1100℃以上),严格控制升温制度及氮气质量,氮气纯度应达到99.99%以上。在1180℃及1280℃两个反应高峰期应增加保温时间,以免反应过速出现“流硅”。 1.5 制品的性能 氮化硅结合碳化硅制品抗折强度随温度升高而提高,至1400℃时,强度开始下降,但到1500℃时仍保持常温抗折强度指标。氮化硅结合碳化硅材质的高温抗折强度是普通耐火材料的4~8倍;热膨胀系数是高铝耐火材料的一半;导热系数是一般耐火材料的7~8倍[1]。 生产应用 NAIHU O CAILIAO 1999,33(3)156~157,175  收稿日期:1998-09-07编辑:徐慧娟156  耐火材料1999/3

碳化硅行业发展前景简析

碳化硅行业发展前景简析 【引言】近年来,在低碳经济大潮的带动下,太阳能光伏产业迅猛发展,作为光伏产业用的材料,碳化硅特别是绿碳化硅的销售市场异常火爆,使得众多磨料磨具业界人士开始格外关注碳化硅行业。在2010年秋季全国磨料磨具行业信息交流暨第52届中国刚玉碳化硅交易会的小组分会中,碳化硅分会场一改往届与其它分会场相比人气不足的常态,势压刚玉、磨具分会场成为人气最高、讨论最激烈的会场。会上中平能化集团易成新材料有限公司董事长孙毅就碳化硅行业的发展前景作了系统的分析。 一、碳化硅行业发展现状 总量大 中国是碳化硅的生产大国和出口大国,2009年碳化硅总产量达53.5万吨左右,占全球总数的56.3%,居世界第一。我们预计,2010年截止9月份仅绿碳化硅产量就将达到80万吨。 附加值低 碳化硅行业产量大,但缺乏竞争力。尽管产量足够供应,中国制造的碳化硅产品大部分是低端和初步加工,对于某些需求供应高附加值的成品和深加工产品存在很大的差距。尤其是高性能工程陶瓷、用以高端的研磨粉等产品的供应还远远没有满足,核心技术大多仍由日本控制。主要还是靠进口弥补国内市场的不足。 光伏行业带动出现机会 随着传统矿物质能源日益枯竭,以太阳能电池为代表的光伏产业得到迅速发展。据我国正在制定的《新兴能源产业发展规划》显示,到2020年可再生能源消费占一次能源消费中的比例要达到15%,光伏产业发展趋势总体呈现稳中有升。 碳化硅是光伏产业链上游环节——晶硅片生产过程中的专用材料,受光伏行业发展的带动,碳化硅行业通过产品结构升级和下游需求的扩展带来了一些机会。 不确定性 尽管如此,由于碳化硅生产属于高耗能、高污染,受到能源短缺的阻碍和国家能源节约的政策影响,还有一些具体审查和批准新项目受到闲置,比如低电价优惠的有关政策已经被取消;目前国家严格控制新项目,原有6300KV A以下规模的碳化硅冶炼要求强制关停。所以碳化硅行业的未来发展将面临很多不确定性 二、碳化硅行业竞争格局分析 1.外部经济环境

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

第三代半导体面SiC碳化硅器件及其应用

件)器及其应用i三第代半导体面-SC(碳化硅以其优良的物理化学特性和电特性成为制SiC作为一种新型的半导体材料,造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重器件的特性要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件和各类传感器已逐步成为SiCGaAs器件.因此,远远超过了Si器件和关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC 上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,

均为SiO2,这意味上制造出来.尽管只是简SiC帕型器件都能够在M 器件特别是Si着大多数. 单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC MOSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能. 1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV 的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边

碳化硅工艺过程

生产技术 一、生产工艺 1.碳化硅 原理:通过石英砂、石油胶和木屑为原料通过电阻炉高温冶炼而成,主要反应机理是SiO2+3C----SiC+2CO。 碳化硅电阻炉制炼工艺:炉料装在间歇式电阻炉内,电阻炉两端端墙,近中心处是石墨电极。炉芯体连接于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。冶炼时,给电炉供电,炉芯温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发尘化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成碳化硅愈来愈多。碳化硅在炉内不断形成,蒸发移动,晶体长大,聚集成为—个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。 破碎:把碳化硅砂破碎为微粉,国内目前采用两种方法,一种是间歇的湿式球磨机破碎,一种是用气流粉末磨粉机破碎。我公司已由气流粉末磨碎机代替湿式球磨机破碎。 湿式球磨机破碎时用是用湿式球磨机将碳化硅砂磨成微粉原料,每次需磨6-8小时。所磨出的微粉原料中,微粉约占60%左右。磨的时间越长,则微粉所占的比例越大。但过粉碎也越严重,回收率就会下降。具体的时间,应该与球磨比、球径给配、料浆浓度等工艺参数一起经实验优选确定。该方法最大的优点就是设备简单,缺点是破碎效率较低,后续工序较复杂。

雷蒙磨粉机工作原理是:颚式破碎机将大块物料破碎到所需的粒度后,由提升机将物料输送到储料仓,然后由电磁振动给料机均匀连续地送到主机的磨腔内,由于旋转时离心力作用,磨辊向外摆动,紧压于磨环,铲刀与磨辊同转过程中把物料铲起抛入磨辊与辊环之间,形成填料层,物料在磨辊与磨环之间进行研磨。粉磨后的粉子随风机气流带到分级机进行分选,不合要求的粉子被叶片抛向外壁与气流脱离,粗大颗粒在重力的作用F落入磨腔进行重磨,达到细度要求的细粉随气流经管道进入大旋风收集器,进行分离收集,再经卸料器排出即为成品粉子,气流由大旋风收集器上端回风管吸入鼓风机。在磨腔内因被磨物料中有—定的水分,研磨时发热,水气蒸发,以及各管道接口不严密,外界气体被吸入,使循环风量增高,为保证磨机在负压吠态下工作,增加的气流通过余风管排入除尘器,被净化后排入大气。整个气流系统是密闭循环的,并且是在正负压状态下循环流动的。该法最大的优点是效率较高。而且后续工序较简单。 2、碳化硅微粉 (一)、碳化硅微粉的生产

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

碳化硅的用途

碳化硅的用途 碳化硅是典型的多晶型化合物,按大类来分,有α-碳化硅和β-碳化硅两种。α-碳化硅做为磨料有黑、绿两种品种。β-碳化硅是制备碳化硅类陶瓷的主要原料。碳化硅的用途十分广泛,如:冶金、机械、化工、建材、轻工、电子、发热体。磨料可作为冶金工业的净化剂、脱氧剂和改良剂。在机械加工方面可作为合成硬质合金刀具;加工后的硅碳板可作为耐火材料用于陶瓷烧制的棚板。通过精加工后生产的微粉,可用于高科技电子元器件和远红外线辐射材料的涂料。高纯度精微粉可供国防工业航空航天器皿的涂层。对国际国内各经济领域的用途十分广阔。 碳化硅半导体能应对“极端环境”,据称,碳化硅晶片甚至可以经受住金星或太阳附近的热度。前期的研究表明,即使在560摄氏度的高温中,碳化硅晶片在没有冷却装置的情况下仍能正常运作。碳化硅晶片在通讯领域具有广阔的运用前景,能让高清晰电视发射器提供更清晰的信号和图像;也可以用在喷气和汽车引擎中,监测电机运转。同时,它还可运用于太空探索领域,帮助核动力飞船执行更繁杂的任务。法国物理学家预言,在芯片制造领域,碳化硅取代硅已为时不远。 1、磨料--主要因为碳化硅具有很高硬度,化学稳定性和一定韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。

2、耐火材料和耐腐蚀材料---主要因为碳化硅具有高熔点(分解度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用棚板和匣钵、炼锌工业竖缸蒸馏炉用碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 3、化工用途--因为碳化硅可在溶融钢水中分解并和钢水中离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁净化剂,即用作炼钢脱氧剂和铸铁组织改良剂。这一般使用低纯度碳化硅,以降低成本。同时还可以作为制造四氯化硅原料。 4、电工用途--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作各种电炉),非线性电阻元件,各式避雷阀片。 5、其它配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。 碳化硅用途细分: 1、有色金属冶炼工业的应用 利用碳化硅具有耐高,强度大,导热性能良好,抗冲击,作高间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。 2、钢铁行业方面的应用 利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。 3、冶金选矿行业的应用

第三代半导体面SiC碳化硅器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

碳化硅材料在汽车上面的应用探究

新型碳化硅材料在汽车上面的应用 1摩擦副材料的选配 由于航空用离合器是工作在高速、高温、高载荷状态下,楔块的材料应同时满足强度及耐磨损的需求,宜选用高强度、高温、硬度高、高导热性、耐热冲击、低热膨涨系数性质的材料, 根据以上使用特性,楔块常用材料一般选Cr14Mo4V、Gr4Mo4V、W18Gr4V、M -50、AMS6490等耐高温材料,硬度一般在HRC63左右。而相配合的内外套常选用镍铬钼材料(如18CrNi4A、SAE8640、AISI9310)或轴承钢ZGGr15等,滚道表面最小硬度不低于HRC60。 2 碳化硅等特种陶瓷的结构性能及种类 陶瓷的性能由两种因素决定。首先是物质结构,主要是化学键的性质和晶体结构。它们决定陶瓷材料的性能,如耐高温性、半导体性及绝缘性等。其次是显微组织,包括分布、晶粒大小、形状、气孔大小和分布、杂质、缺陷等。陶瓷材料在性能上有其独特的优越性。在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;在电性能方面有绝缘性、压电性、半导体性、磁性等;在化学方面有催化、耐腐蚀、吸附等功能;在生物方面,具有一定生物相容性能,可作为生物结构材料等。但也有它的缺点,其致命缺点是脆性。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。近期研究表明:用不同配比的各种原料和陶瓷复合材料制成的纳米级原材料经烧结可提高韧性。这一发现吸引了许多研究者,成为国际上研究的热点。预期合成陶瓷研究将使全陶瓷内燃机尽快成为现实。这是21世纪的新挑战,将使汽车发动机、刀具、模具等方面面貌一新。 工程陶瓷目前有氮化硅(Si3N4)、碳化硅(SiC),硅化钨(WSi2)、二氧化锆(ZrO2)、三氧化铝(A12O3)等。这些材料具有耐热、高硬度、耐磨、耐腐蚀、相对密度小等特点。若能用于燃气轮机,可使工作温度从目前的1100e提高到1370e,而热效率从60%提高到80%,应是理想的发动机材料。陶瓷材料种类繁多,各有特色,可制成各种功能元件。 碳化硅陶瓷是用碳化硅粉,用粉末冶金法经反应烧结或热压烧结工艺制成。碳化硅陶瓷最大特点是高温强度大、热稳定性好、耐磨抗蠕变性好。适用于浇注金属用的喉嘴、热电偶套管、燃气轮机的叶片、轴承等零件。同时由于它的热传导能力高,还适用于高温条件下的热交换器材料,也可用于制作各种泵的密封圈。氮化硅陶瓷抗温度急变性好,硬度高,其硬度仅次于金刚石、氮化硼等物质,用氮化硅陶瓷材料制作发动机,由于工作温度达到1370e,发动机效率可达30%,同时由于温度提高,可使燃料充分燃烧,排出废气污染成分大幅度降落,不仅降低能耗,并且减少了情形污染。氮化硅陶瓷原料丰富、加工性好,可以用低成本生产出各种尺寸精确的部件,特别是形状复杂的部件,成品率比其他陶瓷材料高。金属陶瓷,主要包括六大类:介电陶瓷、半导体陶瓷、磁性陶瓷、压电陶瓷、热电陶瓷、绝缘陶瓷等,该技术有助于节能环保。除了提高汽车的安全性和舒适性之外,如何提高环保性能也是一个焦点。 3 陶瓷发动机 陶瓷具有较好的高温强度、耐蚀性和耐磨性,尤其是氮化硅和碳化硅陶瓷,有可能作为高温结构材料来制造发动机。陶瓷发动机已成为当前世界各国竞相开发的目标之一。用陶瓷材料制造的发动机,具有以下优越性:陶瓷的耐热性好,这可以提高发动机的工作温度,从而使发动机效率大大提高。例如,对燃气轮机来说,目前作为其制造材料的镍基耐热合金,工作温度在1000e左右;若采用陶瓷材料,工作温度可达1300e,使发动机效率提高30%左右;工作温度高,可使燃料充分燃烧,排出废气中的污染成分大大减少。这不仅降低了能源消耗,而且减少了环

碳化硅工艺过程简述

碳化硅磨料通常以石英、石油焦炭为主要原料。它们在备料工序中经过机械加工,成为 合适的粒度,然后按照化学计算,混合成为炉料。磨料调节炉料的透气性,在配炉料时要加适量的木屑。制炼绿碳化硅时,炉料中还要加适量的食盐。 炉料装在间歇式电阻炉内。电阻炉两端是端墙,近中心处有石墨电极。炉芯体即连于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。制炼时,电炉供电,炉芯体温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发生化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成的碳化硅也越来越多。它在炉内不断形成,蒸发移动,结晶长大,聚集成为一个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。炉自送电初期,电热主要部分用于加热炉料,而用以形成碳化硅的热量只是较少的一部分。送电中期,形成碳化硅所用的热量所占比例较大。送电后期,热损失占主要部分。调整送电功率与时间的关系,优选出最有利的停电时间,以期获得最好的电热利用率。大功率电阻炉通常选择送电时间在24小时左右,以利作业安排。在此基础上,调整电炉功率与炉子规格的关系。 电阻炉送电过程中,除了形成碳化硅这一基本反应外,炉料中各种杂质也发生一系列化学的和物理的变化,并发生位移。食盐亦然。炉料在制炼过程中不断减少,炉料表面变形下沉。反应所形成的一氧化碳则弥漫于大气中,成为污染周围大气的有害成分。 停电后,反应过程基本结束。但由于炉子很大,蓄热量就很大,一时冷却不了,炉内温度还足以引起化学反应,因此,炉表面仍继续有少量一氧化碳逸出。对于大功率电炉来说,延续的残余反应可达3~4小时。这时的反应比起送电时的反应来说,是微不足道的。但因为当时 炉表面温度已经下降,一氧化碳燃烧更不彻底。从劳动保护角度来说,仍应予以足够重视。停电后经过一段时间冷却,就可以拆除炉墙,然后逐步取出炉内各种物料。 制炼后炉内的物料,从外到里,构成下列各物层: (1)未经反应的物料 这部分炉料在制炼时未达到反应温度,因而不起反应,只起保温作用,它在炉中所占的位置叫保温带。保温带炉料与反应带炉料的配制方法、制炼后该部位炉料的利用方法不尽相同。有一种工艺方法,在保温带的特定区域内装炉时装以新料,制炼后取出配到反应料中去,这就叫做焙烧料。若将保温带上未反应的料经再生处理,稍加焦炭及适量木屑,配制成保温料重新利用,就称之为乏料。 (2)氧碳化硅层

国内外碳化硅的研究和发展、

摘要: 随着工业的发展和科学技术的进步,碳化硅的非磨削用途在不断扩大,在耐炎材料方面用于制作各种高级耐炎制品,如垫板、出铁槽、坩锅熔池等;在冶金工业上作为炼钢脱氧剂,可以节电,缩短冶炼时间,改善操作环境;在电气工业方面利用碳化硅导电、导热及抗氧化性来制造发热元件——硅碳棒。碳化硅的烧结制品可作固定电阻器,在工程上还可作防滑防腐蚀剂。碳化硅与环氧树脂混合可涂在耐酸容器中、蜗轮机叶片上起防腐耐磨作用。SiC由于具有优良的耐高温、耐磨耗、耐腐蚀及高的热传导性能,近年来受到人们极大关注。作为一种新型的非氧化物精细陶瓷材料,其研究与应用均取得了长足的发展。 关键词:碳化硅,结构,粉体合成,碳化硅制品 正文: 一、SiC的结构 SiC晶型结构有αβ型二种,α型为六方晶型,β型为立方晶型。α型SiC 的分解温度在2400度左右,称为高温异形体2在温度低于2000度时,SiC以β型方式存在,称为低温异形体。立方晶型的β—SiC可在1450度左右由简单的硅和碳混合物制得,温度高时β—SiC 会转相生成α—SiC。SiC没有一个固定的熔点,在密堆积系中,在1bar 总压力下,约在! 0.3!时分解成石墨和富硅熔融物,此温度是形成SiC晶体的最高温度。在松散的堆积系中,SiC在2300度左右开始分解,形成气态硅和石墨残余物。 二、SiC粉体的制作方法 SiC粉体的制作方法大体可分为两大类。一是把由固相得到的粗粒子进行粉碎的分解方法;另一类是用气相法等直接合成SiC 细粉末的聚集方法。这两大类方法根据原料的种类和加热方式的不同,又被分成几种。 (1)A cheson法 这是一种最古老的工业化生产SiC的方法,把硅石和焦炭进行混合作为原料,充填在石墨炉芯的周围,给炉芯通电加热,使炉芯周围温度达2500度以上,反应生成物在此温度下反复进行再结晶,就得到了从晶粒成长起来达数cm厚度的α—

碳化硅性能与碳化硅生产工艺

碳化硅性能与碳化硅生产工艺 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质: 碳化硅主要有两种结晶形态:b-SiC 和 a-SiC。b-SiC 为面心立方闪锌矿型结构,晶格常 数 a=0.4359nm。a-SiC 是 SiC 的高温型结构,属六方晶系,它存在着许多变体。 碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近, a-SiC 一般为3.217g/cm3,b-SiC 为 3.215g/cm3.纯碳化硅是无色透明的,工业 SiC 由于含有游离 Fe、Si、C 等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC 热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为 64.4W/ (m·K)。常温下SiC 是一种半导体。 碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成: ①碳化硅的冶炼方法,合成碳化硅所用的原料主要是以 SiO2 为主要成分的脉石低档次的碳化硅可用低灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中 SiO2 含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的 SiO2 可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于 1.2%,挥发分小于 12.0%,石油焦的粒度通常在 2mm 或 1.5mm 以下。木屑用于调整炉料的透气性能,通常的加入量为 3% ~5%(体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在 2000~2500℃的电阻炉内通过以下反应生成碳化 硅:SiO2+3C→SiC+2CO↑-526.09Kj CO 通过炉料排出。加入食盐可与 Fe、Al 等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO 气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从 1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2 熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成 Sic 的反应;温度升高至1700~1900℃时,生成 b-SiC;温度进一步升高至 1900~2000℃时,细小的 b-SiC 转变为 a-SiC,a-SiC 晶粒逐渐长大和密实;炉温再升至 2500℃左右,SiC 开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK 法。 艾奇逊法:传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/cf11466239.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

相关文档
最新文档