初中数学竞赛专题:三角形

初中数学竞赛专题:三角形
初中数学竞赛专题:三角形

初中数学竞赛专题:三角形

§9.1全等三角形

9.1.1★已知等腰直角三角形ABC ,BC 是斜边.B ∠的角平分线交AC 于D ,过C 作CE 与BD 垂直

且交BD 延长线于E ,求证:2BD CE =.

解析如图,延长CE 、BA ,设交于F .则FBE ACF ∠=∠,AB AC =,得ABD ACF △△≌,CF BD =. 又BE CF ⊥,BE 平分FBC ∠,故BE 平分CF ,E 为CF 中点,所以2CE FC BD ==.

9.1.2★在ABC △中,已知60A ∠=?,E 、F 、G 分别为AB 、AC 、BC 的中点,P 、Q 为ABC △形外两点,使PE AB ⊥,2AB PE =

,QF AC ⊥,2

AC

QF =,若1GP =,求PQ 的长. F A

E D

B

C

解析如图,连结EG 、FG ,则EG AC ∥,FG AB ∥,故150PEG QFG ∠=?=∠.又

1

2

QF AC EG =

=,

1

2

PE AB FG =

=,故

PEG GFQ

△△≌,所以

PG GQ =,30EGP FGQ FQG FGQ ∠+∠=∠+∠=?,又60EGF ∠=?,所以90PGQ ∠=?,于

是PQ ==.

A

B

C

G Q

P

E

F

9.1.3★在梯形ABCD 的底边AD 上有一点E ,若ABE △、BCE △、CDE △的周长相等,求

BC

AD

. 解析作平行四边形ECBA ',则A BE CEB '△△≌,若A '与A 不重合,则A '在EA (或延长线)上,但由三角形不等式易知,A '在EA 上时,ABE △的周长>A BE '△的周长;A '在EA 延长线上时,ABE △的周长A BE '<△周长,均与题设矛盾,故A 与A '重合,AE BC ∥,同理ED BC ∥,

1

2

BC AD =.

B C

E D

AA'

9.1.4★★ABC △内,60BAC ∠=?,40ACB ∠=?,P 、Q 分别在边BC 、CA 上,并且AP 、BQ 分别是

BAC ∠、ABC ∠的角平分线.求证:BQ AQ AB BP +=+.

解析延长AB 到D ,使BD BP =,连结DP .易知80ABC ∠=?,所以

40QBC ACB ∠=?=∠,AC AQ QC AQ QB =+=+.

A

B

C

D

Q

P

因1402

BDP BPD ABC ACB ∠=∠=∠=?=∠,所以ADP ACP △△≌,

AC AD AB BD AB BP ==+=+.

于是BQ AQ AB BP +=+.

9.1.5★★设等腰直角三角形ABC 中,D 是腰AC 的中点,E 在斜边BC 上,并且AE BD ⊥.求证:

BDA EDC ∠=∠.

解析如图,作BAD ∠的平分线AF ,F 在BD 上.

A

B

C

E

F

D

由于45BAF ACE ∠=?=∠,AB AC =,ABF CAE ∠=∠,故ABF CAE △△≌,故EC AF =. 又45C FAD ∠=∠=?,AD CD =,于是AFD CED △△≌,于是ADB EDC ∠=∠.

9.1.6★★设ABE △、ACF △都是等腰直角三角形,AE 、AF 是各自的斜边,G 是EF 的中点,求证:GBC △也是等腰直角三角形.

解析如图,作AQ 、GP 、EM 、FN 分别垂直于直线BC ,垂足为Q 、P 、M 、N .

A

E F

G

M

B

Q P

C

由90EBM ABQ BAQ ∠=?-∠=∠,AB BE =,EMB BQA △△≌,故有EM BQ =,BM AQ =.同理

FN QC =,CN AQ =,所以BM CN =, EM FN BQ QC BC +=+=.

又EG GF =得BP CP =,且()1122

GP EM FN BC =+=,故GP BP CP ==.又由GP BC ⊥,故 结论成立.

9.1.7★★已知AB AC ⊥,AB AC =,D 、E 在BC 上(D 靠近B ),求证:222DE BD CE =+的充要条件是45DAE ∠=?.

A

B

D

E

F

C

解析如图,作FC BC ⊥,且FC BD =,则45ACF B ∠=?=∠,又AB AC =,故ABD ACF △△≌,AD AF =,且

490D F BAC ∠=∠=?.

若45DAE ∠=?,则45EAF ∠=?,因AD AF =,得ADE AFE △△≌,则

222222DE EF EC FC EC BD ==+=+.

反之,若222DE EC BD =+,由222EF EC FC =+得EF DE =.又AD AF =,故ADE AEF △△≌,又

90DAF ∠=?,于是45DAE ∠=?.

9.1.8★★两三角形全等且关于一直线对称,求证:可以将其中一个划分成3块,每一块通过平移、

旋转后拼成另一个三角形.

解析如图,设ABC △与A B C '''△关于l 对称,分别找到各自的内心I 、I ',分别向三边作垂线ID 、IE 、

IF 与I D ''、I E ''、I F '',于是6个四边形AFIE ……均为轴对称的筝形,且四边形AFIE ≌四边形A E J F '''',所以两者可通过平移、旋转后重合;同理,另外两对筝形也可通过平移、旋转后重合.

A

E

C

D

F B

A'

B'

C'

D'F'E'

l l'

l

9.1.9★★★已知:两个等底等高的锐角三角形,可以将每个三角形分别分成四个三角形,分别涂上红色、蓝色、黄色和绿色,使得同色三角形全等.

解析如图,设BC B C ''=,A 至BC 距离等于A '至B C ''距离,取各自的中位线FE 、F E '',则FE FE '=.

由ABC △、A B C '''△均为锐角三角形,可在BC 、B C ''上各取一点D 、D ',使图中标相同数字的角相

等,于是AEF D E F '''△△≌,DEF A E F '''△△≌,FBD FD B ''△△≌,EDC E C D '''△△≌. 评注还有一种旋转而不是对称的构造法.

A B

D

E

F A'B'D'

C'

E'

F'

123451465

264152

432

51

9.1.10★已知ABC △与A B C '''△中,A A '∠=∠,BC B C ''=,ABC A B C S S '''=△△,ABC △与

A B C '''△是否一定全等?

A

B C

A'

解析如图,让B 与B '重合,C 与C '重合,A 、A '在BC 同侧,若A 与A '重合,则ABC A B C '''△△≌;否则由条件知四边形ABCA '为梯形和圆内接四边形,于是它是一个等腰梯形,于是

ABC A CB '∠=∠,AB A C '=,ABC A C B '''△△≌.综上,可知ABC △与A B C '''△全等.

评注本题也可以运用三角形面积公式、余弦定理结合韦达定理来证明.

9.1.11★★如图所示,已知ABC △、CED △均为正三角形,M 、N 、L 分别为BD 、AC 和CE 的中点,求证:MNL △为正三角形.

A

B

E

D

M

T

S

C

N L

解析如图,设BC 、CD 中点分别为S 、T ,连结NS 、SM 、MT 、TL .则四边形CSMT 为平行四 边形,设BCD θ∠=,则60180240NSM LTM θθ∠=?+?-=?-=∠,360120240NCL θθ∠=?-?-=?-,又

NC SN SC MT ===,LC LT CT SM ===,故CNL SNM TML △△△≌≌, NL NM ML ==,于是MNL △为正三角形.

评注注意有时S 在MN 另一侧,此时120NSM LTM NCL θ∠=∠=∠=?+,不影响最终结论. 9.1.12★★★ABC △中,90A ∠=?,AB c =.6AC =,BC a =,M 是BC 中点,P 、Q 分别在AB 、AC 上(可落在端点),满足MP MQ ⊥,求22BP CQ +的最小值(用a 、b 、c 表示).

解析如图,延长QM 至N ,使QM MN =,连结PN 、BN 、PQ 、AM 由于M 是BC 、NQ 的中点,故

BN CQ =,BN AC ∥,BN BP ⊥,又PM 垂直平分NQ ,故222222BP CQ BP BN PN PQ +=+==.

取PQ 中点K (图中未画出),则2

a PQ AK MK AM =+=≥,于是22

BP CQ +的最小值为24a ,取到等号

仅当PQ AM =即四边形APMQ 为矩形时.

N

M

P C

B

Q

A

9.1.13★★★已知P 为ABC △内一点,PAC PBC ∠=∠,由P 作BC 、CA 的垂线,垂足分别是L 、M .

C A

B

D

E

F

M

P L

设D 为AB 中点,求证:DM DL =.

解析如图所示,取AP 中点E ,BP 中点F ,连ME 、ED 、DF 、FL .显然四边形DEPF 是平行四边形,所以EP DF =,FP DE =.DEP DFP ∠=∠.

又由PM AC ⊥,所以EM EA EP DF ===,2PEM PAC ∠=∠;同理FL DE =,2PFL PBC ∠=∠.由

PAC PBC ∠=∠,所以DEM DEP PEM DFP PFL DFL ∠=∠+∠=∠+∠=∠,从而DFM LFD △△≌,所以

DM DL =.

9.1.14★★在ABC △中,已知60CAB ∠=?,D 、E 分别是边AB 、AC 上的点,且

60AED ∠=?,ED DB CE +=,2CDB CDE ∠=∠,求DCB ∠的度数.

解析如图,延长AB 到F ,使BF ED =,连CF 、EF .

C

E

A D

B F

因为60EAB AED ∠=∠=?,所以60FDA ∠=?,120EDB CED ∠=∠=?,

AD AE ED BF ===.

CE ED DB DB BF DF =+=+=.

于是,AC AF =,60ACF AFC ∠=∠=?. 又因为120EDB ∠=?,2CDB CDE ∠=∠, 所以

40CDE ∠=?,80CDB ∠=?,

18020ECD CED EDC ∠=?-∠-∠=?.

在CDA △和CBF △中,CA CF =,60CAD CFB ∠=∠=?,AD BF =,所以CDA CBF △△≌,故

20FCB ACD ∠=∠=?.

于是,6020DCB CDE FCB ∠=?-∠-∠=?.

9.1.15★★在ABC △中,B ∠、C ∠为锐角,M 、N 、D 分别为边AB 、AC 、BC 上的点,满足

AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.

解析若DM DN >,则在DM 上取一点E ,使DN DE =.连结BE 并延长交AC 于F ,连结EN .在

BED △与CND △中,BD DC =,BDE CDN ∠=∠,DE DN =,故BDE CDN △△≌.于是有EBD NCD ∠=∠,BE NC =,所以FB FC =.又易知EN BC ∥,因此ENF ACB ∠=∠.

但另一方面,由DM DN >,知ABC FBC ACB ∠>∠=∠,所以

A

F

M N

E B

D

C

1

(180)2ANM BAC ∠=?-∠

()1

2

ABC ACB =∠+∠ ()1

2

ACB ACB ACB >

∠+∠=∠. 从而ENF MNA ACB ∠>∠>∠.矛盾,故假设DM DN >不成立. 若DM DN <,同法可证此假设不成立. 综上所述DM DN =,于是由BDM CDN △△≌ 知DBM DCN ∠=∠,从而AB AC =.

9.1.16★★如图,ABC △为边长是1的等边三角形,BDC △为顶角()BDC ∠是120?的等腰三角形,以D 为顶点作一个60?角,角的两边分别交AB 、AC 于M 、N ,连结MN ,形成一个AMN △. 求AMN △的周长.

A

M N

B

C D

E

解析延长AC 到E ,使CE BM =,连结DE .易知在BMD △与CED △中有BD DC =,

90MBD ECD ∠=∠=?,BM CE =,从而MBD ECD △△≌.所以MD DE =,MDB EDC ∠=∠.

于是在DMN △与DEN △中有DN DN =,MD DE =,

60MDN MDB CDN EDC CDN EDN ∠=?=∠+∠=∠+∠=∠.从而MDN EDN △△≌,故NE MN =.

所以AM MN AN AM NE AN AM NC CE AN AM MB NC AN ++=++=+++=+++=

2AB AC +=.

9.1.17★★★ABC △为等腰直角三角形,90C ∠=?,点M 、N 分别为边AC 和BC 的中点,点D 在射线BM 上,且2BD BM =,点E 在射线NA 上,且2NE NA =,求证:BD DE ⊥. 解析取AD 中点F ,连EF .

E

A

D

F M

B

N

C

在BMC △与DMA △中,AM MC =,12

BM BD MD ==,BMC DMA ∠=∠,故AMD CMB △△≌.于是有

ADM CBM ∠=∠,AD BC =,AD BC ∥.

同样易知BMC ANC △△≌,于是有CBM CAN ∠=∠.

在ANC △与EAF △中,12

NA NE AE ==,112

2

AF AD BC NC ===,由AD BC ∥知EAF ANC ∠=∠,所以

FAF ANC △△≌.于是有AEF NAC ∠=∠,90EFA ACN EFD ∠=∠=?=∠.

从而在EAF △与EDF △中有AF FD =,EF EF =,故FAF EDF △△≌.于是有EDF EAF ∠=∠,

FED FEA ∠=∠.

总之,90EDF MDA EDF NAC EDF AEF EDF FED ∠+∠=∠+∠=∠+∠=∠+∠=?,即

BD DE ⊥.

9.1.18★★★已知ABCD ,延长DC 至P ,使DP AD =,连结PA 与BC 交于Q ,O 为PQC △的外心,

则B 、O 、C 、D 共圆.

A

D

B

C O P

Q

解析如图连好辅助线,由于DPA BAP PAD CQP ∠=∠=∠=∠,故CQ CP =,设

OCP OCQ OQC θ∠=∠=∠=,则180BQO DCO θ∠=?-=∠,又BQ AB CD ==,QO CO =,故

BQO DCO △△≌,于是QOB COD ∠=∠,于是2BOD QOC QPC BCD ∠=∠=∠=∠,因此B 、O 、C 、D 共

圆.

9.1.19★★★已知ABC △和A B C '''△,A A '∠=∠,且BC B C ''=,D 和D '分别是BC 、B C ''的中点,AD A D ''=,问两个三角形是否必定全等?

解析如图,作出ABC △外心O (A B C '''△及相应的O '、D '图中未画出). 若O 在BC 上,则90A A '∠=?=∠,此时ABC △与A B C '''△未必全等. 若O 不与D 重合,则

2sin 2sin BC B C AO A O A A

''

''=

==',

cos cos OD BO A AO A == cos A O A O D '''''==,

AD A D ''=.

当A 、O 、D 共线,则AD BC ⊥,A D B C ''''⊥,所以ABD A B D '''△△≌,ACD A C D '''△△≌,从而

ABC A B C '''△△≌.

当A 、O 、D 不共线,则AOD A O D '''△△≌,ODA O D A '''∠=∠,于是'ADC A D C ''∠=∠(或A D B '''∠),于是由三角形全等可得AC A C ''=(或A B ''),AB A B ''=(或A C ''),故有ABC A B C '''△△≌(或A C B '''△)

. 评注此题亦可用中线长公式证明.

9.1.20★★如果两个三角形满足“ASS ”,它们不一定全等,此时称它们是相近的,现在有一三角形1△,作2△与之“相近”,……一般有1n +△与n △相近,问是否存在一个k ,使1△与k △相做且不全等?

解析这是不可能的.因为由正弦定理,1△与2△有等大的外接圆(它们有一对内角相等或互补),从而

推出1△与x k △有等大的外接圆,它们不可能只相似不全等.

9.1.21★★★是否存在两个全等的三角形△与'△,△可划分为两个三角形1△与2△,'△可划分成两个三角形1'△与2'△,使12△△≌,2△与2'△却不全等?

解析这样的两个三角形是存在的,如图(a)、(b),设不等边三角形ABC A B C '''△△≌,其中

22''BC AB AC A B A C B C ''''=?=?=,不妨设AC A C ''=是各自的最长边,则AB 、A B ''为各自的最短

边.在AC 、B C ''上分别找D 、D ',使CD AB =,BA D C ''∠=∠,则由于2BC AB AC CD AC =?=?,故

ABC BDC △∽△,所以'BDC ABC A B C ''∠=∠=∠,又因为C B A D '''∠=∠,CD A B ''=,因此

BDC D B A '''△△≌,而ABD △显然不与A C D '''△全等.

(若90B B '∠=∠=?,还可避免相似.) A

B

C

D

A'

B'

D'

图(a)

图(b)

9.1.22★★★已知ABC △中,60A ∠=?,I 是ABC △内心,AI 的垂直平分线分别交AB 、AC 于M 、

N ,E 、F 在BC 上,BE EF FC ==,求证:ME NF ∥.

解析如图,连结MI 、BI 、CI 、NI .易诮AMN △与IMN △为全等之正三角形,120BIC ∠=?,

180MIB NIC ∠+∠=?.

A

N

M

T

B E F C

I

S

两端延长MN 至S 与T ,使SM MN NT ==,则60SMB AMN BMI ∠=∠=∠=?,于是SMB IMB △△≌,同理

NTC NIC △△≌,因此180S T MIB NIC ∠+∠=∠+∠=?,SB TC ∥.

而M 、N 将ST 三等分,E 、F 将BC 三等分,于是由平行线分线段成比例,知ME NF ∥(SB ∥). 评注读者可以考虑:如果ME NF ∥是否有60BAC ∠=?.

9.1.23★★★已知锐角三角形ABC ,60BAC ∠=?,AB AC >,ABC △的垂心和外心分别为M 和

O ,OM 分别与AB 、AC 交于X 、Y ,证明:AXY △的周长为AB AC +,OM AB AC =-.

解析如图,连结AO 、BO 、CO 、AM .由AB AC >可知O 在AB 一侧,M 在AC 一侧. 因120BOC ∠=?,

故AO =

,

而tan BC AM BAC =

=

∠于是AO AM =,AOM AMO ∠=∠.

又90OAB C YAM ∠=?-∠=∠,故AXY AYX ∠=∠,AXY △为正三角形.

又60XOB YOC YOC OCY ∠+∠=?=∠+∠,故XOB YCO ∠=∠,120BXO CYO ∠=?=∠,又BO CO =,故

XBO YOC △△≌,XY XO YO BX YC =+=+.于是AX XY YA AB AC ++=+.

又XO MY YC ==,做()()1

1223

3

OM XY YC AB AC AC AB AC AB AC ??

=-=+--+=-???

?

§9.2特殊三角形

9.2.1★在直角三角形ABC 中,BC 是斜边,5AC =,D 是BC 中点,E 是AC 上一点,2DE AE ==,求

AB .

B

A

D

E

C

解析如图,连结AD .设AD CD x ==,因2DE =,2AE =,3CE =,则

22223x -=?

,x =

AB ==

9.2.2★已知ABC △中,14AB =,16BC =,28CA =,P 为B 在A ∠平分线上的射影,M 为BC 中 点,求PM .

解析延长BP 交AC 于Q .由BAP QAP ∠=∠.AP BQ ⊥知BP QP =,AB AQ =.又BM CM =,故

()()111

28147222

PM CQ AC AQ =-=?-=∥.

A

B

C

Q P M

9.2.3★等腰三角形ABC 中,AB AC =,D 为直线BC 上一点,则

22AB AD BD CD -=?(D 在BC 上),

22AD AB BD CD -=?(D 在BC 外)

. 解析如图,设D 在BC 上且较靠近B .作AE BC ⊥于E ,则E 为BC 中点,于是

A

B D E C

()()BD CD BE DE CE DE ?=-?+

2222BE DE AB AD =-=-.

当D 在BC 外时的结论同理可证.

评注这是斯图沃特定理在等腰三角形的特殊情形,具有十分广泛的用途(例如题9.2.1),亦可用相 交弦定理证明.

9.2.4★★已知锐角三角形ABC 中,AD 、CE 是高,H 为垂心,AD BC =,F 是BC 的中点,求证:

1

2

FH DH BC +=.

A

E

B

F

D

C

H

解析如图,连结EF ,则12

EF CF BC ==.于是2222FH EF EH CH EF AH HD EF =-?=-?=-

222AH HD HD HD EF HD AD ?-+=-?+22222HD EF HD BC HD EF HD =-?+=-? ()2

2EF HD EF HD +=-.

由于EF FH HD >>,故

1

2

FH EF DH BC DH =-=

-. 9.2.5★已知斜边为AC 的直角三角形ABC 中,B 在AC 上的投影为H .若以AB 、BC 、BH 为 三边可以构成一个直角三角形,求

AH

CH

的所有可能值.

B

H

A

解析显然由AB 、BC 、BH 构成的直角三角形中,BH 不是斜边,且AB BC ≠.

若AB BC >,则AB 为斜边.设AB c =,BC a =,BH h =,则由ABC △的面积知h ac =,又

h ,故4422

c a a c -=.易知2222

AH AB c k

CH BC a ===,则由前式知2

1k k -=,得k =,故

AH CH .

同理,若AB BC <,可得AH CH =

所以

AH

CH

的可能值为

9.2.6★★已知ABC △中,AD 为高,D 在BC 上, 以下哪些条件能判定AB AC =: (1)AB CD AC BD +=+: (2)AB CD AC BD ?=?; (3)

1111

AB CD AC BD

+=+

. A

B D C

解析设BD x =,CD y =,AD h =,则AB =AC

先看条件(1):y x .

若x y =,则AB AC =;否则不妨设x y >,则22

x y -==

x y +,于是0h =,矛盾. 故AB AC =.

再看见条件(2):=22222222h y x y h x x y +=+,于是x y =,故AB AC =. 最后条件(3):

1

1y

x =

+.于是

22

x y xy -=-=

.若x y ≠,则

()xy x y =+,仍有0h =,矛盾,故AB AC =.

所以三个条件都能判定AB AC =.

9.2.7★已知P 是等腰直角三角形ABC 的斜边BC 上任意一点,求22

2

BP CP AP +.

解析如图,作AD BC ⊥于D .

A

B D C

P

不妨设1AD BD CD ===.P 在CD 上,PD a =,则1BP BD PD a =+=+,1CP CD PD a =-=-,于是

()()

2

2

2

2

2

1122BP CP a a a +=++-=+.又2222

1AP AD PD a =+=+.故22

2

2BP CP AP +=.

评注请读者考虑,若对BC 上任一点P ,有22

2

BP CP AP +为定值,是否可认为ABC △为等腰直角三角

形.

9.2.8★★在ABC △中,19AB =,17BC =,18CA =,P 是ABC △内一点,过点P 向ABC △的 三边BC 、CA 、AB 分别垂线PD 、PE 、PF ,垂足分别为D 、E 、F ,且27BD CE AF ++=,求BD BF + 的长.

解析如图,由于2222220BD CD CE AE AF BF -+-+-=,于是

A

F

E

P

B

D

C

()()2

2

2222(17)18190BD BD CE CE AF AF --+--+--=,此即171819487BD CE AF ++=.

而181818486BD CE AF ++=,故1AF BD -=.所以118BD BF BD AB AF AB +=+-=-=. 9.2.9★★已知ABC △中,AB AC =,AE 是BC 的中垂线,AE BC =,3BDC BAC ∠=∠, 求

AD

DE

. A

F D

B

E

C

解析如图,不妨设1BE CE ==,则2AE =,AB =.作ABD ∠的平分线BF ,由于

3BDE BAE ABD BAE ∠=∠=∠+∠,故ABF DBF BAE ∠=∠=∠.因此AF BF =,ABD BFD △∽△,

AB AD BD BF BD DF ==

,从而2BD DF DA =?,DB AD

DF AB DB

?=+,所以()2DA BD BD AB =?+. 设

DE x

=,则221

BD x =+,

2DA x

=-,因此

()

2

221x x -=++,

()2

23455x x -=+,2112440x x -+=,2

11

x =

(2x =舍).于是2011AD =

,10AD DE

=. 9.2.10★★正三角形ABC 内有一点P ,P 关于AB 、AC 的对称点分别为Q 、R ,作平行四边形

QPRS ,求证:AS BC ∥.

A S

M

R

Q

B

C

P

解析如图,设QS 与AB 交于M ,连结MP ,则60Q ∠=?,AB 垂直平分PQ ,QM PM =,MPQ △ 为正三角形,MP PQ SR ==,于是四边形MPRS 为等腰梯形,PR 的中垂线即MS 的中垂线. 于是60SAC MAC C ∠=∠==∠,AS BC ∥.

9.2.11★★AB 与O 相切于点B ,AC 与O 相交于C 、D ,若45C ∠=?,60BDA ∠=?

,CD =求

AB .

B

C D A

K T

解析如图,由题意可得45ABD ∠=?,作BK AC ⊥于K ,则BK CK =,

又CK CD DK =+=,

故32

BK =

+

,BD =

再作AT BD ⊥于T ,设BT AT x ==,

则DT =

,x =

,x =

于是6AB =.

9.2.12★已知大小相等的等边ABC △与等边PQR △有三组边分别平行,一个指向上方,一个指向

下方,相交部分是一个六边形,则这个六边形的主对角线共点.

A D K

R Q

E

H

B

F

G

C

P

解析如图,设两个三角形的边的交点依次为D 、E 、F 、G 、H 、K .设ABC △、PQR △的高为

h ,则正ADK △的高h =(RQ 与BC 的距离)=正FPG △的高,于是DK FG ∥,DG 、KF 互相平分,

同理DG 、EH 互相平分,于是DG 、EH 、KF 的中点为同一点,结论成立.

9.2.13★★★★求证:过正三角形ABC 的中心O 任作一条直线l ,则A 、B 、C 三点至l 的距离平方和为常数.

A

l

B'A'

O

C'

B Q

C P

解析如图,不妨设l 与AB 、AC 相交,且与BC 延长线交于P (平行容易计算).由中位线及重心性质,知BB CC AA '''+=.故222222()B B C C A A B B C C B B C C '''''''++=++?. 连结OB 、OC ,作OQ BC ⊥,易知B BP QOP C CP ''△∽△∽△,故C C CP OQ OP '=,B B BP

OQ OP

'=

. 对于等腰三角形OBC ,有22OP OC CP BP -=?.因此

()()222

2

2

2

22

2223OQ OQ B B C C B B C C CP BP CP BP BC CP BP OP OP

''''++?=++?=+?= ()2

22222333OQ BC OP OC OQ OP

+-=(定值),这里用到了BC . 于是A 、B 、C 三点至l 的距离平方和为221

62

OQ BC =,结论得证.

§9.3三角形中的巧合点

9.3.1★已知:H 是ABC △内一点,AH 、BH 、CH 延长后分别交对边于D 、E 、F ,若

AH HD BH HE CH HF ?=?=?,则H 是ABC △的垂心,

解析如图,由条件知AHE BHD △∽△,故AEH BDH ∠=∠,同理,AFH CDH ∠=∠,故

180AFH AEH ∠+∠=?.

A F

E

H

B

D

C

又FBH ECH △∽△,故BFH CEH ∠=∠,这样可得90AFH AEH ∠=∠=?,故H 为ABC △之垂 心.

9.3.2★★求证:到三角形三顶点的距离平方和最小的点是三角形的重心.

解析设ABC △中,AD 、BE 、CF 是中线,G 是重心,M 是任一点.由斯图沃特定理,并考虑到 结论成立.

123DG GA AD =∶∶∶∶,

得22221

22339

MG AM DM AD =+-

22212

233

AM DM GD =+-.① 又由中线长公式,有

()222211

24MD BM CM BC =+-, ()222211

24

GD BG CG BC =

+-. 代入式①,得

()()222222230MG MA MB MC GA GB GC =++-++≥.

结论成立.

9.3.3★★★已知,H 是锐角ABC △的垂心,D 是BC 中点,过H 作DH 的垂线,交AB 、AC 于M 、

N ,求证:H 是MN 中点.

A

Q N

M

H

B

D P

C

解析设ABC △两条高为AP 、CQ .又不妨设D 在BP 上.由于HAM DCH ∠=∠,

90AHM DHP HDC ∠=?-∠=∠,故AMH CHD △∽△,于是

MH AH HD CD =,同理NH AH

HD BD

=

, 又CD BD =,故MH NH =.

9.3.4★★★ABC △的边BC 、CA 、AB 上分别有点D 、E 、F ,且BD CE AF

DC EA FB

==

,求证:ABC △的重心与DEF △的重心是同一点. 解析在AB 上取一点M ,使MD AC ∥,则

MD BD CE

AC BC AC

==

,所以MD CE =,四边形MDCE 为平行四边形,设MC 与DE 交于N ,又设BC 的中点为,P 连结PN 、AP 、FN ,AP 与FN 交于G ,于是由

BM BD CE AF AB BC AC AB ===,得RM AF =,于是1122PN BM AF ∥∥,于是1

2

PG GN PN GA FG AF ===,所以G 为ABC

△与DEF △之重心.

A

F

M

G E

B

D

P

C

N

9.3.5★★★已知ABC △,60A ∠=?,G 是ABC △重心,120BGC ∠=?,求证:ABC △是正三角形. 解析设ABC △三条中线分别为AD 、BE 、CF .连EF 为中位线.于是由条件知A 、F 、G 、E 共圆,故GBD FEG BAD ∠=∠=∠,于是2BD GD DA =?.由于12BD BC =,13

GD AD =,代入,得

AD =

. 在ABC △外作等腰BCP △,使BP CP =,120BPC ∠=?,连结DP ,DP BC ⊥.由圆心角与圆周角的关

,211

333

GP BP AD AD AD GD PD ==

=

=+=+,故G 、D 、P 三点共线,故AD BC ⊥,于是AB AC =,又60RAC ∠=?,故ABC △为正三角形.

A

F

E

B

D C

P

G

9.3.6★★★已知D 是BC 上一点,ABD △、ECD △、BCF △都是正三角形,A 、E 在BC 同侧,F 在另一侧,求证:以这三个正三角形的中心为顶点的三角形是正三角形,且它的中心在BC 上.又问此题如何推广?

A B

C

E

F

R R'

D

Q'

P'

Q

解析如图,设P 、Q 、R 分别为BCF △、DCE △和ABD △的中心,则由题11.2.25知PQR △为正三角形.

过P 、Q 、R 分别作BC 的垂线PP '、QQ '、RR ',

RR QQ PP BD CD BC ?'''=== ??

,又BD CD BC +=, 故RR QQ PP '''+=.又设RQ 中点为S (图中未画出),SS BC '⊥于S ',则SS PP ''∥,且

()1122SS RR QQ PP ''''=

+=.设SP 与BC 交于G ,则1

2

SG SS GP PP '=

=',所以G 为PQR 的中点. 评注此题不难推广,只需AB DE CF ∥∥,AD CE BF ∥∥,此时ABD DC FCB △∽△∽△,

P 、Q 、R 为各自对应的重心,则必有PQR △之重心位于BC 上.

9.3.7★★★ABC △内有一点P ,连结AP 、BP 、CP 并延长,分别与对边相交,把ABC △分成六

(专题精选)初中数学三角形全集汇编及答案

(专题精选)初中数学三角形全集汇编及答案 一、选择题 1.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( ) A .9 B .310 C .326+ D .12 【答案】B 【解析】 【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可. 【详解】 解:如图,AB=22(36)3310++= . 故选:B . 【点睛】 此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了. 2.如图,在?ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )

A.33°B.34°C.35°D.36° 【答案】B 【解析】 【分析】 由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数. 【详解】 解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°, 由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°, ∴∠AEC=180°﹣∠DEC=180°﹣107°=73°, ∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°. 故选:B. 【点睛】 本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键. 3.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为() A.16cm B.21cm 或 27cm C.21cm D.27cm 【答案】D 【解析】 【分析】 分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】 解:当5是腰时,则5+5<11,不能组成三角形,应舍去; 当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm. 故选D. 【点睛】 本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键. 4.下列长度的三根小木棒能构成三角形的是() A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D 【解析】 【详解】 A.因为2+3=5,所以不能构成三角形,故A错误; B.因为2+4<6,所以不能构成三角形,故B错误; C.因为3+4<8,所以不能构成三角形,故C错误; D.因为3+3>4,所以能构成三角形,故D正确.

中考数学专题复习三角形专题训练

三角形 一、选择题 1.若一个直角三角形的两边长为12和5,则第三边为() A. 13 B.13或 C. 13或5 D. 15 2.三角形的角平分线、中线和高() A. 都是射线 B. 都是直线 C. 都是线段 D. 都在三角形内 3.小明用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中框架△ABC的质量为840克,CF的质量为106克,则整个金属框架的质量为() A. 734克 B. 946克 C. 1052克 D. 1574克 4.到△ABC的三条边距离相等的点是△ABC的是() A. 三条中线的交点, B. 三条角平分线的交点 C. 三条高线的交点 D. 三条边的垂直平分线的交点 5.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做使用的数学道理是() A. 两点之间线段最短 B. 三角形的稳定性 C. 两点确定一条直线 D. 长方形的四个角都是直角 6.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )

A. 100° B. 80° C. 70° D. 50° 7.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法确定 8.已知在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( ) A. AB=DE,AC=DF- B. AC=EF,BC=DF - C. AB=DE,BC=EF- D. ∠C=∠F,AC=DF 9.若等腰三角形的顶角为80°,则它的一个底角度数为() A. 20° B. 50° C. 80° D. 100° 10.如图,点M是边长为4cm的正方形的边AB的中点,点P是正方形边上的动点,从点M出发沿着逆时针方向在正方形的边上以每秒1cm的速度运动,则当点P逆时针旋转一周时,随着运动时间的增加,△DMP面积达到5cm2的时刻的个数是() A. 5 B. 4 C. 3 D. 2 二、填空题 11.在△ABC中,已知∠A=30°,∠B=70°,则∠C的度数是________。 12.将一副三角板如图叠放,则图中∠α的度数为________. 13.如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案 一、选择题 1.如图,在ABC ?中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交 AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12 MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ??= A .1 B .2 C .3 D .4 【答案】D 【解析】 【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论. 【详解】 题干中作图方法是构造角平分线,①正确; ∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30° ∴∠ADC=60°,②正确 ∵∠DAB=∠B=30° ∴△ADB 是等腰三角形 ∴点D 在AB 的垂直平分线上,③正确 在Rt △CDA 中,设CD=a ,则AD=2a 在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ?=??=?,13(CD+DB)22 BAC S AC a CD ?=??=? ∴:1:3DAC ABC S S ??=,④正确 故选:D 【点睛】 本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.

2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( ) A .4 B .3 C .6 D .2 【答案】B 【解析】 【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果. 【详解】 解:AD 是△ABC 中∠BAC 的平分线, ∠EAD=∠FAD DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF=DE , 又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222 AC ∴=??+?? ∴AC=3. 故答案为:B 【点睛】 本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键. 3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6 B .8 C 5 D .5 【答案】B 【解析】 【分析】 根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可. 【详解】 设∠A =x , 则∠B =2x ,∠C =3x , 由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°, 解得x =30°,

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

(完整版)初中数学竞赛相似三角形专题

初二竞赛专题:相似三角形 1.如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . 2.如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长. 3.如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且 梯形AEFD 与梯形EBCF 的周长相等,求EF 的长. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点, 则 BD EG DC FG = . O F E D C B A F E D C B A F E D C B A G F E D C B A B D A E G F C

4.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证: 5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 6.如图,边长为1的等边ABC △,BC边上有一点D,1 3 BD=,AC上有一点E ,60 ADE ∠=o,求EC的长.7.已知,B是AC中点,D、E在AC的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠. E D C B A D E B C A

8.如图,在ABC △中,60BAC ∠=o ,点P 是ABC △内一点,且APB BPC CPA ∠=∠=∠,若8PA =,6PC =,求PB 的长. 9.如图,在锐角ABC △中,AD 、CE 分别为BC 、AB 边上的高,ABC △和BDE △的面积分别等于18和2, 22DE =,求点B 到AC 的距离. 10.如图所示,已知3个边长相等的正方形相邻并排,求EBF EBG ∠+∠. 11.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证: 2FD FB FC =?. E D C A B P C B A H G B A

最新初中数学三角形经典测试题含答案

最新初中数学三角形经典测试题含答案 一、选择题 1.如图,90ACB ∠=?,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( ) A .45° B .30° C .22.5° D .15° 【答案】C 【解析】 【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可. 【详解】 解:连接AD ,延长AC 、DE 交于M , ∵∠ACB=90°,AC=CD , ∴∠DAC=∠ADC=45°, ∵∠ACB=90°,DE ⊥AB , ∴∠DEB=90°=∠ACB=∠DCM , ∵∠ABC=∠DBE , ∴∠CAB=∠CDM , 在△ACB 和△DCM 中 CAB CDM AC CD ACB DCM ∠=∠??=??∠=∠? ∴△ACB ≌△DCM (ASA ), ∴AB=DM , ∵AB=2DE , ∴DM=2DE , ∴DE=EM ,

∵DE ⊥AB , ∴AD=AM , 114522.522 BAC DAE DAC ??∴∠=∠= ∠=?= 故选:C . 【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键. 2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( ) A .1 B .2 C .32 D .85 【答案】C 【解析】 【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度. 【详解】 解:在矩形ABCD 中,3,4AB BC ==, ∴∠B=90°, ∴22345AC =+=, 由折叠的性质,得AF=AB=3,BE=EF , ∴CF=5-3=2, 在Rt △CEF 中,设BE=EF=x ,则CE=4x -, 由勾股定理,得:2222(4)x x +=-, 解得:32x = ; ∴32 BE =. 故选:C . 【点睛】

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛专题训练之例题及三角形边角不等关系

A. B. 33 C. 39 D. 15 C A B C P 图 8-2 图 8-1 D A A. 4cm 10cm B. 5cm 10cm C. 4cm 2 3cm D. 5cm 2 3cm a C. D. 初中数学竞赛专项训练(8) (命题及三角形边角不等关系) 一、选择题: 1、如图 8-1,已知 AB =10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作两个等边三 角形 APC 和 BPD ,则线段 CD 的长度的最小值是 ( ) A. 4 B. 5 C. 6 D. 5( 5 - 1) 2、如图 8-2,四边形 ABCD 中∠A =60°,∠B =∠D =90°,AD =8,AB =7, 则 BC +CD 等于 ( ) A. 6 3 B. 5 3 C. 4 3 D. 3 3 3、如图 8-3,在梯形 ABCD 中,AD ∥BC ,AD =3,BC =9,AB =6,CD =4,若 EF ∥BC ,且梯形 AEFD 与梯形 EBCF 的周长相等,则 EF 的长为 ( ) 45 7 5 5 2 C D A D D E F B 图 8-3 4、已知△ABC 的三个内角为 A 、B 、C 且α =A+B ,β =C+A ,γ =C+B ,则α 、β 、γ 中,锐角的个数 最多为 ( ) A. 1 B. 2 C. 3 D. 0 5、如图 8-4,矩形 ABCD 的长 AD =9cm ,宽 AB =3cm ,将其折叠,使点 D 与点 B 重合,那么折叠后 DE 的长和折痕 EF 的长分别为 ( ) E A D B F C B C C 图 8-4 6、一个三角形的三边长分别为 a ,a ,b ,另一个三角形的三边长分别为 a ,b ,b ,其中 a>b ,若两个三角 形的最小内角相等,则 的值等于 ( ) b A. 3 + 1 2 B. 5 + 1 2 3 + 2 2 5 + 2 2 7、在凸 10 边形的所有内角中,锐角的个数最多是 ( ) A. 0 B. 1 C. 3 D. 5 8、若函数 y = kx (k > 0) 与函数 y = 1 x 的图象相交于 A ,C 两点,AB 垂直 x 轴于 B ,则△ABC 的面积为 ( ) A. 1 B. 2 C. k D. k 2 二、填空题 1、若四边形的一组对边中点的连线的长为 d ,另一组对边的长分别为 a ,b ,则 d 与 ______ a + b 2 的大小关系是_

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

初中数学三角形经典测试题及解析

初中数学三角形经典测试题及解析 一、选择题 1.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于() A.45°B.30 °C.15°D.60° 【答案】C 【解析】 【分析】 先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果. 【详解】 解:∵ABCD是长方形, ∴∠BAD=90°, ∵∠BAF=60°, ∴∠DAF=30°, ∵长方形ABCD沿AE折叠, ∴△ADE≌△AFE, ∴∠DAE=∠EAF=1 2 ∠DAF=15°. 故选C. 【点睛】 图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为() A.8cm B.10cm C.12cm D.14cm 【答案】B 【解析】 【分析】 根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求

【详解】 ∵ BD 是∠ABC 的平分线, ∴ ∠ABD =∠EBD . 又∵ ∠A =∠DEB =90°,BD 是公共边, ∴ △ABD ≌△EBD (AAS), ∴ AD =ED ,AB =BE , ∴ △DEC 的周长是DE +EC +DC =AD +DC +EC =AC +EC =AB +EC =BE +EC =BC =10 cm. 故选B. 【点睛】 本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 3.下列长度的三根小木棒能构成三角形的是( ) A .2cm ,3cm ,5cm B .7cm ,4cm ,2cm C .3cm ,4cm ,8cm D .3cm ,3cm ,4cm 【答案】D 【解析】 【详解】 A .因为2+3=5,所以不能构成三角形,故A 错误; B .因为2+4<6,所以不能构成三角形,故B 错误; C .因为3+4<8,所以不能构成三角形,故C 错误; D .因为3+3>4,所以能构成三角形,故D 正确. 故选D . 4.如图,在ABC V 中,AB AC =,30A ∠=?,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=?,则2∠的度数是( ) A .30° B .35° C .40° D .45° 【答案】C

最新初中数学三角形真题汇编含答案

最新初中数学三角形真题汇编含答案 一、选择题 1.如图,在ABC V 中,90C ∠=?,60CAB ∠=?,按以下步骤作图: ①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .46 B .42 C .43 D .8 【答案】D 【解析】 【分析】 根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长. 【详解】 由题意可得出:PQ 是AB 的垂直平分线, ∴AE =BE , ∵在△ABC 中,∠C =90°,∠CAB =60°, ∴∠CBA =30°, ∴∠EAB =∠CAE =30°, ∴CE = 12 AE =4, ∴AE =8. 故选D . 【点睛】 此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB =∠CAE =30°是解题关键. 2.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( ) A .4 B .5 C .6 D .9 【答案】C 【解析】 【分析】

根据三角形的三边关系可判断x 的取值范围,进而可得答案. 【详解】 解:由三角形三边关系定理得7-2<x <7+2,即5<x <9. 因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案. 4,5,9都不符合不等式5<x <9,只有6符合不等式, 故选C . 【点睛】 本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 3.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( ) A .4 B .3 C .6 D .2 【答案】B 【解析】 【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果. 【详解】 解:AD 是△ABC 中∠BAC 的平分线, ∠EAD=∠FAD DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF=DE , 又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222 AC ∴=??+?? ∴AC=3. 故答案为:B 【点睛】 本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键. 4.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

人教版初中数学三角形经典测试题含答案

人教版初中数学三角形经典测试题含答案 一、选择题 1.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有() A.∠ADE=20°B.∠ADE=30°C.∠ADE=1 2 ∠ADC D.∠ADE= 1 3 ∠ADC 【答案】D 【解析】 【分析】 【详解】 设∠ADE=x,∠ADC=y,由题意可得, ∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②, 由①×3-②可得3x-y=0, 所以 1 3 x y ,即∠ADE= 1 3 ∠ADC. 故答案选D. 考点:三角形的内角和定理;四边形内角和定理. 2.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()

A.13B.5C.22D.4 【答案】A 【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°. 若旋转角度为15°,则∠ACO=30°+15°=45°. ∴∠AOC=180°-∠ACO-∠CAO=90°. 在等腰Rt△ABC中,AB=4,则AO=OC=2. 在Rt△AOD1中,OD1=CD1-OC=3, 由勾股定理得:AD1=13. 故选A. 考点: 1.旋转;2.勾股定理. 3.如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为() A.30 B.36 C.45 D.72 【答案】B 【解析】 【分析】 由CA=CB,可以设∠A=∠B=x.想办法构建方程即可解决问题; 【详解】 解:∵CA=CB, ∴∠A=∠B,设∠A=∠B=x. ∵DF=DB, ∴∠B=∠F=x, ∵AD=AE, ∴∠ADE=∠AED=∠B+∠F=2x, ∴x+2x+2x=180°, ∴x=36°,

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

相关文档
最新文档