轴的设计与校核(优.选)

轴的设计与校核(优.选)
轴的设计与校核(优.选)

2.1.1 概述

轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类

根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为:

?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。

?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。

?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。

根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又

可以将直轴分为实心轴和空。

2. 轴的设计

⑴ 轴的工作能力设计。

主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。

根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。

一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

3. 轴的材料

轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。

?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。

?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。

2.1.2 轴的结构设计

根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。

1. 轴的组成

轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。

轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。

2. 结构设计步骤

设计中常采用以下的设计步骤:

1分析所设计轴的工作状况,拟定轴上零件的装配方案和轴在机器中的安装情况。

2根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的某

径向尺寸。

3根据轴上零件受力情况、安装、固定及装配时对轴的表面要求等确定轴的径向(直径)尺寸。

4根据轴上零件的位置、配合长度、支承结构和形式确定轴的轴向尺寸。

考虑加工和装配的工艺性,使轴的结构更合理。

3. 零件在轴上的安装

保证轴上零件可靠工作,需要零件在工作过程中有准确的位置,即零件在轴上必须有准确的定位和固定。零件在轴上的准确位置包括轴向和周向两个方面。

⑴ 零件在轴上的轴向定位和固定

常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺母、锥端轴头等的多种组合结构。

?轴肩分为定位轴肩和非定位轴肩两种。利用轴肩定位结构简单、可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加工。因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的情况下使用,定位轴肩的高度一般取3~6mm,滚动轴承定位轴肩的高度需按照滚动轴承的安装尺寸确定。非定位轴肩多是为了装配合理方便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1~2mm。

?套筒定位可以避免轴肩定位引起的轴径增大和应力集中,但受到套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转的场合。

?挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途和国标来选用。

⑵ 零件在轴上的周向定位和固定

常见的周向定位和固定的方法采用键、花键、过盈配合、成形联结、

销等多种结构。

键是采用最多的方法。同一轴上的键槽设计中应布置在一条直线上,如轴径尺寸相差不过大时,同一轴上的键最好选用相同的键宽。

4. 轴的结构工艺性

⑴从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装过程中尽量减少不必要的配合面;为了装配方便,轴端应设计45°的倒角;在装键的轴段,应使键槽靠近轴与轮毂先接触的直径变化处,便于在安装时零件上的键槽与轴上的键容易对准;采用过盈配合时,为了便于装配,直径变化可用锥面过渡等。

⑵从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越程槽或退刀槽;根据表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改善轴的抗疲劳强度,减小轴径变化处的应力集中,应适当增大其过渡圆角半径,但同时要保证零件的可靠定位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺寸。

.

2.1.3 轴的强度计算

进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法。

?对于只传递扭矩的轴(传动轴),按扭转强度条件计算;

?对于只承受转矩的轴(心轴),按弯曲强度条件计算;对于既受到转矩的作用,又受到弯矩作用的轴(转轴),应按弯扭合成强度条件计算;

?重要的轴还需按疲劳强度条件进行精确校核。对于瞬时过载很大或应力循环不对称性较为严重的轴,还应校核静强度。

1. 扭转强度计算

根据轴的转矩的大小,通过计算切应力来建立轴的强度条件。这种方法计算简便,但计算精度较低,主要用于初步估算轴径以便进行结构设计和以传递转矩为主的传动轴。

强度条件为:

?T——轴所传递的扭矩,

?Wr——轴抗扭截面模量,对实心轴轴的直径:

mm

?P——轴所传递的功率(kw)

?n——轴的转速(r/min);

?[τ]——许用扭转切应力(Mpa)。

?C——与材料有关的系数。当轴所受弯矩较大时,C值宜取较大值,反之相反。最小直径处有键槽时,单键轴径需增加3%,双键轴径需增加7%。

2. 弯扭合成强度计算

根据轴在工作中的受力状况,常见的轴既要受到扭矩的作用又要受到弯矩的作用。根据强度理论,对轴所受到的弯矩和扭矩进行合成,用合成后的当量弯矩产生的应力作为轴所受到的应力,对影响轴疲劳强度的其它因素,采用降低需用应力的方法来考虑,建立轴的强度分析条件,即为按弯扭合成计算轴的强度。具体计算步骤为:1根据结构设计结果,确定外载荷作用点、大小、方向和支点位置,绘制轴的受力计算简图;

2确定坐标系,将外载荷分解为水平面和垂直面内分力,求出水平、垂直两平面支反力;

3绘制水平面、垂直平面的弯矩MX、MY图;

4计算合成弯矩,绘制合成弯矩图;

5绘制转矩图;

6按照强度理论求出当量弯矩Me,绘制当量弯矩图;式中α是根据转矩性质而定的应力校正系数。对于不变的转

矩,取;对于脉动的转矩,取;对于对称循环的转矩,取α=1。[σ+1b]、[σ0b]、[σ-1b]分别为材料在静应力、脉动应力和对称循环应力状态下的许用弯曲应力。实际设计中,常按脉动转矩计算。

7确定危险截面,校核危险截面轴径。

?W——轴的抗弯截面模量;

?[σ-1b]——许用弯曲应力

3.疲劳强度精确(安全系数强度)校核计算

对于使用场合重要,要求计算精度较高的重要轴,按弯扭合成强度计算时,未考虑轴的细部结构,需进行更准确的计算,通常采用安全系数法。具体计算步骤为:

8同弯扭合成步骤1;

9绘制弯矩图和扭矩图;

10确定危险截面,求出截面上的弯曲应力σ和切应力τ及应力变化情况;

11计算疲劳强度的安全系数S:

弯矩作用下的安全系数为Sσ:

转矩作用下的安全系数为Sτ:

?kN——寿命系数;

?σ-1、τ-1——对称循环应力时材料的弯曲疲劳限和扭转疲劳限;

?kσ、kτ——弯曲和扭转式的应力集中系数;

?β——为表面质量系数;

?εσ、ετ——尺寸系数;

?σm、τm——平均应力;Ψσ、Ψτ——平均应力折合为应力幅

的等效系数,、

?σ0、τ0——脉动循环应力时材料的弯曲疲劳极限和扭转疲劳极限。

5. 校核疲劳强度:S≥[S],[S]——许用安全系数。

4.静强度计算

对于工作过程中瞬时过载很大或应力循环不对称性较为严重的轴,轴上的尖峰载荷及时作用实践很短和出现次数很少,不足以引起疲劳破坏,但却能使轴产生塑性变形。设计时应校核静强度。

(1)按弯扭合成校核:

强度条件为:

式中:σ0=M/W,τ0=T/Wt;对于实心圆轴,σ0=10M/d3,τ0=5T/d3,代入上式可得

式中:Me0——静强度当量弯矩;[σ0]——静强度许用应力

计算时M和T应取最大载荷的数值。许用应力取[σ]= σs/S。σs为材料的屈服极限,S为安全系数,其值根据实践经验确定。当载荷或应力不能精确计算,材料性能无把握时,上述S值应增大20%~50%。

2.1.4 轴的刚度计算

轴属于细长杆件类零件,对于重要的或有刚度要求的轴,要进行刚度计算。轴的刚度有弯曲刚度和扭转刚度两种。弯曲刚度用轴的挠度y或偏转角θ来表征,扭转刚度用轴的扭转角φ来表征。轴的刚度计算,就是计算轴在工作载荷下的变形量,并要求其在允许的范围内,即:y<[y],θ<[θ]; φ<[φ]。

1. 弯曲刚度计算

进行轴的弯曲刚度计算时,通常按材料力学的方法计算挠度和偏转角,常用的有当量轴径法和能量法。

(1)当量轴径法

适用于轴的各段直径相差较小且只需作近似计算的场合。它是通过将阶梯轴转化为等效光轴后求等效轴的弯曲变形。等效光轴的直径为:

式中:di——阶梯轴的第i段直径(i=1~n,n为段数);li为阶梯轴的第I段长度。

若作用于光轴的载荷F位于支承跨矩L的中间位置时,则轴在该处的挠度y 和支承处的偏转角θ分别为:,

式中:E——材料的弹性模量(N/mm2);I——光轴剖面的惯性矩,

(mm4)

(2) 能量法

适用于阶梯轴的弯曲刚度的较精确计算。它是通过对轴受外力作用后所引起的变形能的分析,应用材料力学的方法分析轴的变形。

2. 扭转刚度计算

轴受转矩作用时,对于钢制实心阶梯轴,其扭转角的计算式为:

(rad)

式中:G——材料的剪切弹性模量,钢的G=81000N/mm;Ti、li、di分别为第i段轴所受的转矩(N.mm)、长度(mm)和直径(mm)。

3. 提高轴的疲劳强度和刚度的措施

设计过程中,除合理选材外还可从结构安排和工艺等方面采取措施来提高轴的承载能力。

(1) 分析轴上零件特点,减小轴受载荷

根据轴上安装的传动零件的状况,合理布置和合理设计可以减小轴的受载。对于受弯矩和转矩联合作用的转轴,可以改进轴和轴上零件结构,使轴的承载减少。

(2)改进轴的结构,减少应力集中

避免轴的剖面尺寸发生较大的变化,采用较大的过渡圆角半径,当装配零件的倒角很小时,可以采用内凹圆角或加装隔离环;尽可能不在轴的受载区段切制螺纹;可能时适当放松零件与轴的配合,在轮毂上或与轮毂配合区段两端的轴上加开卸载槽,以降低过盈配合处的应力集中等。

(3)改进轴的表面质量,提高轴的疲劳强度

减小表面及圆角处的表面粗糙度;对零件进行表面淬火、渗氮、渗碳、碳氮共

渗等处理;对零件表面进行碾压加工或喷丸硬化处理等可以显著提高轴的承载能力。

(4)采用空心轴,减轻质量,提高强度和刚度

(内径d0/外径d)为0.6的空心轴与直径为d的实心轴相比,空心轴的剖面模量减少13%,质量减少36%;d0/d仍为0.6的空心轴与同质量的实心轴相比,剖面模量可增加1.7倍。

2.1.5 轴的振动计算

受变载荷作用的轴,如果载荷的变化频率与轴的自振频率相同或接近时,轴会发生共振。共振使轴的运动状态发生很大变化,严重时会使轴或轴上零件甚至整个机器遭受破坏,发生共振现象时的转速,称为轴的临界转速。

轴的回转频率与轴的自振频率相同或接近时,轴也会发生共振。对于高转速的轴和受周期性外载荷的轴,必须进行振动计算。

轴的振动计算,主要是计算其临界转速,以采取必要的措施,使轴的自振频率与周期载荷的作用频率不同,以免发生共振现象。轴的振动有横向振动(弯曲振动)、纵向振动和扭转振动等。纵向振动的自振频率很高,超出一般轴的工作转速范围,分析时可不予考虑。横向振动的临界转速可以有多个,最低的一个称为第一阶临界转速,其余为二阶、三阶……。在一阶临界转速下,振动激烈,最为危险,所以通常主要计算一阶临界转速。在某些特殊情况下还需计算高阶临界转速。

分析一根装有单圆盘的双铰支轴如图。设圆盘的质量m很大,相对而言,

轴的质量可以忽略不计,并假定圆盘材料不均匀或制造有误差,其重心与轴线间的偏心矩为e。当轴以角速度ω转动时,由于离心力而产生挠度y。

单圆盘的双铰支轴

旋转时的离心力为:

弯曲变形后的弹性反力为:k为轴的弯曲刚度

根据平衡条件:

可以求得轴的挠度为:

当轴的角速度ω由零逐渐增大时,y值随角速度ω的增大而增大。在没有阻尼的情况下,当趋近于1时,挠度y趋近于无穷大,意味着轴会产生极大的变形而导致破坏。此时所对应的角速度ω称为临界角速度,用ωc表示:

上式右边恰为轴的自振角频率,即轴的临界角速度等于其自振角频率。由上式可见,临界角速度ωc只与轴的刚度k和圆盘的质量m有关,而与偏心矩e无关。

由于轴的刚度,式中g为重力加速度,y0为轴圆盘处的静挠度,所以临界角速度ωc可写成:

取g=9810mm/s2,y0的单位为mm,由上式可求得装有单圆盘的双铰支轴在不计自重时的一阶临界转速nc1为:

rpm

由于轴的临界转速nc1与成反比,故对工作转速较低的轴,可减小其y0,采用直径大而跨矩短的轴,使轴的临界转速高于工作转速(此类轴称为刚性轴);对工作转速很高的轴,可增加其y0,采用直径相对小而跨矩长的轴,使轴的临界转速低于工作转速(此类轴称为柔性轴)。一般情况下,对于刚性轴,应使工作转速n<0.85nc1;对于柔性轴,应使工作转速1.15nc1

振动计算如不符合要求,则需要改进设计。可以采用改变工作转速,改变轴径尺寸,改变支承跨矩,改变轴上零件的质量和增设减震装置等措施。

最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

机械课程设计轴的计算

五 轴的设计计算 一、高速轴的设计 1、求作用在齿轮上的力 高速级齿轮的分度圆直径为d 151.761d mm = 112287542 339851.761 te T F N d ?= == tan tan 2033981275cos cos1421'41"n re te F F N αβ=?=?=o o tan 3398tan13.7846ae te F F N β==?=。 2、选取材料 可选轴的材料为45钢,调质处理。 3、计算轴的最小直径,查表可取0112A = min 0 11223.44d A mm ==?= 应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带 轮相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后 将轴径圆整。故取25d mm =Ⅰ-Ⅱ 。 4、拟定轴上零件的装配草图方案(见下图) 5、根据轴向定位的要求,确定轴的各段直径和长度 (1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定 35L mm II-III = (2)初选流动轴承7307AC ,则其尺寸为358021d D B mm mm mm ??=??,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则

40.5L mm III-I∨=。 (3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定 100L mm III-II =,为了使齿轮轴上的齿面便于加工,取 5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。 (4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX = (5)计算可得123104.5,151,50.5L mm L mm L mm ===、 (6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为 10880b h L mm mm mm ??=??,大带轮与轴的配合为 7 6 H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F 带传动有压轴力P F (过轴线,水平方向),1614P F N =。 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系 图一 图二

机械专业 毕业设计说明书(轴校核部分).

Graduation Project (Thesis) Harbin University of Commerce X6132milling machine feed system, lifting platform and platform design Student SunMingxing Supervisor Yan Zugen Specialty X6132 milling machine feed system, lifting platform and platform design School Harbin University of Commerce 2012年6月9日

1 绪论 1.1机床的用途及性能 X6132、X6132A型万能升降台铣床属于通用机床。主要适用于机械工厂中加工车间、工具车间和维修车间的成批生产、单件、小批生产。 这种铣床可用圆柱铣刀、圆盘铣刀、角度铣刀、成型铣刀和端面铣刀加工各种平面、斜面、沟槽等。如果配以万能铣头、圆工作台、分度头等铣床附件,还可以扩大机床的加工范围。 X6132、X6132A型铣床的工作台可向左、右各回转45 o当工作台转动一定角度,采用分度头时,可以加工各种螺旋面。 X6132型机床三向进给丝杠为梯形丝杠,X6132A型机床三向进给丝杠为滚珠丝杠。 X6132/1、X6132A/1型数显万能升降台铣床是在X6132、X6132A型万能升降台铣床的基础上,在纵向、横向增加两个坐标的数字显示装置的一种变型铣床,该铣床具有普通万能升降台铣床的全部性能外,借助于数字显示装置还能作到加工和测量同时进行,实现动态位移数字显示,既保证了工件加工质量,又减轻了工人劳动强度和提高劳动生产率,配上万能铣头还可以进行镗孔加工。 图1-1 X6132卧式铣床整机外形图

轴的设计、计算、校核

轴得设计、计算、校核 以转轴为例,轴得强度计算得步骤为: 一、轴得强度计算 1、按扭转强度条件初步估算轴得直径 机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。 根据扭转强度条件确定得最小直径为: (mm) 式中:P为轴所传递得功率(KW) n为轴得转速(r/min) Ao为计算系数,查表3 若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。在轴得结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴得直径 l)绘出轴得结构图 2)绘出轴得空间受力图 3)绘出轴得水平面得弯矩图 4)绘出轴得垂直面得弯矩图 5)绘出轴得合成弯矩图 6)绘出轴得扭矩图 7)绘出轴得计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值: a)扭切应力理论上为静应力时,取α=0、3。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。 c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。 9)校核危险断面得当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),查表4。

为对称循环变应力时轴得许用弯曲应力,查表1。 如计算应力超出许用值,应增大轴危险断面得直径。如计算应力比许用值小很多,一般不改小轴得直径。因为轴得直径还受结构因素得影响。 一般得转轴,强度计算到此为止。对于重要得转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴得强度中没有考虑轴得应力集中、轴径尺寸与表面品质等因素对轴得疲劳强度得影响,因此,对于重要得轴,还需要进行轴危险截面处得疲劳安全系数得精确计算,评定轴得安全裕度。即建立轴在危险截面得安全系数得校核条件。 安全系数条件为: 式中:为计算安全系数; 、分别为受弯矩与扭矩作用时得安全系数; 、为对称循环应力时材料试件得弯曲与扭转疲劳极限; 、为弯曲与扭转时得有效应力集中系数, 为弯曲与扭转时得表面质量系数; 、为弯曲与扭转时得绝对尺寸系数; 、为弯曲与扭转时平均应力折合应力幅得等效系数; 、为弯曲与扭转得应力幅; 、为弯曲与扭转平均应力。 S为最小许用安全系数: 1、3~1、5用于材料均匀,载荷与应力计算精确时; 1、5~1、8用于材料不够均匀,载荷与应力计算精确度较低时; 1、8~ 2、5用于材料均匀性及载荷与应力计算精确度很低时或轴径>200mm时。 三、按静强度条件进行校核

轴强度校核例题与方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 1.3.1、轴的设计概要 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 1.3.2、轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较

敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,由于此钢氮化层硬度高,耐磨性好,而且能保持较软的芯部,因此耐冲击韧性好,还具备一定的耐热性和耐蚀性。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性,是目前工业中应用最广泛的氮化钢。 铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 1.3.3、轴的结构设计 根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。 1). 轴的组成 轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。 轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。 2). 结构设计步骤

轴的设计、计算、校核

轴的设计、计算、校核 以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm)式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数,查表3 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。 以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图

8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。 c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。 9)校核危险断面的当量弯曲应力(计算应力): 式中:W为抗扭截面摸量(mm3),查表4。 为对称循环变应力时轴的许用弯曲应力,查表1。 如计算应力超出许用值,应增大轴危险断面的直径。如计算应力比许用值小很多,一般不改小轴的直径。因为轴的直径还受结构因素的影响。 一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 二、按疲劳强度精确校核 按当量弯矩计算轴的强度中没有考虑轴的应力集中、轴径尺寸和表面品质等因素对轴的疲劳强度的影响,因此,对于重要的轴,还需要进行轴危险截面处的疲劳安全系数的精确计算,评定轴的安全裕度。即建立轴在危险截面的安全系数的校核条件。 安全系数条件为:

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

传动轴的设计及校核

第一章轻型货车原始数据及设计要求 发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: ?五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克 设计要求: 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出厂的,在使用中就应特别注意。 图 2-1 万向传动装置的工作原理及功用 图 2-2 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章轻型货车万向传动轴结构分析及选型 由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与

轴的设计计算

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。【五】教学任务及内容 任务知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 (一)根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。 2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

轴设计校核

4.3 升降轴的设计 升降轴是升降电机动力通过链轮输入的一段,它的结构如下图: 图4-2 轴的结构图 1. 估算轴的基本直径 选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得 取0A =120,得 mm 515 .272.2120n d 330=?=≥P A 所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即mm 5.5305.151d min =?=。 为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm ,故轴颈mm 55d 12=,与轴配合长度84mm 。 2. 轴的结构设计 (1)初定各段直径,见表4-1

(2)确定各段长度,见表4-2 3. 轴上零件的周向固定 半联轴器的周向定位均采用平键连接,按12d 由《机械设计》查得平键尺寸801016l h b ??=??,长为80mm ,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为251422l h b ??=??,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。 4. 考虑轴的结构工艺性 考虑轴的结构工艺性,轴肩处的圆角半径R 值为2.5,轴端倒角c=2mm ;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。 4.4 升降轴的强度校核 1. 轴的受力分析 轴的力学模型如下图: 根据升降传动轴的受力情况,此轴主要受扭矩作用。 (1)求出轴传递的扭矩: m N 7645.272.295509550?=?==n P T

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

心轴的设计与校核

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力 t F和上抬力 r F如图4-24 图4-24 轮齿受力图 2 cos t r t t n T F d F Ftg F F α α ? =? ? =? ? =?? 式中:T——行走电机最终传到行走轮上的转矩,N·m; d——摆线行走轮的节圆直径,m; α——啮合角(压力角)。 () 111 9550/955036.15/1034523.25N m T P n ==?=? 1 1 1 234523.251000 2230155N 300 t T F d ?? === 11 83769.57N r t F F tgα == () 222 9550/955034/840587.5N m T P n ==?=? 2 2 2 240587.51000 2226676.16N 358.11 t T F d ?? === 22 83503.38N r t F F tgα == 2241223.73N cos t n F Fα ==

(2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。 图 4-25 弯矩图 由计算得 1153036.4N R = 279557.94N R = (3)按弯扭合成强度校核轴的强度 空心轴[] 3 4 3 21.681M d σα =- 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1 d d α = []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ, 转动心轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的设计计算

轴的设计计算 轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。 一、轴的强度计算 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算; 对于只承受弯矩的轴(心轴),应按弯曲强度条件计算; 对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。 此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 下面介绍几种常用的计算方法: 按扭转强度条件计算。 1、按扭转强度估算轴的直径 对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。若有弯矩作用,可用降低许用应力的方法来考虑其影响。 扭转强度约束条件为: [] 式中:为轴危险截面的最大扭剪应力(MPa); 为轴所传递的转矩(N.mm); 为轴危险截面的抗扭截面模量(); P为轴所传递的功率(kW); n为轴的转速(r/min); []为轴的许用扭剪应力(MPa);

对实心圆轴,,以此代入上式,可得扭转强度条件的设计式: 式中:C为由轴的材料和受载情况决定的系数。 当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。 应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。 此外,也可采用经验公式来估算轴的直径。如在一般减速器中,高速输入轴 的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。 几种轴的材料的[]和C值 轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52 160~135148~125135~118118~107107~98 2、按弯扭合成强度条件校核计算

轴的设计计算校核

轴的设计计算校核 The pony was revised in January 2021

轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为: 一、轴的强度计算 1、按扭转强度条件初步估算轴的直径 机器的运动简图确定后,各轴传递的P和n为已知,在轴的结构具体化之前,只能计算出轴所传递的扭矩,而所受的弯矩是未知的。这时只能按扭矩初步估算轴的直径,作为轴受转矩作用段最细处的直径dmin,一般是轴端直径。 根据扭转强度条件确定的最小直径为: (mm) 式中:P为轴所传递的功率(KW) n为轴的转速(r/min) Ao为计算系数,查表3 若计算的轴段有键槽,则会削弱轴的强度,此时应将计算所得的直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。

以dmin为基础,考虑轴上零件的装拆、定位、轴的加工、整体布局、作出轴的结构设计。在轴的结构具体化之后进行以下计算。 2、按弯扭合成强度计算轴的直径 l)绘出轴的结构图 2)绘出轴的空间受力图 3)绘出轴的水平面的弯矩图 4)绘出轴的垂直面的弯矩图 5)绘出轴的合成弯矩图 6)绘出轴的扭矩图 7)绘出轴的计算弯矩图 8)按第三强度理论计算当量弯矩: 式中:α为将扭矩折合为当量弯矩的折合系数,按扭切应力的循环特性取值: a)扭切应力理论上为静应力时,取α=。 b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=。 c)对于经常正、反转的轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生的弯曲应力属于对称循环应力)。 9)校核危险断面的当量弯曲应力(计算应力):

轴结构设计和强度校核

一、轴的分类按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴 转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可

以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。 各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显着的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。 三、轴的结构设计 轴的结构设计包括定出轴的合理外形和全部结构尺寸。 轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装的零件的类型、尺寸、数量以及和轴联接的方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等。由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。设计时,必须针对不同情况进行具体的分析。但是,不论何种具体条件,轴的结构都应满足:轴和装在轴上的零件要有准确的工作位置;轴上的零件应便于装拆和调整;轴应具有良好的制造工艺性等。下面讨论轴的结构设计中的几个主要问题。 拟定轴上零件的装配方案 各轴段直径和长度的确定 轴上零件的定位 提高轴的强度的常用措施 轴的结构工艺性 轴上零件的定位 为了防止轴上零件受力时发生沿轴向或周向的相对运动,轴上零件除了有游动或

心轴的设计与校核

心轴的设计与校核 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

心轴的设计与校核 (1)轴上所受力的计算 行走轮有效牵引力t F 和上抬力r F 如图4-24 图4-24 轮齿受力图 式中:T ——行走电机最终传到行走轮上的转矩,N ·m ; d ——摆线行走轮的节圆直径,m ; α——啮合角(压力角)。 (2) 根据轴的机构图作出轴的计算简图,根据轴的计算简图作出轴的弯矩图和当量弯矩图,如图4-25所示,由于轴上套有轴承轴上的扭矩忽略不计。 图 4-25 弯矩图 由计算得 (3)按弯扭合成强度校核轴的强度 空心轴 d = 式中:d ——轴的直径,mm M ——轴在计算截面所受载荷,N m ? α——空心轴内径1d 与外径d 之比,1d d α= []σ——许用应力,固定心轴:载荷平稳[]σ=[]1σ+;载荷变化[]σ=[]0σ,转动心 轴:[]σ=[]1σ- []1σ+、[]0σ、[]1σ-——轴的许用弯曲应力,2N/mm ,按机械设计手册查表6-1-1。

轴的材料为42r o C M ,淬火渗碳。查相关资料得2b σ=1100N/mm ,则取 []2-1b σ=110N/mm ,[]0b σ=1802N/mm ,1d d α= = 所以 d =mm 取d =110mm 当量弯矩ca M M = 该轴满足强度要求 (4)疲劳强度安全系数校核 式中:1σ-——材料的弯曲疲劳极限,2N/mm M ——轴在计算截面上的弯矩,N m Z ——轴在计算截面的抗弯模数,3cm 。()3 4 132d Z πα=- []S ——疲劳强度的许用安全系数,见机械设计手册表6-1-23,取[] 1.3S = σλ——从标准试件的疲劳极限到零件的疲劳极限的换算系数,轴上配合零件边缘的 σλ值见机械设计手册表6-1-27 σψ——弯曲时平均应力折合为应力幅的等效系数,其值如下: 低碳钢 σψ= 中碳钢 σψ= 合金钢 σψ= 所以() ()[]1 22502 1.422003.1440.25130S S M Z σσσλψ-?===≥++ (5)心轴的静强度校核 危险截面的安全系数校核公式为: 式中:max M 、max T ——轴计算截面上所受的最大弯矩和扭矩,N m ?

轴设计校核

4.3 升降轴的设计 升降轴是升降电机动力通过链轮输入的一段,它的结构如下图: 图4-2 轴的结构图 1. 估算轴的基本直径 选用45钢,热处理方式为调质处理,由《机械设计》课本表15-3查得 取0A =120,得 mm 515 .272.2120n d 330=?=≥P A 所求为轴的最细处,即装联轴器处(图5-2)。但因此处有个键槽,故轴颈应增大5%,即m m 5.5305.151d min =?=。 为了使所选的直径与联轴器孔径相适应,故需同时选择与其相适应的联轴器。由《机械设计课程设计》课本查得采用凸缘联轴器,其型号选为YLD10,取与轴配合的的半联轴器孔径55mm ,故轴颈m m 55d 12=,与轴配合长度84mm 。 2. 轴的结构设计 (1)初定各段直径,见表4-1 位置 轴颈/mm 说明 装联轴器轴段1-2 12d =55 与半联轴器的内孔配合,故取55mm 定位轴承段 2-3 23d =60 放置端盖处,故取115mm 轴承段 3-4 34d =70 选用深沟球轴承6012,其孔径为70mm 装链轮段 4-5 45d =80 与链轮轮毂内孔配合 轴环段 5-6 56d =90 链轮的轴向定位 自由锻 6-7 67d =80 轴承的左端轴向定位 轴承段 3-4 78d =70 选用深沟球轴承6012,其孔径为70mm

(2)确定各段长度,见表4-2 3. 轴上零件的周向固定 半联轴器的周向定位均采用平键连接,按12d 由《机械设计》查得平键尺寸801016l h b ??=??,长为80mm ,半联轴器与轴的配合代号为H7/k6。同样,链轮毂与轴连接处,选用平键为251422l h b ??=??,为保证链轮与轴的周向固定,故选择链轮轮毂与轴的配合代号为H7/k6。 4. 考虑轴的结构工艺性 考虑轴的结构工艺性,轴肩处的圆角半径R 值为2.5,轴端倒角c=2mm ;为便于加工,链轮和半联轴器处的键槽布置在同一轴面上。 4.4 升降轴的强度校核 1. 轴的受力分析 轴的力学模型如下图: 根据升降传动轴的受力情况,此轴主要受扭矩作用。 (1)求出轴传递的扭矩: m N 7645.272.295509550?=?==n P T

轴的校核

3轴的设计计算 3.1轴的材料选择和最小直径估算 3.1.1轴的材料选用45号钢,调质处理。 3.1.2高速轴直径和轴长的确定 初算直径时,若最小直径段开于键槽,应考虑键槽对轴强度的影响,当该段截面上有一个键槽时,d增加5%~7%,两个键槽时,d增加10%~15%,由教材表 12-2,高速轴,同时要考虑电动机的外伸直径d=48mm。 所以: 高速轴:

3.1.3低速轴直径和轴长的确定 所以低速轴的轴长初步确定为

3.2轴的强度校核(低速轴所受转矩大,且两轴的直径相差很小,只校核 低速轴) (1)求齿轮上作用力的大小、方向 齿轮上作用力的大小: (2)求轴承的支反力 水平面上支力 垂直面上支力 (3)画弯矩图水平面上的弯矩 垂直面上的弯矩 合成弯矩 (4)画转矩图 (5)画当量弯矩图 因单向回转,视转矩为脉动转矩,,已知, 查表12-1可得, 剖面C处的当量弯矩:

(6)判断危险剖面并验算强度 a )剖面C 当量弯矩最大,而且直径与相邻段相差不大,故剖面C 为危险面。 已知 则 b)轴7的剖面虽仅受弯矩,但其直径最小,则该剖面为危险面。 所以轴的强度足够。 4滚动轴承的选择与计算 4.1滚动轴承的选择 高速轴和低速轴的轴承段的直径分别为 40mm,45mm,在轴的设计计算部分已 经选用 如下表所示深沟球轴承: 4.2滚动轴承的校核 由于低速轴的转矩大于高速轴,同时低速轴和高速轴的直径相差很小,所以只需校核低速轴的深沟球轴承。 F A

4.2.1轴的受力状况及轴承载荷计算 水平面上的支反力:N 717..14752/F F F t2RB RA === 垂直面上的支反力: N F d F F N F d F F R a RB R a RA 994.810162/]81)2/[(894.375162/]81)2/[(222' 222'=?+==?+-= 轴承所承受的径向载荷 N F F F N F F F RB RB R RA RA R 880.1683994.810717.1475838.1522894.375717.14752 2 2 '22222 '21=+= += =+= += 轴向外载荷N F A 417.1538= 轴承的转速n=191r/min 4.2.2求当量动载荷 低速轴受轴向载荷1A A F F =,则,)(A R p YF XF f P +=由教材表14-13可得,减速器中等冲击取3.1=p f 查有关轴承手册可得。N C N r 33r 0102.43,102.29C 轴承6211?=?= 低速轴:0527.029200 417 .1538/01== r A C F , 可得7.1,56.0==Y X N 422.5337)417.15387.1880.168356.0(5.1)(2=?+??=+=A R p YF XF f P 4.2.3求轴承寿命 N 102.43C 、3已知球轴承3r ?==ε 则 h P Cr n L h 052.46267)422 .533743200(1916010)(60103 66=?== ε 按两班制计算每天工作16小时,一年工作350天,则 年5262.8350 16052 .4626735016L L h Y >=?=?= (满足年限要求)

相关文档
最新文档