轴设计校核

轴设计校核
轴设计校核

4.3 升降轴的设计

升降轴是升降电机动力通过链轮输入的一段,它的结构如下图:

图4-2 轴的结构图

1. 估算轴的基本直径

选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得

=120,得

所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即

为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm,故轴颈

,与轴配合长度84mm。

2. 轴的结构设计

(1)初定各段直径,见表4-1

表4-1 升降轴各段直径

位置轴颈/mm 说明

装联轴器轴段1-2 =55 与半联轴器的内孔配合,故取55mm

定位轴承段

放置端盖处,故取115mm

2-3 =60

轴承段

选用深沟球轴承6012,其孔径为70mm 3-4 =70

装链轮段

与链轮轮毂内孔配合

4-5 =80

轴环段

链轮的轴向定位

5-6 =90

自由锻

轴承的左端轴向定位

6-7 =80

轴承段

选用深沟球轴承6012,其孔径为70mm 3-4 =70

(2)确定各段长度,见表4-2

表4-2 升降轴各段长度

位置轴段长度/mm 说明

装联轴器轴段1-2 =84 与联轴器配合

定位轴承段2-3 =40 考虑轴上零件安装的,取40mm

轴承段

选用的轴承宽为20mm,考虑密封情况取50mm

3-4 =50

装链轮轴段4-5 =30 该段长度由链轮轮毂宽决定

轴环段

用来定位

5-6 =15

自由锻

结构决定

6-7 =80

轴承段

选用的轴承宽为20mm,考虑密封情况取50mm

7-8 =50

3. 轴上零件的周向固定

半联轴器的周向定位均采用平键连接,按

由《机械设计》查得平键尺寸

,长为80mm,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为

,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。

4. 考虑轴的结构工艺性

考虑轴的结构工艺性,轴肩处的圆角半径R值为2.5,轴端倒角c=2mm;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。

4.4 升降轴的强度校核

1. 轴的受力分析

轴的力学模型如下图:

根据升降传动轴的受力情况,此轴主要受扭矩作用。(1)求出轴传递的扭矩:

图4-3 轴的载荷分析图

求轴上的作用力:

水平面受力分析得:

计算得:

,

水平面的最大弯矩

=

垂直面受力分析得:

计算得:

,

垂直面的最大弯矩

=

总弯矩为M:

垂直面的最大弯矩

=

总弯矩为M:

进行校核时通常只校核轴上承受最大弯矩额地方,可以看出轴的第二个键槽中心截面C(即与链轮配合处)受扭矩最大,为危险截面,应对它进行扭应力强度较核:

垂直面的最大弯矩

=

总弯矩为M:

进行校核时通常只校核轴上承受最大弯矩额地方,可以看出轴的第二个键槽中心截面C(即与链轮配合处)受扭矩最大,为危险截面,应对它进行扭应力强度较核:

(4-7)

式中

根据《机械设计》课本表15-4得:

已知:d=80mm、b=16mm、t=6mm。

计算得:

根据《机械设计》课本表15-1、轴调质处理得:

计算得:

由此可知强度符合要求,设计合理。

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

机械专业 毕业设计说明书(轴校核部分).

Graduation Project (Thesis) Harbin University of Commerce X6132milling machine feed system, lifting platform and platform design Student SunMingxing Supervisor Yan Zugen Specialty X6132 milling machine feed system, lifting platform and platform design School Harbin University of Commerce 2012年6月9日

1 绪论 1.1机床的用途及性能 X6132、X6132A型万能升降台铣床属于通用机床。主要适用于机械工厂中加工车间、工具车间和维修车间的成批生产、单件、小批生产。 这种铣床可用圆柱铣刀、圆盘铣刀、角度铣刀、成型铣刀和端面铣刀加工各种平面、斜面、沟槽等。如果配以万能铣头、圆工作台、分度头等铣床附件,还可以扩大机床的加工范围。 X6132、X6132A型铣床的工作台可向左、右各回转45 o当工作台转动一定角度,采用分度头时,可以加工各种螺旋面。 X6132型机床三向进给丝杠为梯形丝杠,X6132A型机床三向进给丝杠为滚珠丝杠。 X6132/1、X6132A/1型数显万能升降台铣床是在X6132、X6132A型万能升降台铣床的基础上,在纵向、横向增加两个坐标的数字显示装置的一种变型铣床,该铣床具有普通万能升降台铣床的全部性能外,借助于数字显示装置还能作到加工和测量同时进行,实现动态位移数字显示,既保证了工件加工质量,又减轻了工人劳动强度和提高劳动生产率,配上万能铣头还可以进行镗孔加工。 图1-1 X6132卧式铣床整机外形图

轴强度校核例题与方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较

敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤

轴的设计、计算、校核

轴的设计、计算、校核 以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm) 式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数,查表3 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=0.3。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0.59。 c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。

9)校核危险断面的当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),查表4。 为对称循环变应力时轴的许用弯曲应力,查表1。 如计算应力超出许用值,应增大轴危险断面的直径。如计算应力比许用值小很多,一般不改小轴的直径。因为轴的直径还受结构因素的影响。 一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。即建立轴在危险截面的安全系数的校核条件。 安全系数条件为: 式中:为计算安全系数; 、分别为受弯矩和扭矩作用时的安全系数; 、为对称循环应力时材料试件的弯曲和扭转疲劳极限; 、为弯曲和扭转时的有效应力集中系数,

传动轴的设计及校核

第一章轻型货车原始数据及设计要求 发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: ?五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克 设计要求: 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出厂的,在使用中就应特别注意。 图 2-1 万向传动装置的工作原理及功用 图 2-2 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章轻型货车万向传动轴结构分析及选型 由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与

轴设计校核

4.3 升降轴的设计 升降轴是升降电机动力通过链轮输入的一段,它的结构如下图: 图4-2 轴的结构图 1. 估算轴的基本直径 选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得 取0A =120,得 mm 515 .272.2120n d 330=?=≥P A 所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即mm 5.5305.151d min =?=。 为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm ,故轴颈mm 55d 12=,与轴配合长度84mm 。 2. 轴的结构设计 (1)初定各段直径,见表4-1

(2)确定各段长度,见表4-2 3. 轴上零件的周向固定 半联轴器的周向定位均采用平键连接,按12d 由《机械设计》查得平键尺寸801016l h b ??=??,长为80mm ,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为251422l h b ??=??,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。 4. 考虑轴的结构工艺性 考虑轴的结构工艺性,轴肩处的圆角半径R 值为2.5,轴端倒角c=2mm ;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。 4.4 升降轴的强度校核 1. 轴的受力分析 轴的力学模型如下图: 根据升降传动轴的受力情况,此轴主要受扭矩作用。 (1)求出轴传递的扭矩: m N 7645.272.295509550?=?==n P T

心轴的设计与校核

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力 t F和上抬力 r F如图4-24 图4-24 轮齿受力图 2 cos t r t t n T F d F Ftg F F α α ? =? ? =? ? =?? 式中:T——行走电机最终传到行走轮上的转矩,N·m; d——摆线行走轮的节圆直径,m; α——啮合角(压力角)。 () 111 9550/955036.15/1034523.25N m T P n ==?=? 1 1 1 234523.251000 2230155N 300 t T F d ?? === 11 83769.57N r t F F tgα == () 222 9550/955034/840587.5N m T P n ==?=? 2 2 2 240587.51000 2226676.16N 358.11 t T F d ?? === 22 83503.38N r t F F tgα == 2241223.73N cos t n F Fα ==

(2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。 图 4-25 弯矩图 由计算得 1153036.4N R = 279557.94N R = (3)按弯扭合成强度校核轴的强度 空心轴[] 3 4 3 21.681M d σα =- 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1 d d α = []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ, 转动心轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查

轴的设计计算

轴的设计计算 轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。 一、轴的强度计算 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算; 对于只承受弯矩的轴(心轴),应按弯曲强度条件计算; 对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。 此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 下面介绍几种常用的计算方法: 按扭转强度条件计算。 1、按扭转强度估算轴的直径 对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。若有弯矩作用,可用降低许用应力的方法来考虑其影响。 扭转强度约束条件为: [] 式中:为轴危险截面的最大扭剪应力(MPa); 为轴所传递的转矩(N.mm); 为轴危险截面的抗扭截面模量(); P为轴所传递的功率(kW); n为轴的转速(r/min); []为轴的许用扭剪应力(MPa);

对实心圆轴,,以此代入上式,可得扭转强度条件的设计式: 式中:C为由轴的材料和受载情况决定的系数。 当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。 应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。 此外,也可采用经验公式来估算轴的直径。如在一般减速器中,高速输入轴 的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。 几种轴的材料的[]和C值 轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52 160~135148~125135~118118~107107~98 2、按弯扭合成强度条件校核计算

轴结构设计和强度校核

一、轴的分类按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴 转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可

以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显着的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。 三、轴的结构设计 轴的结构设计包括定出轴的合理外形和全部结构尺寸。 轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。设计时,必须针对不同情况进行具体的分析。但是,不论何种具体条件,轴的结构都应满足:轴和装在轴上的零件要有准确的工作位置;轴上的零件应便于装拆和调整;轴应具有良好的制造工艺性等。下面讨论轴的结构设计中的几个主要问题。 拟定轴上零件的装配方案 各轴段直径和长度的确定 轴上零件的定位 提高轴的强度的常用措施 轴的结构工艺性 轴上零件的定位 为了防止轴上零件受力时发生沿轴向或周向的相对运动,轴上零件除了有游动或

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴 转轴 传动轴 二、轴的材料

轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

三、轴的结构设计 轴的结构设计包括定出轴的合理外形和全部结构尺寸。 轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。设计时,必须针对不同情况进行具体的分析。但是,不论何种

心轴的设计与校核

心轴的设计与校核 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力t F 和上抬力r F 如图4-24 图4-24 轮齿受力图 式中:T ——行走电机最终传到行走轮上的转矩,N ·m ; d ——摆线行走轮的节圆直径,m ; α——啮合角(压力角)。 (2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。 图 4-25 弯矩图 由计算得 (3)按弯扭合成强度校核轴的强度 空心轴 d = 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1d d α= []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ,转动心 轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查表6-1-1。

轴的材料为42r o C M ,淬火渗碳。查相关资料得2b σ=1100N/mm ,则取 []2-1b σ=110N/mm ,[]0b σ=1802N/mm ,1d d α= = 所以 d =mm 取d =110mm 当量弯矩ca M M = 该轴满足强度要求 (4)疲劳强度安全系数校核 式中:1σ-——材料的弯曲疲劳极限,2N/mm M ——轴在计算截面上的弯矩,N m Z ——轴在计算截面的抗弯模数,3cm 。()3 4 132d Z πα=- []S ——疲劳强度的许用安全系数,见机械设计手册表6-1-23,取[] 1.3S = σλ——从标准试件的疲劳极限到零件的疲劳极限的换算系数,轴上配合零件边缘的 σλ值见机械设计手册表6-1-27 σψ——弯曲时平均应力折合为应力幅的等效系数,其值如下: 低碳钢 σψ= 中碳钢 σψ= 合金钢 σψ= 所以() ()[]1 22502 1.422003.1440.25130S S M Z σσσλψ-?===≥++ (5)心轴的静强度校核 危险截面的安全系数校核公式为: 式中:max M 、max T ——轴计算截面上所受的最大弯矩和扭矩,N m ?

轴设计校核

4.3 升降轴的设计 升降轴是升降电机动力通过链轮输入的一段,它的结构如下图: 图4-2 轴的结构图 1. 估算轴的基本直径 选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得 取0A =120,得 mm 515 .272.2120n d 330=?=≥P A 所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即m m 5.5305.151d min =?=。 为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm ,故轴颈m m 55d 12=,与轴配合长度84mm 。 2. 轴的结构设计 (1)初定各段直径,见表4-1 位置 轴颈/mm 说明 装联轴器轴段1-2 12d =55 与半联轴器的内孔配合,故取55mm 定位轴承段 2-3 23d =60 放置端盖处,故取115mm 轴承段 3-4 34d =70 选用深沟球轴承6012,其孔径为70mm 装链轮段 4-5 45d =80 与链轮轮毂内孔配合 轴环段 5-6 56d =90 链轮的轴向定位 自由锻 6-7 67d =80 轴承的左端轴向定位 轴承段 3-4 78d =70 选用深沟球轴承6012,其孔径为70mm

(2)确定各段长度,见表4-2 3. 轴上零件的周向固定 半联轴器的周向定位均采用平键连接,按12d 由《机械设计》查得平键尺寸801016l h b ??=??,长为80mm ,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为251422l h b ??=??,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。 4. 考虑轴的结构工艺性 考虑轴的结构工艺性,轴肩处的圆角半径R 值为2.5,轴端倒角c=2mm ;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。 4.4 升降轴的强度校核 1. 轴的受力分析 轴的力学模型如下图: 根据升降传动轴的受力情况,此轴主要受扭矩作用。 (1)求出轴传递的扭矩: m N 7645.272.295509550?=?==n P T

心轴的设计与校核

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力t F 和上抬力r F 如图4-24 图4-24 轮齿受力图 2cos t r t t n T F d F F tg F F αα?=? ? =??= ?? 式中:T ——行走电机最终传到行走轮上的转矩,N ·m ; d ——摆线行走轮的节圆直径,m ; α——啮合角(压力角)。 ()1119550/955036.15/1034523.25N m T P n ==?=? 1 11 234523.251000 2230155N 300 t T F d ??= = = 1183769.57N r t F F tg α== ()2229550/955034/840587.5N m T P n ==?=? 2 22 240587.51000 2226676.16N 358.11 t T F d ??= = = 2283503.38N r t F F tg α== 2 241223.73N cos t n F F α = = (2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。

图 4-25 弯矩图 由计算得 1153036.4N R = 279557.94N R = (3)按弯扭合成强度校核轴的强度 空心轴 d = 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1 d d α= []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ, 转动心轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查 表6-1-1。 轴的材料为42r o C M ,淬火渗碳。查相关资料得2b σ=1100N/mm ,则取

轴的设计计算校核

轴的设计计算校核 Modified by JEEP on December 26th, 2020.

轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm) 式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数, 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min 增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。

c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。 9)校核危险断面的当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),。 为对称循环变应力时轴的许用弯曲应力,。 如计算应力超出许用值,应增大轴危险断面的直径。如计算应力比许用值小很多,一般不改小轴的直径。因为轴的直径还受结构因素的影响。 一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。即建立轴在危险截面的安全系数的校核条件。 安全系数条件为: 式中:为计算安全系数; 、分别为受弯矩和扭矩作用时的安全系数; 、为对称循环应力时材料试件的弯曲和扭转疲劳极限; 、为弯曲和扭转时的有效应力集中系数, 为弯曲和扭转时的表面质量系数; 、为弯曲和扭转时的绝对尺寸系数;

轴的设计与校核

轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: 传动轴:指主要受扭矩作用的轴,如汽车的传动轴。?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也?可以是不转动的。 转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中?最常见的轴。根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又可以将直轴分为实心轴和空。 2. 轴的设计 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足. 承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料

轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,?是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 合金钢:对于要求重载、高温、结构尺寸小、重量轻等?使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高?强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 轴的组成1. 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。

机械设计轴的校核

轴的强度校核 1、 轴的受力分析: (1) 画轴的受力图 轴的受力图如下图所示 (2) 支承反力 在水平面上为 N R AH 78.1537-= 式中负号表示与图中受力的方向相反,以下相同 N F R Q R r AH HB 98.11601=+--= 在垂直平面上为 N R R BV AV 90.1011-== 轴承A 的总支撑反力为 N N R R R AV AH A 97.184090.101178.15372222=+=+= 轴承B 的总支撑反力为 N R R R BV BH B 154090.101198.11602222=+=+= (3) 弯矩计算 mm N M mm N M H AH ?=?=85.75457,83.1029971 在垂直平面上为 mm N M V ?-=5.657731 合成弯矩,有 21211,83.102997V H AH A M M M mm N M M +=?== mm N mm N ?=?+=15.1001005.6577385.7545722 (4) 画出弯矩图 (5) 转矩和转矩图 mm N T ?=3353321 画出弯矩图如图所示 2、 校核轴的强度 齿轮轴与A 点处弯矩最大,且轴颈较小,故点A 剖面为危险剖面。 其抗弯截面系数为 33 11.420732mm d W ==π 抗扭截面系数为

33 22.841416mm d W T ==π 最大弯曲应力为 MPa W W A A 36.25==σ 扭剪应力为 MPa W T T 23.71==τ 按弯钮合成强度进行校核计算,对于单向转动的转轴,转动按脉动循环处理,故取折合系数,6.0=α则当量应力为 MPa a e 87.25)(422=+=ατσσ 有表8-26查得45号钢调质处理抗拉强度极限,650MPa B =σ有表8-32用插值法查得轴的许用弯曲应力[],.60][11b e B MPa --<=σσσ强度满足需求。 3、 校核键连接的强度 带轮处键连接的挤压切应力为 MPa d T hl p ) 845(725586904411-???==σ 取键、轴及带轮的材料都为钢,有表8-33查得[][]p p p MPa σσσ<=,150~125,强度满足 4、 校核轴的寿命 (1) 当量动载荷 有表8-28查得6207轴承得C=25500N , N C 152000=,轴承的受力图如图所示,因为轴承不受轴向力,轴承A 、B 当量动载荷为 ,97.1840N R P A A == N R P B B 1540== (2) 轴承寿命 因,B A P P >故只需校核轴承A ,A P P =.轴承在100C o 以下工作,由表8-35查得载荷系数2.1=P f .

机械设计课程设计-减速器-齿轮轴设计与校核

机械设计课程设计-减速器-齿轮轴设计与校核 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

轴的设计计算校核

轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm) 式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数, 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min 增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。

c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。 9)校核危险断面的当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),。 为对称循环变应力时轴的许用弯曲应力,。 如计算应力超出许用值,应增大轴危险断面的直径。如计算应力比许用值小很多,一般不改小轴的直径。因为轴的直径还受结构因素的影响。 一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。即建立轴在危险截面的安全系数的校核条件。 安全系数条件为: 式中:为计算安全系数; 、分别为受弯矩和扭矩作用时的安全系数; 、为对称循环应力时材料试件的弯曲和扭转疲劳极限; 、为弯曲和扭转时的有效应力集中系数, 为弯曲和扭转时的表面质量系数; 、为弯曲和扭转时的绝对尺寸系数;

相关主题
相关文档
最新文档