高考数学总复习含答案:圆的方程(基础)知识梳理

高考数学总复习含答案:圆的方程(基础)知识梳理
高考数学总复习含答案:圆的方程(基础)知识梳理

圆的方程

【考纲要求】

1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,

2.能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.

3.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;

4.能用待定系数法,由已知条件导出圆的方程. 【知识网络】

【考点梳理】

【高清课堂:圆的方程405440 知识要点】 考点一:圆的标准方程

222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.

要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2

2

2

x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222

a b r +=.

(2)圆的标准方程2

2

2

()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点.

(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.

考点二:圆的一般方程

当22

40D E F +->时,方程2

2

0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ??

-

- ??

?

为圆心,为半径. 圆的方程

圆的一般方程

简单应用

圆的标准方程

点与圆的关系

要点诠释:由方程2

2

0x y Dx Ey F ++++=得22

224224D E D E F x y +-?

???+++= ? ??

???

(1)当22

40D E F +-=时,方程只有实数解,22D E x y =-

=-.它表示一个点(,)22

D E --. (2)当2

2

40D E F +-<时,方程没有实数解,因而它不表示任何图形.

(3)当22

40D E F +->时,可以看出方程表示以,2

2D E ??

-- ???为半径的圆. 考点三:点和圆的位置关系

如果圆的标准方程为2

2

2

()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有

(1)若点()00M x y ,在圆上()()22

2

00||CM r x a y b r ?=?-+-=

(2)若点()00M x y ,在圆外()()22

2

00||CM r x a y b r ?>?-+->

(3)若点()00M x y ,在圆内()()22

2

00||CM r x a y b r ?

圆的标准方程与一般方程的转化:标准方程垐垐?噲垐?展开

配方

一般方程. 【典型例题】

类型一:圆的标准方程

例1. 已知圆与y 轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.

【思路点拨】已知圆与y 轴相切,圆心在直线x-3y=0,因此可设圆的标准方程,利用待定系数法解决问题.

解析:设圆心为||3a

a r a ?

?∴= ???

,,

()2

2

2

6133111

a a a a a ??

∴-+-= ???

∴==或 ∴圆心为(3,1)(111,37)

∴圆的方程为(x-3)2+(y-1)2=9或(x-111)2+(y-37)2=1112

. 总结升华:圆心或半径的几何意义明显,则可设标准方程. 举一反三:

【变式1】若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程是( )

A. 2

2

(2)(1)1x y -+-= B.2

2

(2)(1)1x y -++=

C. 2

2

(2)(1)1x y ++-= D. 22

(3)(1)1x y -+-=

解析:依题意,设圆心坐标为(,1)a ,其中0a >,则有|43|

15

a -=,由此解得2a =,因此所求圆的方程是2

2

(2)(1)1x y -+-=,选A.

类型二:圆的一般方程

例2.求过三点A(1,12),B(7,10),C(-9,2)的圆的方程,并求出圆的圆心与半径,作出图形. 【思路点拨】因为圆过三个定点,故可以设圆的一般方程来求圆的方程. 解:设所求的圆的方程为2

2

0x y Dx Ey F ++++=,

依题意有??

?

??=++-+=++++=++++.029481,010710049,0121441F E D F E D F E D

解得D=-2,E=-4,F=-95.

于是所求圆的方程为x 2+y 2-2x-4y-95=0. 将上述方程配方得(x-1)2+(y-2)2=100.

于是,圆的圆心D 的坐标为(1,2),半径为10,图形如图所示.

总结升华:求过三个定点的圆的方程往往采用待定系数法来求解.利用圆经过不在同一直线上的三点的条件,由待定系数法求出圆的一般式方程,并由此讨论圆的几何性质,这是解题的捷径.

对于由一般式给出的圆的方程,研究其几何性质(圆心与半径等)时,常可用配方法或公式法加以求解.如由公式可得2221

(2)(4)(4)4(95)102

r =

-+-+---=. 举一反三:

【变式1】圆与y 轴相切,圆心P 在直线30x y -=上,且直线y x =截圆所得弦长为27,求此圆的方程。

【答案】:设圆方程为:2

2

2

()()x a y b r -+-=

∵且圆心(,)a b 在直线30x y -=上,∴3a b = ∵圆与y 轴相切,∴||3||r a b ==

故圆方程为222

(3)()9x b y b b -+-=,又因为直线y x =截圆得弦长为7

则有2

22(

(7)92

b +=,解得1b =± 故所求圆方程为:2

2

(3)(1)9x y -+-=或2

2

(3)(1)9x y +++=。

【变式2】求经过点(1,2)M 、(3,4)N 且在x 轴上截得的弦长为6的圆C 的方程。 【答案】:方法一:设圆心(,)a b ,半径长r ,

由垂径定理可以得到圆C 与x 轴两交点为(3,0)P a -、(3,0)Q a +, 由(1,2)M 、(3,4)N 得1MN k =且MN 的中点坐标(2,3),

则MN 的垂直平分线方程为3(2)y x -=--,PQ 的垂直平分线方程为x a =。 解方程组:??

?--=-=)

2(3x y a

x 得圆心(,5)C a a -.

由||||CP CM =得2

2

)5(3a -+=2

-+-)3()1(2

a a ,解出16a =-,24a =.

当16a =-时,圆心1(6,11)C -,21130r =, 圆C 的方程为:22

(6)(11)130x y ++-= 当24a =时,圆心2(4,1)C ,2210r =,圆C 的方程为22

(4)(1)10x y -+-=

故所求圆的方程为:22(6)(11)130x y ++-= 或22

(4)(1)10x y -+-=. 方法二:设所求圆为2

2

0x y Dx Ey F ++++=. 令0y =得2

0x Dx F ++=, 在x 轴上截得弦长为:

22121212||()446x x x x x x D F -=+-=-=. 将(1,2)M 、(3,4)N 代入圆方程可得方程组:

??

???=--=+++=+++0364025430522F D F E D F E D ,解出?????=-=-=728111F E D 或???

??=-==27

2212222F E D 所求圆方程为228270x y x y +--+=或22

1222270x y x y ++-+=.

【变式3】根据下列条件分别写出圆的方程: (1)圆过三个点(2,2),(5,3),(6,0); (2)圆过三个点)2,4(),1,1(),0,0(N M O .

思路点拨:已知圆过三个点,且圆心、半径不明确,故可用一般方程来求解.

解析:(1)设圆的方程为:22

0x y Dx Ey F ++++=,解得:8212D E F =-??=-??=?

∴ 所求圆方程为:2

2

82120x y x y +--+=; (2)设所求的圆的方程为:02

2

=++++F Ey Dx y x

∵)2,4(),1,1(),0,0(N M O 在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组,

即??

?

??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D . ∴所求圆的方程为:0682

2

=+-+y x y x .

542

122=-+=

F E D r ;32,42-=-=-F

D .

得圆心坐标为(4,-3).

总结升华:

(1)圆的一般方程的形式要熟悉,并且能和圆的标准方程的形式区分开; (2)在求解圆的方程时要分析设哪种形式更简单. 类型三:点与圆的位置关系

例3.写出以点A(2,-3)为圆心,5为半径的圆的标准方程,并判断点M(5,-7),N(2,-1)与该圆的位置关系.

【思路点拨】求点与圆之间的距离是关键.

解析:圆的标准方程为()()2

2

2325x y -++=

||5MA r ===Q ,∴点M 在圆上;

||2NA r =

=

总结升华:判断点与圆的位置关系就是判断点到圆心的距离与半径的大小关系. 举一反三:

【变式1】已知圆的方程为()()2

2

5610x y -+-=,试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上、圆内还是圆外?

解析:分别计算点到圆心的距离:

||||||3CM CN CQ ====>=

=< 所以,点M 在圆上,点N 在圆外,点Q 在圆内. 类型四:与圆有关的轨迹问题

【高清课堂:圆的方程405440 典型例题六】

例4.已知点(10,0)Q ,点P 是圆2

2

16x y +=上的动点,求线段PQ 中点M 的轨迹方程. 【思路点拨】本题关键是找出点M 与点P 之间的联系(实际是坐标间的关系). 解析:设11(,)P x y ,(,)M x y ,则111022x x y y +=??

=?,所以11

210

2x x y y =-??=?

又因为点11(,)P x y 在圆上,所以22

1116x y +=

即22(210)(2)16x y -+=,整理得22

(5)4x y -+= 所以线段PQ 中点M 的轨迹方程为22

(5)4x y -+=.

错误!未找到引用源。 与圆 错误!未找到引用源。 相交于不同的两点 错误!未找到引用源。,错误!未找到引用源。. (1) 求圆 错误!未找到引用源。 的圆心坐标;

(2) (2)求线段 错误!未找到引用源。 的中点 错误!未找到引用源。 的轨迹 错误!未找到引用源。 的方

程;

(3) (3)是否存在实数 错误!未找到引用源。,使得直线 错误!未找到引用源。 与曲线 错误!未找到引用

源。 只有一个交点?若存在,求出 错误!未找到引用源。 的取值范围;若不存在,说明理由. 【解析】(1) 把圆 错误!未找到引用源。 的方程化为标准方程得 错误!未找到引用源。, 错误!未找到引用源。 圆 错误!未找到引用源。 的圆心坐标为 错误!未找到引用源。. (2) 设 错误!未找到引用源。,

错误!未找到引用源。 为过原点的直线 错误!未找到引用源。 与圆 错误!未找到引用源。 的交点,且 错误!未找到引用源。 为 错误!未找到引用源。 的中点,

错误!未找到引用源。由圆的性质知错误!未找到引用源。,错误!未找到引用源。.

又错误!未找到引用源。,错误!未找到引用源。,

错误!未找到引用源。由向量的数量积公式得错误!未找到引用源。.

易知直线错误!未找到引用源。的斜率存在,错误!未找到引用源。设直线错误!未找到引用源。的方程为错误!未找到引用源。,

当直线错误!未找到引用源。与圆错误!未找到引用源。相切时,错误!未找到引用源。,解得错误!未找到引用源。.

把相切时直线错误!未找到引用源。的方程代入圆错误!未找到引用源。的方程化简得错误!未找到引用源。,解得错误!未找到引用源。.

当直线错误!未找到引用源。经过圆错误!未找到引用源。的圆心时,错误!未找到引用源。的坐标为错误!未找到引用源。.

又直线错误!未找到引用源。与圆错误!未找到引用源。交于错误!未找到引用源。两点,错误!未找到引用源。为错误!未找到引用源。的中点,

错误!未找到引用源。.

错误!未找到引用源。点错误!未找到引用源。的轨迹错误!未找到引用源。的方程为错误!未找到引用源。,其中错误!未找到引用源。,其轨迹为一段圆弧.

(3) 法一:由题可知,直线错误!未找到引用源。恒过定点错误!未找到引用源。,结合(2)可作出图象如下图,

由(2)知,点错误!未找到引用源。、错误!未找到引用源。的横坐标为错误!未找到引用源。,因此,代入曲线错误!未找到引用源。的方程得错误!未找到引用源。、错误!未找到引用源。,结合图象,可知当错误!未找到引用源。介于直线错误!未找到引用源。和错误!未找到引用源。的斜率之间时,直线错误!未找到引用源。与曲线错误!未找到引用源。只有一个交点,又错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。;

另外,当直线错误!未找到引用源。与曲线错误!未找到引用源。相切时,只有一个交点,又曲线错误!未找到引用源。的圆心为错误!未找到引用源。,直线方程为错误!未找到引用源。,所以错误!未找到引用源。,解得错误!未找到引用源。;

综上所述,错误!未找到引用源。的取值范围是错误!未找到引用源。或错误!未找到引用源。.

方法二:由题意知直线错误!未找到引用源。表示过定点错误!未找到引用源。,斜率为错误!未找到引用源。的直线,

把直线错误!未找到引用源。的方程代入轨迹错误!未找到引用源。的方程错误!未找到引用源。,其中错误!未找到引用源。,

化简得错误!未找到引用源。,其中错误!未找到引用源。,

记错误!未找到引用源。,其中错误!未找到引用源。.

若直线错误!未找到引用源。与曲线错误!未找到引用源。只有一个交点,令错误!未找到引用源。.当错误!未找到引用源。时,解得错误!未找到引用源。,即错误!未找到引用源。,此时方程可化为错误!未找到引用源。,即错误!未找到引用源。,

解得错误!未找到引用源。,

错误!未找到引用源。满足条件.

当错误!未找到引用源。时,

①若错误!未找到引用源。是方程的解,则错误!未找到引用源。,故在区间错误!未找到引用源。上有且仅有一个根,满足题意.

②若错误!未找到引用源。是方程的解,则错误!未找到引用源。,错误!未找到引用源。,故在区间错误!未找到引用源。上有且仅有一个根,满足题意.

③若 错误!未找到引用源。 和 错误!未找到引用源。 均不是方程的解,则方程在区间 错误!未找到引用源。 上有且仅有一个根, 只需 错误!未找到引用源。.

故在区间 错误!未找到引用源。 上有且仅有一个根,满足题意.

综上所述,错误!未找到引用源。 的取值范围是 错误!未找到引用源。 或 错误!未找到引用源。.

举一反三: 【变式】【2015 唐山一模】已知圆O :2

2

4x y +=,点()3,0A ,以线段AB 为直径的圆内切于圆O ,记

点B 的轨迹为Γ.

(1) 求曲线Γ的方程;

(2) 直线AB 交圆O 于C ,D 两点,当B 为CD 中点时,求直线AB 的方程.

【解析】(1)设AB 的中点为M ,切点为N ,连接OM ,MN ,

则2OM MN +=,取A 关于y 轴的对称点()

'

3,0A -,连接'A B

()'24A B AB OM MN ∴+=+=

∴点B 的轨迹是以',A A 为焦点,长轴长为4的椭圆.

其中2,3,1a c b ===则曲线Γ的方程为2

214

x y +=

(2)B Q 为CD 的中点,OB CD ∴⊥

OB AB ∴⊥u u u r u u u r 设()00,B x y ,则()()

0000,,3,OB x y AB x y ==-u u u r u u u r

即()

2

00030x x y -+= 又2

20014

x y += 解得002

,33

x y ==±2AB k ∴=±

∴直线AB 的方程为()

23y x =±-

即260x y --=或260x y +-=

人教版数学-高中数学竞赛标准教材10第十章 直线与圆的方程讲义.

第十章 直线与圆的方程 一、基础知识 1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x 2+y 2=1是以原点为圆心的单位圆的方程。 2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。 3.直线的倾斜角和斜率:直线向上的方向与x 轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x 轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。 4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y 0=k(x-x 0);(3)斜截式:y=kx+b ;(4)截距式: 1=+b y a x ;(5)两点式:1 21121y y y y x x x x --= --;(6)法线式方程:xcos θ+ysin θ=p (其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:?????+=+=θ θ sin cos 00t y y t x x (其中θ为该直线 倾斜角),t 的几何意义是定点P 0(x 0, y 0)到动点P (x, y )的有向线段的数量(线段的长度前添加正负号,若P 0P 方向向上则取正,否则取负)。 5.到角与夹角:若直线l 1, l 2的斜率分别为k 1, k 2,将l 1绕它们的交点逆时针旋转到与l 2重合所转过的最小正角叫l 1到l 2的角;l 1与l 2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tan θ= 2 11 21k k k k +-,tan α= 2 1121k k k k +-. 6.平行与垂直:若直线l 1与l 2的斜率分别为k 1, k 2。且两者不重合,则l 1//l 2的充要条件是k 1=k 2;l 1⊥l 2的充要条件是k 1k 2=-1。 7.两点P 1(x 1, y 1)与P 2(x 2, y 2)间的距离公式:|P 1P 2|= 2 21221)()(y y x x -+-。 8.点P(x 0, y 0)到直线l: Ax+By+C=0的距离公式:2 2 00| |B A C By Ax d +++= 。 9.直线系的方程:若已知两直线的方程是l 1:A 1x+B 1y+C 1=0与l 2:A 2x+B 2y+C 2=0,则过l 1, l 2交点的直线方程为A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2=0;由l 1与l 2组成的二次曲线方程为(A 1x+B 1y+C 1)(A 2x+B 2y+C 2)=0;与l 2平行的直线方程为A 1x+B 1y+C=0(1 C C ≠). 10.二元一次不等式表示的平面区域,若直线l 方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l 上方的部分,Ax+By+C<0表示的区域为l 下方的部分。 11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x 和y 表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。 12.圆的标准方程:圆心是点(a, b),半径为r 的圆的标准方程为(x-a)2+(y-b)2=r 2,其参数方程为 ?? ?+=+=θ θsin cos r b y r a x (θ为参数)。

【精品】高中数学 选修1-1_双曲线及其标准方程_ 知识点讲解 讲义+巩固练习(含答案)提高

双曲线及其标准方程 【学习目标】 1.知识与技能: 从具体情境中抽象出双曲线的模型;掌握双曲线的定义、标准方程及几何图形;能正确推导双曲线的标准方程. 2.过程与方法: 学生亲自动手尝试画图、发现双曲线的形成过程进而归纳出双曲线的定义、图象和标准方程. 3.情感态度与价值观: 了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用,进一步感受数形结合的基本思想在解析几何中的作用. 【要点梳理】 要点一:双曲线的定义 把平面内到两定点1F 、2F 的距离之差的绝对值等于常数(大于零且小于12F F )的点的集合叫作双曲线. 定点1F 、2F 叫双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距. 要点诠释: 1. 双曲线的定义中,常数应当满足的约束条件:常数=1212PF PF F F -<,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若常数分别满足以下约束条件,则动点的轨迹各不相同: 若 常数=1212PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点2F 的一支; 若 常数=2112PF PF F F -<(常数0>),则动点轨迹仅表示双曲线中靠焦点1F 的一支. 若 常数=1212PF PF F F -=,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点); 若 常数=1212PF PF F F ->,则动点轨迹不存在; 若 常数=12=0PF PF -,则动点轨迹为线段F 1F 2的垂直平分线. 要点二:双曲线的标准方程

1.双曲线的标准方程 2.标准方程的推导 如何建立双曲线的方程?根据求曲线方程的一般步骤,可分为4步:建系、设点、列式、化简. (1)建系 取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立平面直角坐标系. (2)设点 设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0). (3)列式 设点M与F1、F2的距离的差的绝对值等于常数2a. 由定义可知,双曲线就是集合:P={M||M F1|-|M F2||=2a}={M|M F1|-|M F2|=±2a}. ∵2222 12 ||(),||(), MF x c y MF x c y ++=-+ ∴2222 ()()2 x c y x c y a ++-+=± (4)化简 将这个方程移项,得 当焦点在x轴上时, 22 22 1 x y a b -=(0,0) a b >>,其中222 c a b =+; 当焦点在y轴上时, 22 22 1 y x a b -=(0,0) a b >>,其中222 c a b =+

全国高考数学直线与圆的方程试题汇编

全国高考数学直线与圆的方程试题汇编 一、选择题: 1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为 ( D ) A .1 B .3 C .2 D .5 2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线 为 ( A ) A .1133 y x =- + B .1 13 y x =- + C .33y x =- D .1 13 y x = + 解析:本题有新意,审题是关键.旋转90?则与原直线垂直,故旋转后斜率为13 -.再右移1得 1 (1)3 y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换. 4.(全国I 卷理科10)若直线 1x y a b +=通过点(cos sin )M αα,,则 ( B ) A .2 2 1a b +≤ B .22 1a b +≥ C .22111a b +≤ D . 2 211 1a b +≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为 ( A ) A .- 13 B .- 15 C . 15 D . 13 (重庆文科4)若点P 分有向线段AB 所成的比为- 1 3,则点B 分有向线段PA 所成的比是( A ) A .- 32 B .- 12 C .12 D .3 6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线2 2 (2)1x y -+=有公共点,则直线l 的斜率 的取值范畴为 ( C ) A .[ B .( C .[ D .( 7.(辽宁文、理科3)圆2 2 1x y +=与直线2y kx =+没有.. 公共点的充要条件是 ( C )

圆与方程知识点小结

圆与方程 2、1圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2、2点与圆的位置关系: 1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r . 2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-?( ③M 在圆C 外22020)()(r b y a x >-+-? 2、3 圆的一般方程:022=++++F Ey Dx y x . 当042 2 >-+F E D 时,方程表示一个圆,其中圆心? ?? ??--2,2 E D C ,半径2 42 2F E D r -+= . 当0422=-+F E D 时,方程表示一个点?? ? ? ?- - 2,2 E D . 当0422<-+ F E D 时,方程无图形(称虚圆). 注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0 =B 且 ≠=C A 且 042 2 AF E D -+. 圆的直径或方程:已知0))(())((),(),(21212211=--+--?y y y y x x x x y x B y x A 2、4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种 (1)若2 2 B A C Bb Aa d +++= ,0相离r d ; (2)0=???=相切r d ; (3)0>???<相交r d 。 还可以利用直线方程与圆的方程联立方程组???=++++=++0 2 2 F Ey Dx y x C By Ax 求解,通过解 的个数来判断: (1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;

人教版必修二数学圆与方程知专题讲义

人教版必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标 ②利用平面几何性质

涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 两点为直径的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 2.直线与圆相切 (1)知识要点 ①基本图形

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

2013高考数学曲线方程汇总

30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小 题满分9分. 已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ?为等边三角形,求椭圆C 的方程; (2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥ , 求直线l 的方程. 31.(2013年高考四川卷(理))已知椭圆C :22 221,(0)x y a b a b +=>>的两个焦点分别为 12(1,0),(1,0)F F -,且椭圆C 经过点41 (,)33 P . (Ⅰ)求椭圆C 的离心率; (Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且 222 211 ||||||AQ AM AN =+ ,求点Q 的轨迹方程. 32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆 2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F , ,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程; (Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围; (Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明12 11kk kk +为定值,并求出这个定值. 33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线2 21:12 x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为 “C 1—C 2型点”. (1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证); (2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;

直线和圆的方程复习讲义全

直线和圆的方程 一、直线方程 1. 直线的倾斜直角和斜率: (1) 倾斜角:一条直线向上的方向与x 轴的正方向所成的最小正角,叫直线的倾斜角.围 为[)0,π (2) 斜率:不等于的倾斜角的正切值叫直线的斜率,即k=tana(a ≠90°). (3) 过两点P1(x1.y1)、P2(x2.y2)(x1≠x2)的直线的斜率公式为k=tana=21 21 y y x x -- 2. 直线方程的五种表示形式: 斜截式:y=kx+b ; 点斜式:y-y0=k(x-x0); 两点式: 11 2121 y y x x y y x x --=-- 截距式: 1x y a b +=; 一般式:Ax+By+C=0 3. 有斜率的两条直线的平行期、垂直的充要条件: 若L1: y=k 1x+b 1 L2: y=k 2x+b 2 则: (1) L1∥L2?k 1=k 2且b 1≠b 2; (2) L1⊥L2?k 1×k 2 = -1 4. 两条直线所成的角的概念与夹角公式 两条直线相交所成的锐角或直角,叫做这两条直线所成的角,简称夹角,如果直线L1、L2的斜率分别是k1、k2,L1和L2所成的角是θ,且0 90θ≠ 则有夹角公式:tan= 12 12 1k k k k -+ 5. 点到直线的距离公式:点P (x0.y0)到直线Ax+By+C=0(A 、B 不同时为零)的距离 题型1 直线的倾斜角与斜率 1.(2004.)设直线ax+by+c=0的倾斜角为a ,且sin α+cos α=0,则a,b 满足( ) A.a+b=1B.a-b=1C.a+b=0D.a-b=0 2.(2004.启东)直线经过点A (2.1),B (1,m 2 )两点(m ∈R ),那么直线L 的倾斜角取值围是( ) A.[)0,π B 0, ,42πππ???? ??????? .C 0,4π?????? . D ,,422ππππ???? ? ?????? . 3.(2004.)函数y=asinx+bcosx 的一条对称轴方程是x= 4 π ,那么直线ax+by-c=0的倾斜角为 。 题型2 直线方程 4.(2001.新课程)设A 、B 是x 轴上的两点,点P 的横坐标为2且PA=PB ,若直线PA 的方程为x-y+1=0,则直线PB 的方程是( )

(通用版)202x高考数学一轮复习 2.11 函数与方程讲义 文

第十一节函数与方程 一、基础知识批注——理解深一点 1.函数的零点 (1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点. (2)零点的几个等价关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点. 函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数. 2.函数的零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. 函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件. 对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 二、常用结论汇总——规律多一点 有关函数零点的结论 (1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.

三、基础小题强化——功底牢一点 一判一判对的打“√”,错的打“×” (1)函数的零点就是函数的图象与x 轴的交点.( ) (2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( ) (5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( ) 答案:(1)× (2)× (3)× (4)√ (5)√ (二)选一选 1.已知函数f (x )的图象是连续不断的,且有如下对应值表: x 1 2 3 4 5 f (x ) -4 -2 1 4 7 f x A .(1,2) B .(2,3) C .(3,4) D .(4,5) 解析:选B 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数f (x )在(2,3)内有零点. 2.函数f (x )=(x -1)ln(x -2)的零点有( ) A .0个 B .1个 C .2个 D .3个 解析:选B 由x -2>0,得x >2,所以函数f (x )的定义域为(2,+∞),所以当f (x )=0,即(x -1)ln(x -2)=0时,解得x =1(舍去)或x =3. 3.函数f (x )=ln x -2x 的零点所在的大致区间是( ) A .(1,2) B .(2,3) C.? ?? ??1e ,1和(3,4) D .(4,+∞) 解析:选B 易知f (x )为增函数,由f (2)=ln 2-1<0,f (3)=ln 3-23 >0,得f (2)·f (3)<0,

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

高中数学人教A版必修2《圆的方程》讲义

(同步复习精讲辅导)北京市-高中数学 圆的方程讲义 新人教A 版 必修2 题一 题面:方程211(1)x y -=--表示的曲线是( ) A .一个圆 B .两个半圆 C .两个圆 D .半圆 金题精讲 题一 题面:求以(1,2),(5,6)A B --为直径两端点的圆的方程. 题二 题面:根据下列条件写出圆的方程: (1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上; (2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为 题三 题面:(1)求过点(2,2),(5,3),(3,1)A B C -的圆的方程,并求该圆的半径与圆心坐标; (2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程. 题四 题面:求圆0722:22=+++-+a y ax y x C 的圆心轨迹方程. 题五 题面:若曲线2222(1)40x y a x a y +++--=关于直线0y x -=的对称曲线仍是其本身,则实数a = . 题六 题面:圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 题七 题面:已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2 =2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2

题八 题面:Rt ABC ?的三个顶点与圆心都在坐标轴上,AB =4,AC =3,求其外接圆方程. 思维拓展 题一 题面:(1)若实数,x y 满足等式 2241x y x +=-,那么 x y 的最大值为 . (2)若实数,x y 满足等式2241x y x +=-,那么22x y +的最大值为 . 讲义参考答案 重难点易错点解析 题一 答案:A 金题精讲 题一

2021版新高考数学一轮复习讲义:第八章第八讲 曲线与方程 (含解析)

第八讲曲线与方程 ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测 知识梳理 知识点一曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系: 那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线. 知识点二求动点的轨迹方程的基本步骤 重要结论 1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件. 2.求轨迹问题常用的数学思想 (1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y 的方程及函数关系. (2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合. (3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.

双基自测 题组一 走出误区 1.(多选题)下列结论错误的是( ABCD ) A .方程x 2+xy =x 的曲线是一个点和一条直线 B .到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2 C .y =kx 与x =1 k y 表示同一直线 D .动点的轨迹方程和动点的轨迹是一样的 题组二 走进教材 2.(必修2P 37T3)已知点F (14,0),直线l :x =-1 4,点B 是l 上的动点,若过点B 垂直于 y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D ) A .双曲线 B .椭圆 C .圆 D .抛物线 [解析] 由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 题组三 考题再现 3.(2019·广东汕头模拟)一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则此动圆必过定点( B ) A .(4,0) B .(2,0) C .(0,2) D .(0,0) [解析] 圆心C 在抛物线上,设与直线x +2=0相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线x +2=0为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点(2,0),故选B . 4.(2019·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )

高一数学 高中数学圆的方程专题(四个课时)

高一数学 高中数学圆的方程专题(四个课时) 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2227)14()2(=-+-a ,或2 221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2 224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2 221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2 224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

数学必修2圆与方程知识点专题讲义

必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040 A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标

②利用平面几何性质 涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 为直径两端点的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

高考数学必考之圆的方程

高考数学必考之圆的方程 考点一 圆的方程 1.圆心为()3,1,半径为5的圆的标准方程是 【答案】()()2 2 3125x y -+-= 【解析】∵所求圆的圆心为()3,1,半径为5,∴所求圆的标准方程为:()()2 2 3125x y -+-=, 2.已知点()3,6A ,()1,4B ,()1,0C ,则ABC ?外接圆的圆心坐标为 【答案】()5,2 【解析】线段AB 中点坐标为()2,5,线段AB 斜率为 64 131 -=-,所以线段AB 垂直平分线的斜率为1-,故线段AB 的垂直平分线方程为()52y x -=--,即7y x =-+. 线段AC 中点坐标为()2,3,线段AC 斜率为 60331-=-,所以线段AC 垂直平分线的斜率为1 3 -,故线段AC 的垂直平分线方程为()1 323y x -=--,即11133 y x =-+. 由7 5111233y x x y y x =-+?=?? ??? ==-+??? .所以ABC ?外接圆的圆心坐标为()5,2. 3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是 【答案】-2解得223a -<<. 考点二 点与圆的位置关系

1.点()1,1在圆()2 211x y +-=的( ) A .圆上 B .圆内 C .圆外 D .无法判定 【答案】A 【解析】将点()1,1的坐标代入圆()2 211x y +-=的方程即()2 21111+-=,∴点()1,1在圆()2 211x y +-=上, 2.经过点(1,2)A 可做圆2 2 240x y mx y ++-+=的两条切线,则m 的范围是( ) A .(,(23,)-∞-+∞ B .(5,(23,)--+∞ C .(,)-∞-?+∞ D .(5,(22,)--+∞ 【答案】B 【解析】圆2 2 240x y mx y ++-+=,即为222 ()(1)324 m m x y -+-= -, 2 304 m ∴->?m <-m > 由题意知点A 在圆外,14440m ∴++-+>,解得5m >-. 所以5m -<<-m >故选B 3.若坐标原点在圆2 2 2 22240x y mx my m +-++-=的内部,则实数m 的取值范围是( ) A .()1,1- B .,22?- ?? C .( D .( 【答案】D 【解析】把原点坐标代入圆的方程得:222002020240m m m +-?+?+-< 解得:m <本题正确选项:D

相关文档
最新文档