机加工表面粗糙度

机加工表面粗糙度
机加工表面粗糙度

4.1 基本概念

4.1.1 表面粗糙度的定义

表面粗糙度(Surface roughness)是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性性它是一种微观几何形状误差,也称为微观不平度。表面粗糙度应与形状误差(宏观几何形状误差)和表面波度区别开。通常,波距小于 1mm 的属于表面粗糙度,波距在 1~10mm 的属于表面波度,波距大于 10mm 的属于形状误差,如图 4-1 所示。

4.1.2 表面粗糙度对机械零件使用性能的影响

表面粗糙度的大小对零件的使用性能和使用寿命有很大影响。

1. 影响零件的耐磨性

表面越粗糙,摩擦系数就越大,相对运动的表面磨损得越快。然而,表面过于光滑,由于润滑油被挤出或分子间的吸附作用等原因,也会使摩擦阻力增大和加速磨损。

2. 影响配合性质的稳定性

零件表面的粗糙度对各类配合均有较大的影响。对于间隙配合,两个表面粗糙的零件在相对运动时会迅速磨损,造成间隙增大,影响配合性质;对于过盈配合,在装配时表面上微观凸峰极易被挤平,产生塑性变形,使装配后的实际有效过盈减小,降低联接强度;对于过渡配合,因多用压力及锤敲装配,表面粗糙度也会使配合变松。

3. 影响疲劳强度

承受交变载荷作用的零件的失效多数是由于表面产生疲劳裂纹造成的。疲劳裂纹主要是由于表面微观峰谷的波谷所造成的应力集中引起的。零件表面越粗糙,波谷越深,应力集中就越严重。因此,表面粗糙度影响零件的抗疲劳强度。

4. 影响抗腐蚀性

粗糙表面的微观凹谷处易存积腐蚀性物质,久而久之,这些腐蚀性物质就会渗入到金属层,造成表面锈蚀。

此外,表面粗糙度对接触刚度、密封性、产品外观、表面光学性能、导电导热性能以及表面结合的胶合强度等都有很大影响。所以,在设计零件的几何参数精度时,必须对其提出合理的表面粗糙度要求,以保证机械零件的使用性能。

https://www.360docs.net/doc/d27838850.html,/hhxing/book/version2/f42.htm

4.3 表面粗糙度的选用

4.3.1 评定参数的选用

1. 幅度参数的选用

幅度参数是标准规定的基本参数,可以独立选用。对于有粗糙度要求的表面,必须选用一个幅度参数。

对于幅度方向的粗糙度参数值在0.025~6.3μm的零件表面,标准推荐优先选用Ra。这是因为Ra能够比较全面地反映被测表面的微小峰谷特征,同时,上述围用轮廓仪能够很方便地测出被测表面Ra的实际值。

对于Ra在6.3~100 和0.008~0.020 的零件表面可以选用Rz。

图4-11中,五种表面的轮廓最大高度参数相同,但使用质量显然不同。因此,对于有特殊要求的少数零件的重要表面,需要加选附加参数RSm或Rmr(c)。

2. 附加参数的选用

参数RSm和Rmr(c)一般不能作为独立参数选用,只能作为幅度参数的附加参数选用。

对于有特殊要求的表面,如喷涂均匀、涂层有极好的附着性和光洁性等,RSm作为附加参数选用。

对于有较高支撑刚度和耐磨性的表面,Rmr(c) 作为附加参数选用。

4.3.2 参数值的选用

1. 表面粗糙度的参数值

在GB/T 1031—95中,已经将表面粗糙度的参数值标准化。表4-1表4-4分别是参数Ra、Rz、RSm和Rmr(c)的参数值。

表4-1 Ra的参数值(摘自GB/T1031-95)μm

0.012 0.2 3.2 50

0.025 0.4 6.3 100

0.05 0.8 12.5

0.1 1.6 25

表4-2 Rz的数值(摘自GB/T1031-95)μm

0.025 0.4 6.3 100 1600

0.05 0.8 12.5 200

0.1 1.6 25 400

0.2 3.2 50 800

注:这里的Rz对应GB/T 3505-83的Ry

0.006 0.1 1.6

0.0125 0.2 3.2

0.025 0.4 6.3

0.05 0.8 12.5

注:这里的RSm对应GB/T 3505-83的Sm

10 15 20 25 30 40 50 60 70 80 90

的百分数表示,百分数系列如下:Rz的5,10,15,20,25,30,40,50,60,70,80,90%。

2. 表面粗糙度参数值的选用

设计时应按标准规定的参数值系列(表4-1表4-4)选取各项参数的参数值。

选用原则是在满足功能要求的前提下,参数的允许值尽量大(Rmr(c)尽量小)。以便于加工,降低成本,获得较好的经济效益。

选用方法目前多采用类比法。根据类比法初步确定参数值,同时还要考虑下列情况:

同一个零件上,工作表面比非工作表面的Ra或Rz值小。

摩擦表面比非摩擦表面、滚动摩擦表面比滑动摩擦表面的Ra或Rz值小。

运动速度高、单位面积压力大、受交变载荷作用的零件表面、以及最易产生应力集中的沟槽、圆角部位应选用较小的粗糙度数值。

要求配合稳定、可靠时,粗糙度参数值应小些。如,小间隙配合表面、受重载作用的过盈配合表面,都应选用较小的粗糙度数值。

协调好表面粗糙度参数值与尺寸及形位公差的关系。通常,尺寸、形位公差值小,表面粗糙度Ra或Rz值也要小;尺寸公差等级相同时,轴比孔的粗糙度数值要小。

防腐蚀性、密封性要求高,或外形要求美观的表面应选用较小的粗糙度数值。

凡有关标准已对表面粗糙度作出规定的标准件或常用典型零件(例如,与滚动轴承配合的轴颈和基座孔、与键配合的轴槽、轮毂槽的工作面等),应按相应的标准确定其表面粗糙度参数值。

表4-5和表4-6分别列出了各类配合要求的孔、轴表面粗糙度参数的推荐值和各种加工方法可能达到的表面粗糙度数值,供参考。

轮、等)

50~5

00

50~120 120~50

6.30100 0.050.4

0 6.3025 0.012 1.

60

1.6050 6.3050 1.601

2.

5

0.8025

1.6025 0.40 6.3

0 0.40 1.6

6.30100

0.8012.5 0.40 1.6

0 0.80 6.3

1.60100

0.4012.5 1.6012.

5 0.100 1.

60

3.2025

0.40 6.30 0.40 3.2

0 0.0250.

40

12.550

6.30100 0.100 1.

60 1.60 3.2

1.60 6.3

1.60100 0.40 3.2

0 0.40 1.6

0.80 6.3

0.2012.5

0.1000.

40 0.0250.40

0.80 6.3

0.4012.5 3.2025

0.025 1.60 0.200.80 0.20 6.30

0.80 6.30 0.0120.40 0.8012.5 0.4025

0.40 1.6

0 0.050.40 0.80 6.30 0.4012.5

3.2012.

5 0.0120.100

0.40 3.20 6.3025 0.40 6.30 0.100 1.60 0.20 1.6

0 1.60 6.30 0.20 1.60

0.0120.100

0.05 1.60

0.40 1.60

6.3025 0.05 3.20 0.80 6.30 1.6025

1.601

2.5 0.0120.40

0.80 6.30 0.8025

0.20 1.60

0.0120.40 0.80 6.3

0 6.3025 0.0250.20

0.8025

0.1000.

80 1.60 6.30

0.20 1.6

4.3.3 取样长度的选用

一般情况下,在测量Ra 、Rz 时,推荐按表4-7选用对应的取样长度及评定长度值,此时取样长度值的标注在图样上或技术文件中可省略。当有特殊要求时应给出相应的取样长度值,并在图样上或技术文件中注出。

表4-7 lr 和ln 的数值(摘自GB/T 1031-95)

4.4 表面粗糙度符号、代号及标注

图样上所标注的表面粗糙度符号、代号,是该表面完工后的要求。

4.4.1 表面粗糙度的符号

表4-8是图样上表示零件表面粗糙度的符合及其说明。若仅需要加工(采用去除材料的方法或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。

表4-8 表面粗糙度符号(摘自GB/T131-93)

符号意义及说明

基本符号,表示表面可用任何方法获得。当不加注

粗糙度参数值或有关说明(例如:表面处理、局部

热处理状况等)时,仅适用于简化代号标注

基本符号加一短划,表示表面是用去除材料的方法

获得。例如:车、铣、钻、磨、剪切、抛光、腐蚀、

电火花加工、气割等

基本符号加一小圆,表示表面是用不去除材料的方

法获得。例如:铸、锻、冲压变形、热轧、冷轧、

粉末冶金等。

或者是用于保持原供应状况的表面(包括保持上道

工序的状况)

在上述三个符号的长边上均可加一横线,用于标注

有关参数和说明。

在上述三个符号上均可加一小圆,表示所有表面具

有相同的表面粗糙度要求

4.4.2 表面粗糙度代号及其注法

当允许在表面粗糙度参数的所有实测值中超过规定值的个数少于总数的16%时,应在图样上标注表面粗糙度参数的上限值或下限值。

当要求在表面粗糙度参数的所有实测值中不得超过规定值时,应在图样上标注表面粗糙度参数的最大值或最小值。

1. 表面粗糙度幅度参数的标注

图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。若仅需要加工(采用去除材料的方法或不去除材料的方法)但对表面粗糙度的其它规定没有要求时,允许只注表面粗糙度符号。

幅度参数是表面粗糙度的基本参数,Ra、Rz在代号中用数值表示,单位为微米(m),Ra 的参数值前可不标注参数代号,Rz的参数值前需标注出相应的参数代号。表4-9是表面粗糙度幅度参数的各种代号及其意义。

切削加工时表面粗糙度形成的原因及其影响因

切削加工时表面粗糙度形成的原因及其影响因素 简介:1 表面粗糙度产生的原因几何因素由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角kr=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。当f≤2resinkr,残留面积是由圆弧过渡刃构成。此时关键字:刀具夹具切削铣削车削机床测量 1 表面粗糙度产生的原因 几何因素 由于刀具切削刃的几何形状、几何参数、进给运动及切削刃本身的粗糙度等原因,未能将被加工表面上的材料层完全干净地去除掉(只有当刀具上带有刀具的副偏角k'r=0的修光刃、且进给量小于修光刃宽度时,理论上才不产生残留面积),在已加工表面上遗留下残留面积,残留面积的高度构成了表面粗糙度Rz。 当f≤2resink'r,残留面积是由圆弧过渡刃构成。此时 式中:f——进给量,mm/r; re——刀尖圆弧半径。 当2resink'r≤f≤(re/sink'r)[1-cos(kr+k'r],残留面积是由刀尖圆弧过渡刃和直线副切削刃构成。此时 Rz=re[1-sin(k'r+b)]×1,000 sinb=1-(f/re)sink'r 式中kr,k'r——刀具的主偏角、副偏角。 当f>(re/sink'r)[1-cos(kr+k'r)],残留面积是由刀尖圆弧过渡刃和二直线主、副切削刃构成。此时Rz= 1 f-re(tan kr +tan k'r )]×1000 cotkr+k'r 2 2 当re→0时,残留面积是由主、副2条直线切削刃构成。此时Rz= f ×1000 cotkr+k'r 刀具切削刃的粗糙度由于直接复映在加工表面上,所以刀具切削刃的粗糙度值,应低于加工表面要求的粗糙度值。 实际上加工表面的粗糙度总是大于按以上计算的残留面积的高度,只有切削脆性材料或高速切削塑性材料时,实际加工表面的粗糙度才比较接近残留面积的高度,说明影响表面粗糙度的还有其他原因。 积屑瘤

各种材料摩擦系数表分析

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

机械加工影响表面粗糙度的因素及改善措施

机械加工影响表面粗糙度的因素及改善措施 摘要:零件表面粗糙度是判断一个制造品是否符合工业标准的重要指标,直接决定其能否在机械中发挥正常功能,因此,研究机械加工影响表面粗糙度的因素十分重要,文中结合实际加工经验,探析了哪些因素对零件表面粗糙度有显著影响,并且根据这些影响因素给出合理的解决方案。 关键词:机械加工;表面粗糙度;改善措施 引言 在机械使用过程中,大多因为零件的破损导致其部分功能无法正常使用,工业产品的使用时间,产品质量和产品性能取决于组成零件的加工质量,而零件本身的质量由可靠性,耐磨性,表面粗糙度等因素决定,而其中的重要因素就是表面粗糙度,表面粗糙度即是零件加工表面较小间距和微小峰谷的不平度的表述,波峰和波谷的距离差距会影响机械零件的性能。因此研究表面粗糙度的影响因素十分重要,能够帮助改善零件的性能和机械设备的整体性能。 1.零件表面粗糙度的影响因素分析 1.1切削加工带来的影响 使用刀具给零件加工时,会在表面存留切削的残留面,这种残留面具有微观几何误差,进给量,主副偏角和刀尖圆弧的半径都会对残留面的大小,调整好加工时的进给量,角度就可以减小零件的变形程度和切割面积,另外,加工零件时应该选择符合材质特性的润滑剂和刀具。材料的选择也是至关重要的,因为材料加工发生切屑分离时,会产生塑性变形,这种塑性变形程度是和材料的弹力极限有关系,如果材料不好,残留塑形面积就会扩大,最终导致零件不符合工业标准。刀具的后刀面和已经加工的工件表面的摩擦也会对表面粗糙度产生影响,外力作用增大也会增加表面粗糙度。 1.2磨削加工带来的影响 磨削加工用于机械精细加工,磨粒的硬度很高,具有白锐性,可以用加工各种材料,在加工过程中,磨削转速一般是30到35m/s,转速非常高。但是磨削加工可以获得很高的加工精度和表面粗糙度值。正是因为磨削加工的优势,在具体加工过程中,温度可达1000摄氏度到1500摄氏度,会加深塑性变形,而且磨粒的负前角磨削比较薄,磨削时大多挤压零件表面,面对塑性变形过程,磨粒侧边会产生塑性热流,进而在零件上划出微小粗糙,高温会更近一步加深表面粗糙度。 一般而言,当磨削转速增大时,工件表面磨削度粗糙值减少,因为没有变形的磨粒的厚度会变小,工件转速增加时,磨削表面粗糙度反而会增大,轴方向的

各种材料摩擦系数表

各种材料摩擦系数表文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

各种材料摩擦系数表 摩擦系数是指两表面间的和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考 固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生、反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作????用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1?

2.2? 3.3? 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良 好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦 副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐 蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严 酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。

影响机械加工表面粗糙度的几个因素及措施

职教类 影响机械加工表面粗糙度的几个因素及措施 摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。 关键词:机械加工表面粗糙度提高措施 随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。因而表面质量问题越来越受到各方面的重视。 一、机械加工表面粗糙度对零件使用性能的影响 表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。 1、表面质量对零件配合精度的影响 (1)对间隙配合的影响 由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。表面粗糙度

过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。特别是在零件尺寸和公差小的情况下,此影响更为明显。 (2)对过盈配合的影响 粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。 2、表面质量对疲劳强度的影响 零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。 3、表面质量对零件抗腐蚀性的影响 零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。 4、表面质量对零件摩擦磨损的影响 两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。此外,表面越粗糙,两配合表面的实际有效接触面积越小,单位面积压力越大,更易磨损。 此外,表面粗糙度还影响零件的接触刚度、密封性能、产品的美观和表面涂层的质量等。因此,提高产品的质量和寿命应选取合理的表面粗糙度。 二、影响表面粗糙度的因素及措施 1、切削加工影响表面粗糙度的因素 在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。减小

机械加工表面粗糙度及其影响因素

题目机械加工表面粗糙度及其影响因素 摘要:在现代工业生产中,许多制件的表面被加工而具有特定的技术性能特征,诸如:制件表面的耐磨性、密封性、配合性质、传热性、导电性以及对光线和声波的反射性,液体和气体在壁面的流动性、腐蚀性,薄膜、集成电路元件以及人造器官的表面性能,测量仪器和机床的精度、可靠性、振动和噪声等等功能,而这些技术性能的评价常常依赖于制件表面特征的状况,也就是与表面的几何结构特征有密切联系。因此,控制加工表面质量的核心问题在于它的使用功能,应该根据各类制件自身的特点规定能满足其使用要求的表面特征参量。不难看出,对特定的加工表面,我们总希望用最(或比较)恰当的表面特征参数去评价它,以期达到预期的功能要求;同时我们希望参数本身应该稳定,能够反映表面本质的特征,不受评定基准及仪器分辨率的影响,减少因对随机过程进行测量而带来参数示值误差。 关键词:机械加工表面粗糙度表面质量物理因素 1. 绪论 1.1机械加工表面粗糙度历史 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。 1.2表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统一的作用,我国等效采用国际标准化组织(ISO)有关的国际标准制订了GB3505-1983《表面粗糙度术语表面及其参数》。GB3505专门对有关表面粗糙度的表面及其参数等术语作了规定,其中有三个部分共27个参数术语: 与微观不平度高度特性有关的表面粗糙度参数术语。其中定义的常用术语为:轮廓算术平均偏差Ra、轮廓均方根偏差Rq、轮廓最大高度Ry和微观不平度十点高度Rz等11个参数。 与微观不平度间距特性有关的表面粗糙度参数术语。其中有轮廓微观不平度的平均间距Sm、轮廓峰密度D、轮廓均方根波长 q以及轮廓的单峰平均间距S等共9个参数。 与微观不平度形状特性有关的表面粗糙度参数术语。这其中有轮廓偏斜度Sk、轮廓均方根斜率 q和轮廓支承长度率tp等共5 个参数。 2. 精密加工表面性能 2.1精密加工表面性能评价的内容及其迫切性 表面粗糙度参数这一概念开始提出时就是为了研究零件表面和其性能之间的关系,实现对表

磨削加工时 影响工件表面粗糙度的因素

磨削加工时,影响工件表面粗糙度的因素 1、磨削用量对表面粗糙度的影响 1)砂轮的速度越高,单位时间内通过被磨表面的磨粒数就越多,因而工件表面的粗糙度值就越小。同时,砂轮速度越高,就有可能使表面金属塑性变形的传播速度大于切削速度,工件材料来不及变形,致使表层金属的塑性变形减小,磨削表面粗糙度值也将减小。 2)工件速度对表面粗糙度的影响刚好与砂轮速度的影响相反,增大工件速度时,单位时间内通过被磨表面的磨粒数减少,表面粗糙度值将增加。 3)砂轮的纵向进给减小,工件表面的每个部位被砂轮重复磨削的次数增加,被磨表面的粗糙度值将减小。 4)磨削液厂家“联诺化工”发现随着磨削深度增大,表层塑性变形将随之增大,被磨表面粗糙度值也会增大。 2、磨削液对表面粗糙度的影响 磨削液对磨削力,磨削温度及砂轮磨损等方面的影响,最终会影响工件表面粗糙度。 高效磨削液是一种水基化学合成液,它含有阴离子表面活性剂,磨削加工时,砂轮与工件间的磨削产生阳离子。因此,这种磨削液可使砂轮与工件的接触区不产生高热,减少磨粒磨损。同时它含有润滑性能好,吸附性能强的添加剂,在高温高压下与铁反应形成牢固的润滑膜,减小了磨削阻力。高效磨削液还含有非离子表面活性剂,它可降低水的表面张力,提高磨削液的浸润性和清洗性,有利于降低工件表面粗糙度。磨削液厂家“联诺化工”的SCC750B水性环保磨削液属于高效磨削液。SCC750B选用特制的高性能极压添加剂、防锈剂等其它添加剂复配而成,与水混合时可形成稳定的透明荧光绿色溶液。SCC750B水性环保磨削液具有良好的极压润滑性、防锈性、冷却性、沉降性和清洗性。具有极强的抗微生物分解能力,在不同的水硬度条件下,仍可保持其稳定性,是新一代高性能的多用途的无泡磨削液。 SCC750B水性环保磨削液优点: ●含特种极压润滑添加剂,可显著减少砂轮磨损; ●采用高分子水/油溶性防锈剂,对设备及工件(特别是铸铁)有极好的防锈性; ●无泡沫倾向,清洗性能好,比同类产品有更好的金属屑沉降性;透明度高,有利于监察工件的表面加工状态及切削液消耗量,不会刺激皮肤,保护操作者健康;使用寿命长,一年以上更换期,符合环保要求,减少浪费,提高生产效率; ●对操作工人皮肤无伤害、及机台油漆无影响,且有保护作用。 3、砂轮对表面粗糙度的影响 1)砂轮粒度单纯从几何因素考虑,砂轮粒度越细,磨削的表面粗糙度值越小。但磨削液厂家“联诺化工”发现磨粒太细时,砂轮易被磨屑堵塞,若导热情况不好,反而会在加工表面产生烧伤等现象,使表面粗糙度值增大。因此,砂轮粒度常取为46~60号。 2)砂轮硬度砂轮太硬,磨粒不易脱落,磨钝了的磨粒不能及时被新磨粒替代,使表面粗糙度值增大。磨削液厂家“联诺化工”发现砂轮太软,磨粒易脱落,磨削作用减弱,也会使表面粗糙度值增大。常选用中软砂轮。 3)砂轮组织紧密组织中的磨粒比例大,气孔小,在成形磨削和精密磨削时,能获得较小的表面粗糙度值。疏松组织的砂轮不易堵塞,适于磨削软金属、非金

机械加工影响表面粗糙度的工艺因素

机械加工影响表面粗糙度的工艺因素 从影响表面粗糙度的成因可以看出,影响表面粗糙度的因素可以分为三类:第一类,与切削刀具有关;第二类,与工件材质有关;第三类,与加工条件有关。 1 切削加工影响表面粗糙度的因素 1.1 切削用量切削参数选择的不同对表面粗糙度影响较大,应引起足够的重视。 切削速度在一定速度范围内,塑性材料容易产生积屑瘤或鳞刺,所以应避开这个积屑瘤区,如用中、低速容易形成积屑瘤。 切削深度切削深度对表面粗糙度基本上没有影响,但过小的切削深度将在刀尖圆弧下挤压过去,形成附加的塑性变形,增大表面粗糙度值。 进给量减小进给量可减小残留面积高度,但过小的进给量将使切屑厚度太薄。当厚度小于刃口圆弧半径时,会引起薄层切削打滑,产生附加表面粗糙度。 1.2 刀刃在工件表面留下的残留面积被加工表面上残留的面积愈大,获得表面将愈粗糙。 用单刃刀切削时,残留面积只与进给量f 、刀尖圆弧半径ro及刀具的主偏角kr、副偏角k1r 有关。 减小进给量f,减小主偏角、副偏角,增大刀尖圆角半径,都能减小残留面积的高度H ,也就降低了零件的表面粗糙度值。 进给量f对表面粗糙度影响较大,但f值较低时,虽然有利于表面粗糙度值的降低,但影响生产率。增大刀尖圆角半径ro,有利于表面粗糙度值的降低。但刀尖圆角半径的增加,会引起吃刀抗力的增加,而吃刀抗力过大会造成工艺系统的振动。减小主、副偏角,均有利于表面粗糙度值的降低。但在精加工时, 主、副偏角对表面粗糙度值的影响较小。 1.3 工件材料的性质塑性材料与脆性材料对表面粗糙度都有较大的影响。 积屑瘤的影响(塑性材料) 在一定的切削速度范围内加工塑性材料时,由于前刀面的挤压和摩擦作用,使切屑的底层金属流动缓慢而形成滞留层,此时切屑上的一些小颗粒就会黏附在前刀面的的刀尖处,形成硬度很高的楔状物,称为积屑瘤。积屑瘤的硬度可达工件硬度的2~3.5倍,它可代替切削刃进行切削,由于积屑瘤的存在,使刀具上的几何角度发生了变化,切削厚度也随之增大,因此将会在已加工表面上切出沟槽。积屑瘤生成以后,当切屑与积屑瘤的摩擦力大于积屑瘤与前刀面的冷焊强度或受到振动、冲击时,积屑瘤会脱落,又会逐渐形成新的积屑瘤。由此可见,积屑瘤的生成、长大和脱落,使切削发生波动,并严重影响工件的表面质量。脱落的积屑瘤碎片,还会在工件的已加工表面上形成硬点,因此,积屑瘤是增大表面粗糙度值的不可忽视的因素。

BOPET薄膜的表面粗糙度及摩擦系数

简述BOPET薄膜的表面粗糙度及摩擦系数简述BOPET薄膜的表面粗糙度及摩擦系数: 双向拉伸聚酯薄膜(BOPET)具有优良的综合性能,它的机械强度高、光学性能好、使用温度广、阻隔性优良、耐油、耐腐蚀等等,故其应用领域十分广泛。 BOPET薄膜的表面粗糙度 纯BOPET薄膜的表面非常光滑,光滑的表面在薄膜收卷时会产生粘连,无法正常收卷,也不容易放卷。同时,光滑的薄膜表面对油墨印刷和真空镀铝也非常不利,因为光滑的表面会大大降低油墨或镀铝层与BOPET薄膜之间的附着力,包括胶粘剂与铝箔和BOPET薄膜之间的附着力。为了使PET薄膜表面具有一定的粗糙度,以增加其与其它物质的黏结力,通常采用在PET树脂中添加某种抗粘连剂的方法,使在PET成膜过程中的薄膜表面形成一定的粗糙度。薄膜表面粗糙度的大小与添加剂(抗粘连剂)的种类、添加剂添加的数量、添加剂的粒径与形状、添加剂的分散性、添加剂的表面处理等因素有关。常用的添加剂有:SiO2、TiO2、CaCO3、A12O3、MgO、BaSO4、高岭土等。根据BOPET薄膜用途的不同而选用不同的添加剂。随着BOPET薄膜中添加剂含量的增加,薄膜的摩擦系数μs下降,表面粗糙度增大。 适当的表面粗糙度有利于油墨印刷和真空镀铝,这是肯定的。当然,相糙度过大则可能会造成油墨或铝分子不能填满薄膜表面凹陷,形成空隙而影响两者之间的附着力,严重时会导至油墨或镀铝层与薄膜脱离分层。一般控制Ra=0.08~0.16。 BOPET薄膜表面的摩擦系数 在塑料薄膜和塑料包装袋的生产中,塑料薄膜的摩擦系数是一项重要的技术指标。一方面它和薄膜抗粘连性能一起成为塑料薄膜开口性的量化评定指标,另一方面又可作为自动包装机运行速度、张力调节、薄膜运行中磨损的参考数据之一。 在印刷、镀铝的过程中,同样对塑料薄膜的摩擦系数有一定的要求。薄膜表面摩擦系数与其表面的粗糙度成直线关系。在一定条件下,表面粗糙度越大,磨擦系数越小。也就是说,降低薄膜表面的摩擦系数对印刷、镀铝有利,有利于增加它们与塑料薄膜之间的结合面,有利于提高它们之间的粘合力。一般要求摩擦

表面粗糙度及其影响因素

表面粗糙度及其影响因素 一、切削加工中影响表面粗糙度的因素 影响表面粗糙度的因素主要有几何因素和物理因素。 1.几何因素: 式中 f ——进给量。 Kr ——主偏角。 Kr’——副偏角 考虑刀尖圆弧角: 式中 f ——进给量。 r ——刀尖圆弧半径。 如图11-8、9所示,用刀尖圆弧半径r=0的车刀纵车外圆时,每完成一单位进给量f后,留在已加工表面上的残留面积,它的高度Rmax即为理论粗糙度的轮廓最大高度Ry。 图11- 8 图11- 9 图11- 10 加工后表面实际轮廓和理论轮廓 切削加工后表面粗糙度的实际轮廓形状,一般都与纯几何因素所形成的理论轮廓有较大的差别,如图11-10。这是由于切削加工中有塑性变形发生的缘故。 生产中,若使用的机床精度高和材料的切削加工性好,选用合理的刀具几何形状、切削用量和在刀具刃磨质量高、工艺系统刚性足够情况下,加工后表面实际粗糙度接近理论粗糙度,这样减小表面粗糙度数值、提高加工表面质量的措施,主要是减小残留面积的高度Ry。 2.物理因素 多数情况下是在已加工表面的残留面积上叠加着一些不规则的金属生成物、粘附物或刻痕。形成它们的原因有积屑瘤、鳞刺、振动、摩擦、切削刃不平整、切屑划伤等。 3.积屑瘤的影响 积屑瘤的生成、长大和脱落将严重影响工件表面粗糙度。 同时,由于部分积屑瘤碎屑嵌在工件表面上,在工件表面上形成硬质点。见图11-11。

图11- 11 图11- 12 鳞刺的影响鳞刺的出现,使已加工表面更为粗糙不平。 鳞刺的形成分为: 抹拭阶段:前一鳞刺已经形成,新鳞刺还未出现;而切屑沿着前刀面流出,切屑以刚切离的新鲜表面抹拭刀——屑摩擦面,将摩擦面上有润滑作用的吸附膜逐渐拭净,以致摩擦系数逐渐增大,并使刀具和切屑实际接触面积增大,为这两相摩擦材料的冷焊创造条件,如图11-12(a)。 导裂阶段:由于在第一阶段里,切屑将前刀面上的摩擦面抹拭干净,而前刀面与切屑之间又有巨大的压力作用着,于是切屑与刀具就发生冷焊现象,切屑便停留在前刀面上,暂时不再沿前刀面流出。这时切屑代替前刀面进行挤压,刀具只起支撑切削的作用。其特点是在切削刃前下方,切屑与加工表面之间出现一裂口。如图11-12(b)。 层积阶段:由于切削运动的连续性,切屑一旦停留在前刀面上,便代替刀具继续挤压切削层,使切削层中受到挤压的金属转变为切屑。而这部分新成为切屑的金属,只好逐层的积聚在起挤压作用的那部分切屑的下方。;这些金属一旦积聚并转化为切屑,便立即参与挤压切削层的工作;同时,随着层积过程的发展,切削厚度将逐渐增大,切削力也随之增大,如图11-12(c)。 刮成阶段:由于切削厚度逐渐增大,切削抗力也随之增大,推动切屑沿前刀面流出的分力Fy也增大。当层积金属达到一定厚度后,Fy力便也随之增大到能够推动切屑重新流出的程度,于是切屑又重新开始沿前刀面流出,同时对切削刃便刮出鳞刺的顶部,如图11-12(d)。至此,一个鳞刺的形成过程便告结束。紧接着,又开始另一个新鳞刺的形成过程。如此周而复始,在工件加工表面上便不断地生成一系列鳞刺。 振动的影响切削加工时,在工件与刀具之间经常发生振动,使工件表面粗糙度值增大。 从物理因素看,要降低表面粗糙度主要应采取措施减少加工时的塑性变形,避免产生积屑瘤和鳞刺。对此起主要作用的影响因素有切削速度、被加工材料的性质及刀具的几何形状、材料和刃磨质量。 ①切削速度的影响: 图11- 13

摩擦系数及其计算

达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4摩擦组合件的刚度及弹性 5滑动速度 6摩擦组合件的温度状态 7压力 8物体的接触特性,表面尺寸,重叠系数 9表面质量及粗糙度 A Static Friction Model for Elastic—Plastic Contacting Rough Surfaces. 形状误差对过盈联接摩擦力的影响分析及其修正 摩擦分类: 1动摩擦力,对应于很大的、不可逆的相对位移,相对位移大小与外施力无关。2非全静摩擦力,对应于很小的、局部可逆的相对位移,位移大小与外施力成正比,称为初位移,微米级。 3全静摩擦力,对应于初位移的极限值,初位移转变成相对位移。 根据运动学特征划分 滑动摩擦、旋转摩擦(变相的滑动摩擦)、滚动摩擦 根据表面状态,是否润滑的特征 1纯净摩擦,无吸附膜、氧化物等 2干摩擦,表面间无润滑油、污垢等 3边界摩擦,表面被一层润滑油分开,润滑油极薄(<0.1微米) 4液体摩擦 5半干摩擦 6半液体摩擦 静摩擦系数,克服两物体的接触耦合、使之摆脱静止状态所耗费的最大切向力对应接触物体所受压力载荷的比率。 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。

切削因素对粗糙度的影响.

“工程材料与成形加工基础实验远程教学系统”用户手册 切削因素对粗糙度的影响 实验目的:1.了解加工表面粗糙度的影响因素. 2.了解降低表面粗糙度的工艺措施. 实验原理: 一、影响表面粗糙度的因素 1、切削时刀刃在已加工表面上遗留下来的刀痕------主要因素; 2、切削时塑性材料前刀面的挤压和摩擦作用,形成积屑瘤或鳞刺; 3、刀具后刀面与已加工表面的摩擦及挤压导致弹性恢复、硬化甚至龟裂; 4、切削脆性材料时切削崩碎形成的麻点痕迹; 5、加工系统的高频震动形成的振纹。 、降低加工表面粗糙度的工艺措施 1、合适的切削条件 (1)切削速度v: 塑性材料,用低速或高速,避免产生切削瘤,降低表面粗糙度. (2)进给量f: 减小进给量,可有效地减小残留面积高度,降低表面粗糙度. (3)背吃刀量: 背吃刀量过小,则刀尖圆弧过度刃口切不下切削层,加工表面引起附加塑性变形,影响表面粗糙度. (4)切削液: 冷却润滑作用,减小摩擦,降低温度,从而减小切削过程的塑性变形,抑制鳞刺和积屑瘤的生成,降低表面粗糙度. 2、合理的刀具几何参数和刀具材料 (1)前角γ o : 增大γ o, 可抑制积屑瘤产生,降低表面粗糙度. (2)副偏角k 'r :减小k 'r,可减小残留面积,高度h.降低表面粗糙度. (3刀尖圆弧过渡半径r Σ : 增大r Σ ,可减小残留高度, 降低表面粗糙度. (4)刀具材料: 刀具材料与工件材料分子亲和力小,前刀面上形成积屑瘤的机率小,则表面粗糙度下降.

3、改善工件材料的力学性能和金相组织 材料硬度越高→切削抗力越大→切削温度越高→刀具磨损越快→表面质量越不稳定. 材料越软(塑性越好) →切削变形越大→切削温度越高→刀具磨损越快→表面质量越低. 处理方法: 低碳钢(塑性大): 正火(提高硬度). 高碳钢(硬度高):球化退火(提高塑性). 中碳钢可调质处理(提高力学性能). 实验设备:

摩擦系数及其计算

精心整理达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变 摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4 5 6 7压力 8 9 1 2 3 1 2 3 4 5 6 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。 两个相互叠合的表面只是在其某些凸部发生接触,而这些凸部的总接触面积只占接触轮廓所限定的总表面面积的极小部分。随着压力增大,接触面积增大。凸部的直径几分之一微米至30~50微米(高度小于80微米)。

载荷增大,各点的直径增大,随后面积的增大主要是由于接触点数目的增多。 名义(几何)接触面积——由接触物体的外部尺寸描绘出来. 轮廓接触面积——由物体的体积压皱所形成的面积;真实面积即轮廓接触面上;轮廓接触面积与压力载荷有关。 真实(物理)接触面积——物体接触的真实微小面积总和,也是压力载荷的函数,并且在名义面积尺寸的1/100000至1/10的范围内变化,由接触表面的机械性能及粗糙度而定。 接触点的总数目及每一个接触点的尺寸随着载荷的增大而增大,但当载荷继续增大时,接触面积的增大主要是依靠接触点的数目的增加,尺寸几乎不再变化。 对于粗糙表面来说,需要耗费更大的力,使凸部变形,从而获得一定的接触面积;光滑表面,凸部变形不大时,就能获得很大的接触面积(试验知,光滑表面的接触点上的应力约为材料硬度的一半,粗糙表面的接触点应力为硬度的2-3倍)。 L a =δ=若认为第三个量度中所有凸部具有相同的截面轮廓,则lb S ?=,b ——被研究表面的宽度。但若凸部具有球形,则单个接触面积相应的等于2l π?。若认为接触点具有相同的半径,则2S r n ?π=。 为得出真实面积,除总宽度外,必须有个别点的半径方面的数据, 在第一种和第二种情况下,真实接触面积与互相接近程度成正比。 令()S x ??=,当0x =,()P x S ?=;当x h =,()0x ?=。 S P ——轮廓投影图的基础面积,称为计算接触面积,但x ——棒的高度,相对于经过最短的棒 的零位截面而言的。 令棒上的单位载荷q 为绝度压缩(x-a )的函数,即

影响表面粗糙度的因素

影响表面粗糙度的因素 表面粗糙度是衡量已加工表面质量的重要标志之一,它对零件的耐磨性、耐腐蚀性、疲劳强度和配合性质都有很大影响。但是,在加工中表面粗糙度影响因素有很多,为了达到良好的表面粗糙度,我们就来了解一下这些因素有哪些。 影响表面粗糙度的因素 一、加工表面粗糙的原因 1、残留面积:残留面积是刀具的主、副切削刃切削后,残留在已加工表面上的一些尚未被切去的面积。 2、鳞刺:用高速钢刀具低速或中速切削塑性金属材料时,如低碳钢、中碳钢、不锈钢、铝合金等,常在已加工表面上产生鱼鳞片状的毛刺,称为鳞刺。出现鳞刺会显著增大已加工表面的表面粗糙度。 3、积屑瘤:在切削过程中,当产生积屑瘤时,其突出的部分能代替切削刃切入工件,在已加工表面上划出深浅不一的沟纹;当积屑瘤脱落时,部分积屑瘤碎片粘附在已加工表面上,形成细小毛刺,造成表面粗糙度增大。 4、振动:在切削加工时,由于工艺系统产生周期性振动,使已加工表面出现条痕或波纹痕迹,使表面粗糙度值明显增大。 二、影响表面粗糙度的因素 凡影响残留面积、积屑瘤、鳞刺、振动的因素都影响加工表面粗糙度。 1、切削用量:进给量对残留面积的影响最大。进给量减小,残留面积减小。 切削塑性金属时,当切削速度很低或很高时,表面粗糙度值较小。这是因为低速时积屑瘤不易产生;切削速度较高时,塑性变形减小,可消除鳞刺的产生。在切削脆性材料时,切削速度的影响较小,因为材料变形小,故表面粗糙度值也减小。 2、刀具几何参数:刀具的刀尖圆弧半径、主偏角和副偏角对残留面积和振动有较大的影响。一般当刀尖圆弧半径增大,主偏角和副偏角减小时,表面粗糙度值小,但如果机床刚度低,刀尖圆弧半径过大或主偏角过小,会由于切削力增大而产生振动,使表面粗糙度值增大。 3、刀具材料:刀具材料不同,刃口圆弧半径的大小和保持锋利的时间是不同的。高速钢刀具能刃磨得很锋利,但保持的时间较短,所以在低速切削时表面粗糙度

关于摩擦系数

摩擦系数(friction factor)是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。 如果两表面互为静止,那两表面间的接触地方会形成一个强结合力-静摩擦力,除非破坏了这结合力才能使一表面对另一表面运动,破坏这结合力-运\动前的力-对其一表面的垂直力之比值叫做静摩擦系数μs,写成式子如下: (方程式图1)fs为静摩擦力 或F=μsN N为垂直力 而这破坏力也是要使物体启动的最大的力,我们又叫此力为最大静摩擦力。所以,我们应把上式改写成: (方程式图2) 在物体启动后,如汽车过了些时候它会慢慢的减速下来,最后静止,这表示物体运动时,它的表面和另一表面,如地面,仍然存在摩擦力,而实验发现此力比静止时的摩擦力来得小,我们定义这摩擦力和垂直於地面的作用力叫做动摩擦系数μk,写成式子如下:fk=μkN 所以,由上我们可得知μs>μk 小有密切的关系 当物体与另一物体沿接触面的切线方向运动或有相对运动的趋势时,在两物体的接触面之间有阻碍它们相对运动的作用力,这种力就叫摩擦力。接触面之间的这种现象或特性叫摩擦,物体间的摩擦必然导致材料的磨损进而导致能量的转变,据统计世界上二分之一到三分之一的能量消耗于摩擦 涂层摩擦系数测试仪FPT-F1摩擦系数/剥离试验仪适用于塑料薄膜、涂层、涂料等相关产品的动、静摩擦系数和胶粘复合制品的剥离强度测定。摩擦系数/剥离试验仪采用计算机控制,操作简单方便,功能强大;选用进口传感器精密准确。试验控温范围室温~99.9℃可模拟不同环境下材料的摩擦系数,本仪执行GB 10006、GB/T 2790、GB/T 2791、GB/T 2792、ASTM D1894、ASTM D4917、ASTM D3330、TAPPI T816、TAPPI T549、ISO 8295等相关标准。 涂层摩擦系数测试仪技术参数 负荷量程:0~5N,0~10N,0~30N 精度:0.5级 滑块质量:200g(100g、500g、1000g、1814g、2000g等可选) 试验速度:50 100 150 200 250 300 500mm/min 温度:室温~99.9℃

各种材料摩擦系数表

各种材料摩擦系数表

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考 固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。中文名 固体润滑材料 米用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附 着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,

表面粗糙度的成因及其影响因素分析

河南科技学院 2009届本科毕业论文(设计) 论文题目:表面粗糙度的成因及其影响因素分析学生姓名:霍鹏 所在院系:机电学院 所学专业:机械设计制造及其自动化 导师姓名:马利杰 完成时间:2008年5 月28 日

摘要 表面粗糙度是指零件表面上具有较小间距和微小峰谷所组成的微观几何形状特征。它主要是由机械加工形成的(表面粗糙度、表面波纹度、表面缺陷、表面几何形状),直接影响机械零件的配合性质,表面的耐磨性、抗腐蚀性、疲劳强度、密封性、导热性及使用寿命。 首先,对表面粗糙度的基础知识进行了简要介绍;其次,着重分析了影响零件表面粗糙度的因素及其影响规律和趋势;在此基础上,探寻改善和提高表面粗糙度的措施和方法;最后,举例说明表面粗糙度的一些选择和测量。 关键词: 粗糙度相关分析控制 1

Analysis of formation mechanism of surface roughness and it’s influence factor Abstract Surface roughness is the distance between the surface and has a smaller peak which consists of tiny micro-geometry characteristics. It is mainly formed by machining (surface roughness, surface waviness, surface defects, surface geometry), a direct impact on the nature of mechanical components with the surface of the wear resistance, corrosion resistance, fatigue strength, tightness, thermal conductivity and useful life. First, the basics of surface roughness have been briefed; Secondly, the focus on an analysis of the impact of parts of the surface roughness factors, and impact of laws and trends; On this basis, ways to improve and enhance the surface roughness of the measures and methods ; Finally, examples of surface roughness and measurement of the number of options. Keywords : Roughness, Relation Analysis, Control 2

浅谈机械加工影响表面粗糙度的因素及改善措施

浅谈机械加工影响表面粗糙度的因素及改善措施 【摘要】表面粗糙度作为判断零件加工制造是否合格的一项重要的指标,对零件在工作过程中的耐磨性、运动精度、配合质量、工作寿命有着明显的影响,所以,获得正确的表面粗糙度值以及降低机械加工表面粗糙度是机械加工过程必须考虑的问题。本文旨在讨论影响表面粗糙度的因素,结合实际,总结出了降低磨削加工表面质量参数值的途径及降低机械加工表面粗糙度的途径。 【关键词】机械加工;表面粗糙度;因素;措施 机械零件的破坏一般都是自表面层开始的,零件的加工质量是保证产品质量的基础,它将直接影响到产品的工作性能、使用寿命及产品的性能,特别是它的可靠性与耐磨性,在很大程度上还取要决于零件表面层的质量。研究机械加工表面质量的目的,就是为了能够掌握在机械加工中的各种工艺因素对加工表面质量影响的规律,从而运用这些规律来控制加工的过程,最终达到改善表面质量、提高产品使用性能的目的。 1、影响表面粗糙度的因素 1.1 切削加工影响表面粗糙度的因素 (1)刀具几何形状的复映。当刀具相对于工件在作进给运动时,将会在加工表面留下切削层的残留面积,其形状是刀具几何形状的复映。减小进给量、主副偏角及增大刀尖圆弧的半径均可以减小残留面积的高度。同时,适当的增大刀具的前角来减小在切削时的塑性变形的程度,合理的选择润滑液、提高刀具的刃磨质量来减小在切削时的塑性变形,以及抑制刀瘤、鳞刺的生成,也是有效的减小表面粗糙度值的措施。 (2)工件材料的性质。在加工塑性材料时,因由于刀具对金属的挤压将会产生塑性变形,加之刀具迫使切屑和工件分离的撕裂作用,使得工件表面的粗糙度值加大。工件材料的韧性越好,金属的塑性变形就越大,加工表面就会越粗糙。在加工脆性材料时,其切屑将呈碎粒状,由于切屑的崩碎在加工表面将留下许多麻点使表面变的粗糙。 (3)切削用量。减小进给量、进行高速切削易获得小的表面粗糙度值。 1.2 磨削加工影响表面粗糙度的因素 在磨削时,砂轮的线速度比较高,砂轮表面会有无数颗磨粒,每颗磨粒就相当于一个刀刃,而磨粒大多数为负前角,单位切削力也比较大,所以切削温度较高,磨削点附近的瞬时温度可能会高达800-1000℃,这样高的温度通常会引起被

相关文档
最新文档