一些求曲率半径的特殊方法

一些求曲率半径的特殊方法
一些求曲率半径的特殊方法

一些求曲率半径的特殊方法

1.先看椭圆曲线12222=+B

y A x ,要求其两顶点处的曲率半径。介绍以下两种方法:

(1)将椭圆看成是半径R=A (设A >B )的圆在δ平面上的投影,圆平面和δ平面的夹角?满足关系式(如图2-4-5)

A

B R B ==

?cos 设一个质点以速率v 在圆上做匀速圆周运动,则向心加速度A

v a 2=,从上图中可以看出,当顶点的投影在椭圆的长轴(x 轴)上的P 点时,其速率和加速度分别为:

v A B v v x ==?cos , A

v a x 2

= 当质点的投影在椭圆的短轴(y 轴)上的Q 点时,其速率和加速度分别为:

v v y = 22

cos A

v B a a y =Φ=。 因此椭圆曲线在P 、Q 的曲率半径分别为:

A

B a v x x p 2

2=

B

A

a v y y Q 2

2=

=

ρ (2)

将椭圆看成是二个简谐运动的合成,可以把

y 如图2-4-5

x

图2-4-6

椭圆的参数方程(设A >B )(如图2-4-6)

??

?==θθsin cos B y A x 可改写为 ??

???-==)2cos(cos πωwt B y t

A x 即可进一步写出x ,y 二个方程的速度v 和加速度a :

???-=-=wt

A a t

A v x x cos sin 2

ωωω 那么在长轴端点P 处(00=t ω)的曲率半径:

A B A B a v p

p p 2

2

22)(===

ω

ωρ 在短轴端点Q 处(2

πω=t )的曲率半径

B A B A a v Q

Q

Q 2

2

22)(===

ω

ωρ 2.再看抛物线y=Ax 2,要求其任意一点的曲率半径(如图2-4-7)因为抛物线可以写作参数方程

??

???==2021at y t

v x 其中A v a

o

=2,这样就可以导出 ??

?==???==a

a a at v v v y x y o x 0和 对任意一个t 值: v=22022)

(at v v v y x +=+ a N =acos θ=a 2

20

0)

(at v av v

v x

+=

所以这一点的曲率半径

2

3222

2

av t a v a v N )(+==

ρ 将t=0v x 代入,可得 20

2

32402

/1v a x v a )(+=ρ

???

???

?

--=--=)2cos()2sin(2πωπωωwt B a t B v y

y x

y 图2-4-7

因为20

2v a

A =

,所以抛物线y=Ax 2上任意一点的曲率半径 A x A 2/412

3

22

)(+=ρ

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径

————————————————————————————————作者: ————————————————————————————————日期:

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…) (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则

(4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re 是一个小量,可以忽略,所以上式可以简化为 k (5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

物理方法求曲率半径

用物理方法求常见曲线的曲率半径 王吉旭 滑县第一高级中学 456400 求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如2008年江苏理综14题涉及到曲率半径,2011年高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看2011高考安徽理综17题: 一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。则在其轨迹最高点P 处得曲率半径是( ) A .g v 20 B .g v α220sin C .g v α220cos D .ααsin cos 220g v [解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力. 由r v m F 2 =向得: ρα20)cos (v m mg = 则有:g v αρ220cos = 本题正确答案为C 上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径 物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 22 1gt y = ② 联立①②式得220 2x v g y = 图1

物理方法求曲率半径

用物理方法求常见曲线的曲率半径 求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如江苏理综14题涉及到曲率半径,高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看高考安徽理综17题: 一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。则在其轨迹最高点P 处得曲率半径是( ) A .g v 20 B .g v α220sin C .g v α220cos D .α αsin cos 220g v [解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力. 由r v m F 2 =向得: ρα20)cos (v m mg = 则有:g v α ρ22 0cos = 本题正确答案为C 上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径 物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 2 2 1gt y = ② 联立①②式得2 2 2x v g y = 图1 x y O 图2 v 0

利用数学公式和物理模型求曲率半径

利用数学公式和物理模型求曲率半径 丁震(江苏省泰兴中学 江苏 225400) 摘要 本文首先推导高等数学中的曲率公式,使读者对曲率、曲率半径的知识有比较全面、清晰的理解,然后从平抛运动模型、简谐运动模型、天体运动模型和凹面镜模型推导圆锥曲线中顶点位置的曲率半径。 关键词 曲率 开普勒第二定律 笛卡尔规则 高中物理教学中处理一般曲线运动的力和运动问题,常建立圆周运动模型,圆为相切圆或辅助圆,相切圆的半径即为曲率半径。在自主招生和物理竞赛的命题中,关于曲率半径的知识也屡见不鲜。笔者重点利用几种常见的物理模型推导圆锥曲线中特殊位置的曲率半径,抛砖引玉,希望各位同仁批评指正。 一. 曲率公式 曲线运动的轨迹是曲线,在数学上,用曲率描述曲线(连续函数)弯曲程度。如图1所示xoy 坐标系中曲线上有两逼近的点M 和M ',设M M '的弧长为Δs ,M 和M '切线的倾斜角变化量为Δα,则 弧微分公式:s ?'=tan y α ; 平均曲率:=K s α?? ; M 点的曲率:0lim =s d K s ds αα?→?=?, 其中y '为一阶导数,y ''为二阶导数; M 点的曲率半径:1=K ρ ; 只要曲线方程给定,都能够利用公式求出曲线上各点的曲率半径。 二. 平抛运动模型 如图2所示小球m 以v 0平抛,不计阻力,则0=x v t ,21= 2 y gt ; 消去t 得:22 0=2v x y g ?? ; 在抛出点O :20=g=v a ρ, 得: 20=v g ρ ; 图1

抛物线的标准方程2 =2x Py ,其中20v P g = ; 故顶点O 处曲率半径=P ρ 。 三. 简谐运动模型 质点m 做椭圆运动,可视为两个互相垂直的同频率简谐运动的叠加,如图3所示xoy 坐标系中,椭圆方程22 22+=1x y a b ,半焦距c x 方向:=-x F kx ,振幅为a ; y 方向:=-y F ky ,振幅为b ,其中k 为回复力系数; 则在顶点A 处:2==A nA A v ka a m ρ ; 简谐运动的频率ω=A v b ω? 得:2=A b a ρ, 同理顶点B 处:2 B a b ρ= 。 四. 天体运动模型 如图4所示双曲线方程22 22-=1x y a b ,半焦距c =b y x a 。 质量为M 的太阳在焦点F (c,0)处。设行星在双曲线轨道顶点时的速率为v 0,质量为m 的行星绕太阳运动在顶点处的机械能为201-2-Mm E mv G c a = ,设行星远离太阳时的速率为v ∞, 根据开普勒第二定律: 0=(-)v b v c a ∞? 根据机械能守恒定律: 22011-=2-2 Mm mv G mv c a ∞, 可得:0v ; 在顶点处:202=(-)v Mm G m c a ρ,得2=b a ρ 。 五. 凹面镜模型 几何光学中凹面镜成像的物像关系在近轴光线条件下,利用笛卡尔规则表示为: 112+='s s r ,其中s ’为像距,s 为物距,r 为球面半径,顶点左侧为负,右侧为正。 分别利用物像关系推导圆锥曲线中顶点处的曲率半径。 图2 图3 图4

大学物理仿真实验报告-牛顿环法测曲率半径

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…)(3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4)

在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。 在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。

(完整版)高中物理竞赛_话题4:曲率半径问题

话题4:曲率半径问题 一、曲率半径的引入 在研究曲线运动的速度时,我们作一级近似,把曲线运动用一系列元直线运动来逼近。因为在0t ?→ 的极限情况下,元位移的大小和元弧的长度是一致的,故“以直代曲”,对于描述速度这个反映运动快慢和方向的量来说已经足够了。 对于曲线运动中的加速度问题,若用同样的近似,把曲线运动用一系列元直线运动来代替,就不合适了。因为直线运动不能反映速度方向变化的因素。亦即,它不能全面反映加速度的所有特征。如何解决呢?圆周运动可以反映运动方向的变化,因此我们可以把一般的曲线运动,看成是一系列不同半径的圆周运动,即可以把整条曲线,用一系列不同半径的小圆弧来代替。也就是说,我们在处理曲线运动的加速度时,必须“以圆代曲”,而不是“以直代曲”。可以通过曲线上一点A 与无限接近的另外两个相邻点作一圆,在极限情况下,这个圆就是A 点的曲率圆。 二、曲线上某点曲率半径的定义 在向心加速度公式2 n v a ρ = 中ρ为曲线上该点的曲率半径。 圆上某点的曲率半径与圆半径相等,在中学物理中研究圆周运动问题时利用了这一特性顺利地解决了动力学问题。我们应该注意到,这也造成了对ρ意义的模糊,从而给其它运动的研究,如椭圆运动、抛体运动、旋轮线运动中的动力学问题设置了障碍。 曲率半径是微积分概念,中学数学和中学物理都没有介绍。曲率k 是用来描述曲线弯曲程度的概念。曲率越大,圆弯曲得越厉害,曲率半径ρ越小,且1 k ρ=。这就是说,曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。 二、曲线上某点曲率半径的确定方法 1、 从向心加速度n a 的定义式2 n v a ρ = 出发。 将加速度沿着切向和法向进行分解,找到切向速度v 和法向加速度n a ,再利用2 n v a ρ =求出该点的曲率半径ρ。

大学物理实验教案-用牛顿环测平凸透镜的曲率半径

大学物理实验教案 实验目得:

1、理解等厚干涉形成牛顿环得机理; 2、掌握用牛顿环测量平凸透镜曲率半径得方法; 3、掌握读数显微镜得调节及使用方法。 实验仪器: 牛顿环仪读数显微镜 钠灯 实验原理: 当把曲率半径很大得平凸透镜得凸面与一平面玻璃接触时,在透镜与平面玻璃之间形成厚度不同得空气薄层,如图所示。用单色光投射于其上,从空气层上下两表面反射两束光将在空气层附近实现相干叠加。两束光之间得光程差Δ随空气层厚度而变,空气层厚度相同处反射得两光束具有相同得光程差,所以干涉条纹就是以接触点C为中心得一组明暗相间得同心圆环,称为牛顿环。牛顿环就是典型得分振幅、等厚干涉条纹,常用它来检查一些介质得表面情况。 在图中,R就是被测透镜凸面得曲率半径,r k就是由中心往外数第k个圆条纹得半径,e k 为第k个圆条纹所对应得空气层厚度,λ就是入射单色光得波长,则第k环得两光束得光程差为 其中λ/2就是光由光疏介质入射到光密介质反射时得半波损失。而接触点处得光程差为 () 故中心点为暗点。上两式相减,得到光程差得差Δk-Δ0,它应等于k个λ,即 由图中所示得几何关系,因R>>dk,故有 ? 最后,将代入,得到由中心暗点往外数第k个暗环得半径为 测出第k个暗环半径r k,即可由已知得波长λ求得透镜凸面半径R。 实际上,由于两玻璃之间得接触压力而使玻璃变形,接触处将不就是一个点而就是一个面;又由于接触处可能存有尘埃,导致实验中数得得k不就是真正得k值。这样,将导致R值误

差。为避免这一系统误差,我们对由中心往外数第n个与第m个暗环半径r n与rm进行测量,有 , 两式相减,得 测量中,很难确定牛顿环中心得确切位置,所以有必要用测量直径D n与Dm来代替测量半径rn与rm,即有 这样我们就可以不知道圆心得准确位置而测环得直径。由于就是环得级数差也就解决了级数难于确定得问题。也许有得同学会想,既然牛顿环得圆心难于确定,那么测出得、很有可能不就是直径而就是弦长啊。但就是没关系,可以去证明,使、就是弦长也不会影响值。 实验内容: 1、对牛顿环作目视调节。通过肉眼我们可以找到牛顿环得位置,轻微旋动牛顿环得三个调节螺钉,使牛顿环稳定位于牛顿环仪得中央位置,注意螺钉不要拧得太紧以免干涉条纹变形甚至导致光学玻璃破裂,也不要太松,以免牛顿环晃动。 2、开启钠灯,预热10分钟。将牛顿环仪放在显微镜下方得载物台上(反光镜背光不用),调节45度玻璃片,使从显微镜中可以瞧到整个视场充满明亮得黄光,如果一边亮一边暗说明还没调好。 3、调显微镜直到瞧清十字叉丝,转动调焦手轮,先使镜筒下降接近被测物,再使镜筒缓慢上升直到瞧清牛顿环无视差。无视差得标准就是晃动眼睛而十字叉丝与牛顿环没有相对移动。注意:调焦时应自下而上,否则容易使45度玻璃片与被测物碰撞而损坏仪器。 4、转动鼓轮或轻轻移动牛顿环仪使环心在视场中央,观察十字叉丝水平叉丝就是否与标尺平行,竖直叉丝就是否与牛顿环相切,如果不就是,松开锁紧螺钉调节锁紧圈。调好后拧紧锁紧螺钉。 5、最后一步就就是测量牛顿环得直径。首先我们应该使被测物位于量程内,先转动鼓轮使显微镜位于标尺中部,即25mm刻度处。再慢慢移动牛顿环使十字叉丝位于环心。牛顿环得直径就是通过测环得两侧位置得读数,它们得读数之差为该环得直径。按从左到右得顺序或从右到左得顺序测量。以从左到右为例,我们从环心往左数,数到第25环,然后再往右数,数到第22环开始读数,继续向右移,一直数到第3环,记录下第3环至22环得左端读数,继续转动鼓轮使叉丝移过环心,数到第3环,记录下第3环至22环得右端读数。把这些数据全部记录在表格中。在这个过程千万要小心,如果数错级数,那么测量结果就是错误得。在转动鼓轮时要小心,如果过头必须重新测量。否则引起回程误差。

高斯曲率的计算公式

高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -== - 。 注意 (,,)uu r r r L n r =?= r r r r r , (,,) uv r r r M n r =?= r r , (,,) vv r r r N n r =?= r r 。 所以 2 2LN M K EG F -=- 2221[(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F =--r r r r r r r r r , 利用行列式的转置性质和矩阵乘法

性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r -r r r r r r r r r (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? r r r r r r r r r r r r u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-?????????r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-???????r r r r r r r r r r r r r r r r r r r r u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-???r r r r r r r r r r r r r r r r r r r r , (其中用到行列式按第三行展开计 算的性质。) 利用 u u r r E ?=r r ,u v r r F ?=r r ,

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

高斯曲率的计算公式汇总

第二章 曲面论 高斯曲率的计算公式 高斯曲率绝妙定理 2 122LN M K k k EG F -==- 。 注意 (,,) uu r r r L n r =?= , (,,)uv r r r M n r =?= , (,,) vv r r r N n r =?= 。 所以 2 2LN M K EG F -= - 222 1 [(,,)(,,)(,,)]() u v uu u v vv u v uv r r r r r r r r r EG F = -- ,

利用行列式的转置性质和矩阵乘法性质,得 2(,,)(,,)(,,)u v uu u v vv u v uv r r r r r r r r r - (,,)(,,) u u v u v vv v u v uv uu uv r r r r r r r r r r r r ???? ? ?=- ? ? ? ????? u u u v u vv u u u v u uv v u v v v vv v u v v v uv uu u uu v uu vv uv u uv v uv uv r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ??????=???-????????? u vv u uv v vv v uv uu u uu v uu vv uv u uv v uv uv E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-??????? u vv u uv v vv v uv uu u uu v uu vv uv uv uv u uv v E F r r E F r r F G r r F G r r r r r r r r r r r r r r ??=?-????-??? , (其中用到行列式按第三行展开计 算的性质。)

大学物理仿真实验报告--牛顿环法测曲率半径

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径 共 6 页 系别:实验日期 专业班级:组别____ 实验报告日期 姓名学号报告退发 ( 订正、重做 ) 教师审批签字 一实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二实验仪器 牛顿环装置,读数显微镜,钠光灯。 三实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透 镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的 上下表面反射的两条光线来自同一条入射光线,它们满足 相干条件并在膜的上表面相遇而产生干涉,干涉后的强度 由相遇的两条光线的光程差决定,由图可见,二者的光程 差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质 射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当

(k = 0,1,2…)(3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

各种曲线类型的缓和曲线的判断及起点、终点曲率半径的计算方法

各种曲线类型的缓和曲线的判断及起点、终点曲率半径的计算方法 看到这个标题是有点绕口啊!总结任何曲线类型都是由自然段组合而成,所谓自然段统指直线、缓和曲线、圆曲线。圆曲线又分单圆曲线和复曲线。单圆曲线就是单一半径的曲线。具有两个半径或以上不同半径的曲线称复曲线。在此一般平曲线不在说了,第一缓和曲线、圆曲线、第二缓和曲线。目前在坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,问题就出于该缓和曲线是否是完整缓和曲线。目前公路线性有非对称线性的设计,特别是在互通立交匝道和山区高速公路线性设计中。非对称线性又分为完全非对称线性和非对称非完整线性两种。所谓“完全非对称曲线”的含义就是第一缓和曲线长和第二缓和曲线长不等,而第一缓和曲线和第二缓和曲线起点处的半径为无穷大。所谓“非完整”的含义就是第一缓和曲线和第二缓和曲线的半径不是无穷大,而是有半径的。关于这点,一般课本教材上没有明确的讲述,查找网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈.

相关文档
最新文档