高中数学技巧--妙--构造对偶式的八种途径

高中数学技巧--妙--构造对偶式的八种途径
高中数学技巧--妙--构造对偶式的八种途径

构造对偶式的八种途径

在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和,差,积等运算,往往能使问题得到巧妙的解决,收到事半功倍的效果。下面通过实例来谈谈构造对偶式的八种途径。

一. 和差对偶

对于表达式()()u x v x ±,我们可构造表达式()()u x v x 作为它的对偶关系式。

例1若02

π

θ<<

,且3sin 4cos 5θθ+=,求tan θ的值。

解析:构造对偶式:3sin 4cos y θθ-=

则3sin 4cos 5,3sin 4cos y θθθθ+=??-=?得5sin 6

5cos 8y y θθ+?

=??∴?

-?=

??

再由2

2

sin cos 1θθ+=,得:73

,tan 54

y θ=-

∴=。 点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。 例2已知:,,,a b c d R ∈,且2222

1a b c d +++≤,

求证:4

4

4

4

4

4

()()()()()()6a b a c a d b c b d c d +++++++++++≤。 解:

4444444

4

4

4

4

4

()()()()()():()()()()()()

M a b a c a d b c b d c d N a b a c a d b c b d c d =+++++++++++=-+-+-+-+-+-设,构造对偶式

则有:

4444222222222222222226(222222)6()6

M N

a b c d a b a c a d b c b d c d a b c d +=+++++++++=+++≤ 又0N ≥,故6M ≤,即原不等式成立。

点评:这个对偶式构造得好!它的到来一下子使问题冰消融了。解法自然,朴素,过程简洁,运算轻松!

10=

a =

,再由原方程联立可解得:

10,(1)2

10,(2)

2

a a +=-= 那么2

2

(1)(2)+得:2

21

242(100),(3)2

x a +=

+ 22

(1)(2)-得:1610x a =,即85

x a =,

代入(3)中得:2

2164242(100)225

x x +=+,

整理得:29425x =, 解得:10

3

x =±。

二. 互倒对偶

互倒对偶是指针对式子的结构,通过对式中的某些元素取倒数来构造对偶式的方法。 例4若,,(0,1)x y z ∈,求证:

111

3111x y y z z x

++≥-+-+-+。

解:设111

111M x y y z z x

=

++-+-+-+,

构造对偶式:(1)(1)(1)N x y y z z x =-++-++-+,则

1111

(1)(1)(1)11112226M N x y y z z x x y y z z x y z

+=

+-+++-+++-++

-+-+-+-+≥++=而3N =,故3M ≥,即

111

3111x y y z z x

++≥-+-+-+。

例5设123,,,

,n a a a a 为互不相等的正整数,

求证:3

21222

11

1

12323

n a a a a n

n

+

+++

≥+++

。 解:设M=3

21222

23

n a a a a n

+

+++

,构造对偶式:1211

1

n

N a a a =+++ 则212212

11111

1()()(

)1232n n

a a M N a a a a n

n +=+

+++++≥++

+

又123,,,,n a a a a 为互不相等的正整数,所以111

123

N n

≤+

++

,因此111123

M n

≥+

++

。 点评:解题时巧妙构思,对其构造了“意料之中”的对偶式,化新为旧,等价转化,完成对难点的突破,以达化解问题这目的。

例6已知对任意(,0)(0,)x ∈-∞?+∞总有1

()2()0f x f x x

++=,求函数()y f x =的解析式。

解析:因1()2()0f x f x x

++= ①

1x 替代上式中的x ,构造对偶式:11

()2()0f f x x x

++= ② 由①-②×2得:12

()4()0f x x f x x

+--=

故22()3x x

f x x

-=。

三. 共轭对偶

共轭对偶是反映利用共轭根式或共轭复数来构造对偶式的方法。 例7已知z c ∈,解方程:313z z iz i ?-=+。

解析:由313z z iz i ?-=+ ① 构造对偶式:313z z iz i ?+=- ② 由①-②得2z z =--,代入②得(1)(13)0z z i ++-=, 故1z =-或13z i =-+。

例8若z c ∈,已知1z =且1z ≠±,证明:

1

1

z z -+为纯虚数。 解:设M=

1

1z z -+,则11()11z z M z z --==++,构造对偶式:N=11

z z -+ 则M+N=

11z z -++11

z z -+=0(因为2

1z z z ?==) 又

1

01

z z -≠+(因为1z ≠±)

1

1

z z -+为纯虚数。 例9已知:0,0a b >>,且1a b +=

+

∵2

2

2

4()48M M N a b ≤+=++=

∴M ≤,即原不等式成立。 四. 倒序对偶

倒序对偶是指针对式子的结构,通过和式或积式进行倒序构造对偶式的方法。

例10求和:12341234n

n n n n n S C C C C nC =++++

+

解析:观察和式联想到*,0,k n k n n C C k n n N -=≤≤∈,故首先在和式右边添上一项0

0n C ?,则012

012n

n n n n S C C C nC =?+++

+ ①

构造对偶式: 012

(1)(2)0n n n n S nC n C n C C =+-+-+ ②

即②亦为: 012

012n

n n n n S C C C nC =?++++ ③

由①+③得:01

1n n

n n n n nC nC nC nC -++++

∴01

101

12()n n n n

n n n n n n n n S nC nC nC nC n C C C C --=++

++=++

++

∴22n

S n =? ∴2n

S n =?

点评:利用现成的对偶式,使问题本身变得简单,便易,如此处理,可谓“胜似闲庭信步”,岂不妙哉!

例11正项等比数列{}n a 中,123123,n n T a a a a S a a a a =????=++++试用S,T表

示12

11

1

n

Q a a a =

+++

。∵∴ 解析:传统解法都用1,a q 表示S,T及Q,然后通过1a 和q 找到S,T,Q的等量关系,这种解法虽思路正确,但运算繁琐,加之在用等比数列求和公式时还要讨论1q =和1q ≠两种情形,如

此解题会陷入漫漫无期的运算之中,很少有人能够到达终点。其实,观察和式子与积式特征不妨采取“本末倒置”构造倒序对偶序式一试。 由题意知:123n T a a a a =???

? ①

构造倒序对偶式:121n n n T a a a a --=???? ②

由①×②得:2

2

12111()()()()n n n n T a a a a a a a a -=??????=?,即2

1()n n T a a =?

再来看: 12111

n Q a a a =

+++

③ 构造倒序对偶式:1

1

111

n n Q a a a -=

+++

④ 即③+④得:

1221

111111

2(

)()(

)n n n Q a a a a a a -=++++++, 即122

1

122

1

2n n n n n n a a a a a a Q a a a a a a --+++=

+++

???。

由等比数列性质可知,右边的分母均为1n a a ?,故

12111()()()

2n n n n

a a a a a a Q a a -++++

++=

?

即122

n S Q a a =

,∴1n

S

Q a a = 又2

1n

n a a T = ∴2

n

S Q T

==

五. 定值对偶

定值对偶是指能利用和,差,积,商等运算产生定值,并借此构造出对偶式的方法。

例12已知函数22

()1x f x x =+。111

()()()(1)(2)(3)(4)432

f f f f f f f ++++++, 则S= 。

解析:2

2

2222

2

1()11()()111111()x x x f x f x x x x x

+=+=+=++++ 发现定值:1

()()1f x f x

+=。

那么111

()()()(1)(2)(3)(4)432

S f f f f f f f =++++++ ①

构造对偶式:111

(4)(3)(2)(1)()()()234

S f f f f f f f =++++++ ②

由①+②得:

111

2[()(4)][()(3)][()(2)]2(1)

432

111

[(2)()][(3)()][(4)()]

234

S f f f f f f f f f f f f f =++++++++++++

∴2S=7,即7

2

S =。 六. 奇偶数对偶

奇偶数对偶指利用整数的分类中奇数与偶数的对称性构造对偶式的方法。

例13求证:

13521

2462n n

-???<。

解:设135212462n M n -=???

,构造对偶式:246

235721

n

N n =???+。 由于1234212,,,,2345221

n n n n -<<<+

因此

M N <,从而2

121

M M N n

故M <

例14求证:1

1

(11)(1)

(1)4

32

n +++

>-证明:待证不等式的左边为:1125

31

(11)(1)(1)43214

32

n n n -+++

=???

--。

令:2531

1432

n M n -=???-

构造两个对偶式:3634731

,2531363n n N P n n

+=???=???-

∵23456731331,,12345632313n n n n n n

-+>>>>>>--

∴3253136

34731

()()

()1432253136

331

M M N P n n

n n n n

n >??-+=???

????

?????

--=+ ∴M >

故原不等式成立。

点评:灵活地选取解题方法,对其构造了“意想不到”的对偶式,从而完成了解答,充分体现了解题技巧。 七. 轮换对偶

轮换对偶是指针对式子的结构,通过轮换字母而构造对偶式的方法。

例15求证:对任意实数.1,1a b >>,都有

22

811a b b a +≥--不等式成立。 证明:设2211a b M b a =+--构造对偶式22

11b a N b a =+--, 则22222

()()011(1)(1)

a b b a a b a b M N b a b a --+--=

+=≥----,即M N ≥ 而1111

114(1)(1)42281111

N b a b a b a b a =++

+++=+-++-+≥++=----, ∴8M N ≥≥,即8M ≥。当且仅当2a b ==时等号成立。

例16设,,a b c R +

∈,求证:2222

a b c a b c

a b b c c a ++++≥+++。 证明:设222a b c M a b b c c a =+++++,构造对偶式:222b c a N a b b c c a =+++++, ∴222222222

a b b c c a a b b c c a

M N a b c a b b c c a +++++++=

++≥++=+++++。 又0M N -=,即2

a b c

M N ++=≥

, ∴2222

a b c a b c

a b b c c a ++++≥+++。 八. 互余对偶

三角中的正弦与余弦是两个对称元素,利用互余函数构造对偶式,借用配对思想可以轻松完成有关三角题的解答。

例17已知[0,

]2

x π

∈,解方程:222cos cos 2cos 31x x x ++=

解析:若令2

2

2

cos cos 2cos 3M x x x =++,构造对偶式:2

2

2

sin sin 2sin 3N x x x =++ 则:3M N += ①

2cos 2cos 4cos62cos cos32cos 312cos3(cos cos3)14cos cos 2cos31

M N x x x x x x x x x x x x -=++=+-=+-=-

∴4cos cos2cos31M N x x x -=- ②

由①+②得:1

cos cos 2cos3(22)4

x x x M =-,又1M = ∴cos cos2cos30x x x =

∴cos 0cos 20cos30,[0,]2

x x x x π

===∈或或

∴6

x π

=

或4

x π

=

或2

x π

=

点评:通过构造对偶式,创设了cos cos2cos30x x x =这一美妙而又能打开书局面的有利条件,可谓“高招”!

例18求2

2

sin 10cos 40sin10cos 40++的值。 解析:令2

2

sin 10cos 40sin10cos 40M =++, 构造对偶式:2

2

cos 10sin 40cos10sin 40N =++,则

2sin104010sin 402sin 502080sin104010sin 401

2sin 50sin 30sin 30sin 50

2

M N cos cos M N cos cos cos cos +=++=+-=-++-=--=--

∴2sin 501

sin 502

M N M N ?+=+??-=--?? ∴3

4

M =

点评:这是一道比较典型的三角求值题。通过对题目结构特征的观察,由目标导向,构造对偶式,从而独辟蹊径,出奇制胜。

在数学解题过程中,如果我们恰当地构造对偶关系式,不仅能提高解题速度,而且能收到以简驭繁,简缩思维,拓宽思路的功效,同时还让人萌生一种“春雨断桥人不渡,小舟撑出绿阴来”的美妙感觉,对于激发学生学习数学的兴趣也是大有裨益。

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

高中数学核心方法:构造法

高中数学核心方法:构造法 构造法,顾名思义是指当解决某些数学问题使用通常方法按照定向思维难以解决问题时,应根据题设条件和结论的特征、性质,从新的角度,用新的观点去观察、分析、理解对象,牢牢抓住反映问题的条件与结论之间的内在联系,运用问题的数据、外形、坐标等特征,使用题中的已知条件为原材料,运用已知数学关系式和理论为工具,在思维中构造出满足条件或结论的数学对象,从而,使原问题中隐含的关系和性质在新构造的数学对象中清晰地展现出来,并借助该数学对象方便快捷地解决数学问题的方法。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵

活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。 下面,我们通过几个例题,来简单看一下高中阶段几种常见的构造法。 例1.(构造函数)已知三角形的三边长分别为,,a b c ,且m 为正数,求证:a b c a m b m c m +>+++ 解:构造函数()1x m f x x m x m = =-++,则()f x 在()0+∞,上是增函数。 0a b c +>> ,()()f a b f c ∴+>。 ()()()()a b a b a b f a f b f a b f c a m b m a b m a b m a b m ++= +>+==+>++++++++ a b c a m b m c m ∴+>+++ 例2.(构造距离)求函数 ()f x =的最小值。 解:()f x =其几何意义是平面内动点(),0P x 到两定点()()1,4,3,2M N --的距离之和,当 ,,P M N 三点共线时距离之和最小为MN ==即() f x 的最小值为。 例3.(构造直线斜率)求函数()sin cos 3x f x x =- 的值域。 解:构造动点()cos ,sin P x x 与定点()3,0Q 的连线的斜率,而动点P 的轨迹为单位圆。

高级中学数学技能妙构造对偶式的八种途径

构造对偶式的八种途径 在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和,差,积等运算,往往能使问题得到巧妙的解决,收到事半功倍的效果。下面通过实例来谈谈构造对偶式的八种途径。 一.和差对偶 对于表达式()()u x v x ±,我们可构造表达式()()u x v x m 作为它的对偶关系式。 例1若02 πθ<< ,且3sin 4cos 5θθ+=,求tan θ的值。 解析:构造对偶式:3sin 4cos y θθ-= 则3sin 4cos 5,3sin 4cos y θθθθ+=??-=?得5sin 6 5cos 8y y θθ+? =??∴? -?= ?? 再由2 2sin cos 1θθ+=,得:7 3,tan 54 y θ=-∴=。 点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。 例2已知:,,,a b c d R ∈,且2 2 2 2 1a b c d +++≤, 求证:444444 ()()()()()()6a b a c a d b c b d c d +++++++++++≤。 解: 4444444 4 4 4 4 4 ()()()()()():()()()()()() M a b a c a d b c b d c d N a b a c a d b c b d c d =+++++++++++=-+-+-+-+-+-设,构造对偶式 则有: 4444222222222222222226(222222)6()6 M N a b c d a b a c a d b c b d c d a b c d +=+++++++++=+++≤ 又0N ≥,故6M ≤,即原不等式成立。 点评:这个对偶式构造得好!它的到来一下子使问题冰消融了。解法自然,朴素,过程简洁,

高中数学选择题技巧讲解

专题一数学客观题的解题方法与技巧 专题一I 选择题的解法 高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字—准确、迅速.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 选择题具有题小、量大、基础、快捷、灵活的特点,是高考中的重点题型.在高考试卷中数量最大,占分比例高.全国卷的选择题占60分.因此,正确的解好选择题已成为高考中夺取高分的必要条件. 选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快捷.应“多一点想的,少一点算的”,该算不算,巧判断.因而,在解答时应该突出一个“选”字,尽量减少书写解答过程.在对照选项的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速的选择巧法,以便快速智取. 选择题的巧解说到底就是要充分利用选项提供的信息,发挥选项的作用.能力稍差的学生解选择题仅仅顾及题干,然后像解答题那样解下去,选项只取了核对的作用.本来像选择题这样的小题应当“小题小作”,但却做成了解答题.至少做成了填空题.这样就“小题大作”了,导致后面的解答题没有充裕的时间思考,这是不划算的. 由于选择题结构特殊,不要求反映过程,再加上解答方式没有固定的模式,灵活多变,具有极大的灵活性.选择题的解题思想,渊源于选择题与常规题的联系与区别,它在一定程度上还保留着常规题的某些痕迹;而另一方面,选择题在结构上具有自己的特点,即至少有一个答案是正确的或合适的.因此,可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支;选择题中的错误支具有双重性,既有干扰的一面,也有可利用的一面.只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速做出判断. 1.选择题的解题策略 解题的基本策略是:充分地利用题干和选择支的两方面条件所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直解,先排除后求解. 一般地,解答选择题的策略是: ①熟练掌握各种基本题型的一般解法; ②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧;

高中数学构造函数解决导数问题专题复习

高中数学构造函数解决导数问题专题复习 【知识框架】 【考点分类】 考点一、直接作差构造函数证明; 两个函数,一个变量,直接构造函数求最值; 【例1-1】(14顺义一模理18)已知函数() (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围. 【例1-2】(13海淀二模文18)已知函数. (Ⅰ)当时,若曲线在点处的切线与曲线在点 处的切线平行,求实数的值; (Ⅱ)若,都有,求实数的取值范围. ()()()h x f x g x =-2 1()ln 2 f x ax x x = -+,0a R a ∈≠2a =()y f x =(1,(1))f [)1,+∞()f x y ax =a ()ln ,()(0)a f x x g x a x ==- >1a =()y f x =00(,())M x f x ()y g x =00(,())P x g x 0x (0,]x e ?∈3 ()()2 f x g x ≥+a

【练1-1】(14西城一模文18)已知函数,其中. (Ⅰ)当时,求函数的图象在点处的切线方程; (Ⅱ)如果对于任意,都有,求的取值范围. 【练1-2】已知函数是常数. (Ⅰ)求函数的图象在点处的切线的方程; (Ⅱ)证明函数的图象在直线的下方; (Ⅲ)讨论函数零点的个数. 【练1-3】已知曲线. (Ⅰ)若曲线C 在点处的切线为,求实数和的值; (Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围. 【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方; ()ln a f x x x =-a ∈R 2a =()f x (1,(1))f (1,)x ∈+∞()2f x x >-+a ()=ln +1,f x x ax a R -∈=()y f x (1,(1))P f l =()(1)y f x x ≠l =()y f x :e ax C y =(0,1)2y x m =+a m a C l y ax b =+b ()2 1ln 2 f x x x = +()1,+∞()f x ()3 23 g x x = 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

高中数学构造函数专题.docx

I1例] 定义在]R上的函数/(?T)满足:/(x) + f\x)> 1, /(()) =4,则不等式e x f(x) >e x + 3 (其中e为 自然对数的底数)的解集为()。 A: (O.+oo) B: (—00,0) U (3, +oo) C: (-00, 0) U ((), +8) D: (3,+oc) (单选)定义在(O.+x)上的函数/仗)满足: /(x) > xf(x)9且/(2) = 4,则不等式f(x) - 2x > 0 的解集为()。 A. (2,4-oc) B. (0.2) C. (0.4) D. (4. -Foo) (单选)已知定义在R上的可导函数"==/(“)的导函数为fk),满足/(") 2的解集为()。 e4* A. (―x.()) B. (0.+oc) C. (一oo?2) D. (2,+oc) (单选)定义域为R的可导函数"二几门的导函数为d 满足/(」

?)>/‘(?“,且/(0)=1,则不等式凹V 1的解集为()。 A.(—oo.()) B.(0, +x) C.(—oo.2) D.(2. +oc) (单选)函数/何的定义域为R, /(-1) = 2,对任意T€R,f(x) > 2,则f(x) > 2x + 4 的解集为()o A. (― 1. +oo) B. (-oo.-l) C. (2?+x) D. (—oo. 一2) 函数/(x)的定义域为R, /(-1) = 2015,对任意的 XER .都有f\x) < 3z2成立,则不等式 /(.r) < r34-2016 的解集为() A. (―l.+oc) B. (-1,0) C?(-oc. -1) D. (-oo.-Foo) F 例7 (单选)函数/⑴的定义域是R, /(0) = 2,对任意

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

北师大版高中数学必修51.1数列用构造法求数列的通项公式

用构造法求数列的通项公式 求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用 例1:(06年福建高考题)数列{}=+==+n n n n a a a a a 则中12,1,11 ( ) A .n 2 B .12+n C .12-n D .12+n 解法1:121+=+n n a a )1(22211+=+=+∴+n n n a a a 又211=+a 21 11=++∴+n n a a {}1+n a 是首项为2公比为2的等比数列 12,22211-=∴=?=+-n n n n n a a ,所以选C 解法2 归纳总结:若数列{}n a 满足q p q pa a n n ,1(1≠+=+为常数),则令)(1λλ+=++n n a p a 来构造等比数列,并利用对应项相等求λ的值,求通项公式。 例2:数列{}n a 中,n n n a a a a a 23,3,11221-===++,则=n a 。 解:)(2112n n n n a a a a -=-+++ 212=-a a {}1--∴n n a a 为首项为2公比也为2的等比数列。 112--=-n n n a a ,(n>1) n>1时 122 1211 222)()()(211 12211-=--=++++=+-++-+-=-----n n n n n n n n n a a a a a a a a

显然n=1时满足上式 ∴=n a 12-n 小结:先构造{}n n a a --1等比数列,再用叠加法,等比数列求和求出通项公式, 例3:已知数列{}n a 中)3(,32,2,52121≥+===--n a a a a a n n n 求这个数列的通项公式。 解:2132--+=n n n a a a )(3211---+=+∴n n n n a a a a 又{}121,7-+=+n n a a a a 形成首项为7,公比为3的等比数列, 则2137--?=+n n n a a ………………………① 又)3(3211-----=-n n n n a a a a , 13312-=-a a ,{}13--n n a a 形成了一个首项为—13,公比为—1的等比数列 则21)1()13(3---?-=-n n n a a ………………………② ①+?3② 11)1(13374---?+?=n n n a 11)1(4 13347---+?=∴n n n a 小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。 例4:设数列{}n a 的前项和为n n n n S a S =-22,若成立,(1)求证: {} 12-?-n n n a 是等比数列。(2) 求这个数列的通项公式 证明:(1)当 2,)1(2,1111=∴-=-?=a a b a b n 又n n n S b a b ?-=-?)1(2 ………………………① 111)1(2 +++?-=-?∴n n n S b a b ………………………② ②—① 11)1(2++?-=-?-?n n n n a b a b a b n n n a b a 21+?=∴+ 当2=b 时,有n n n a a 221+=+ )2(22)1(222)1(11-+?-?=?+-+=?+-∴n n n n n n n n a n a n a

高中数学解题方法与技巧---构造函数法证明导数不等式的六种方法

高中数学解题方法与技巧 构造函数法证明不等式的六种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的六种方法: 一、移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 2 2)1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 , 即)(x g 在)0,1(?∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞?上的最小值为0)0()(min ==g x g ,

构造函数解题的三个类型

构造函数解题的三个类型 构造函数解题是近几年高考命题的热点,笔者研究近年的高考题,发现构造函数解题主要有以下三种类型,下面举例说明. 类型1.整体构造一个函数,这是最常见的构造方法,高考题中利用这个方法的题型最为多见. 例1 解不等式:3381050(1)1 x x x x +-->++. 解:原不等式即3322()5()511 x x x x +>+++, 令3()5f x x x =+,则2()350f x x '=+>, ∴3()5f x x x =+在R 上是增函数, ∴原不等式即21 x x >+, ∴解得 2x <-,或11x -<<, ∴原不等式的解集为{|2x x <-,或11}x -<<. 类型2.构造两个函数,这种类型的题目较少,技巧较强 例2 若20()2()||f x x x m x m x =+---≥对于一切[1,2]x ∈恒成立,求实数m 的取值范围. 解:令()()||g x x m x m =--,2()2h x x x =-,则()()()f x g x h x =+. ∵22,(),()()||(),,m x m x g x x m x m x m x m ?-=--=?--, ∴()h x 在[1,2]x ∈上是增函数. ∴()()()f x g x h x =+在[1,2]x ∈上是增函数, ∴min ()(1)1(1)|1|f x f m m ==+--. 由题意只要01(1)|1|m m +--≥, ∴2101(1)m m ??--?≥≥或2101(1)m m

浅谈高中数学教学技巧

浅谈高中数学教学技巧 : 高中数学的课业负担重、逻辑性强, 对学生的理解力要求更高,下面 是小编搜集的一篇关于高中数学教学技巧探究的论文范文,供大家阅 读借鉴。 摘要:不少同学进入高中之后很不适应,例如高中数学的内容多,抽象性、理论性强等等,所以,高中学生就必须"会学",要讲究科学的学习 方法,提高学习效率,变被动学习为主动学习,才能提高数学学习成绩。 关键词:高中数学听课效率学习习惯 高中是走向大学的过渡时期, 这个时期教学和学习的任务都很重, 高 中数学的课业负担重、逻辑性强, 对学生的理解力要求更高。这就要 求教师要检查教学过程中遇到的问题, 找到一套行之有效的教学方法, 激发学生的学习兴趣, 从而提高他们的学习能力和学习效率。 一、注重创设问题情境 新课标中已经指出,数学教学应使生活实际和课堂教学紧密联系起来,从学生的生活中已有的经验和知识点出发,创建有趣、生动的情境, 让学生从实际生活中找到数学问题,使数学知识生活化、具体化。只 有这样,才能有利于学生提高学习数学的兴趣,有利于学生的发展。 例如:在引入对数的概念时可用“一张纸对折20 次能否比珠穆朗玛峰高?”;引入排列的概念时可用“五个人排成一排照相有多少种不同的 排法”;“两点确定一条直线”早就被不懂数学的木工师傅在弹墨线时 得到应用;房屋屋顶支架、自行车三角架、三角板等都是应用了三角形 的稳定性。 二、提高课堂听课效率 学习期间,在课堂的时间就占了一大部分。因此听课的效率如何,决 定着学习的基本状况,提高听课效率应注意以下几个方面。

1.课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点。让学生对预习中遇到没有掌握好的有关的旧知识,进行补缺,以 减少听课过程中的困难,有助于提高思维能力,预习后让学生自己进 行比较、分析,既可提高学生的思维水平,又可培养学生的自学能力。 2.听课过程中的科学。引导学生全身心地投入课堂学习,做到耳到、 眼到、心到、口到、手到。 3.特别注意课堂的开头和结尾。讲课的开头,一般是概括前节课的要点,指出本节课要讲的内容,是把旧知识和新知识联系起来的环节, 结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在 理解的基础上掌握本节知识方法的纲要。 三、借用建模提高感悟 教学中通过建模,让学生感悟数学的应用价值数学是为了解决实际问 题的需求中产生的,这就需要数学建模,数学建模和数学一样有着悠 久的历史。在古老的数学模型里有欧几里得几何、化学中的元素周期表、还有物理学的牛顿万有引力定律、麦克斯伟方程组等全是数学建 模的典范。当今时代,在计算机的帮助下,生态、地质、航空等方面 数学建模都有了更广泛的应用。因此,从客观上讲,要培养现代化的 高科技人才、数学建模是一个必不可少的重要途径,时代赋予数学建 模更加重要的意义。在教学中运用数学建模,能激发学生浓厚的学习 兴趣。据调查显示,很多学生对数学建模表现出很大兴趣,同时也极 大程度地提高了学生对其他课程的学习兴趣。在解决问题的过程中感 受到学习数学的快乐,从而体现出数学的魅力,在学习的过程中表现 出更浓厚的兴趣。 四、运用科学的学习方法 高中数学主要是培养学生的运算能力、逻辑思维能力、空间想象能力, 分析问题、解决问题的能力。运算能力确要“活”,要看书并要做题还 要总结积累, 教学中进行一题多解思考,优化运算策略;逻辑思维能力 是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高,使用

高中数学知识结构框图

高中数学知识结构框图必修一:第一章集合 集合含义与表示 基本关系 基本运算 列举法{a,b,c,…} 描述法{x|p(x)} 图象法 包含关系 相等关系 交集:A∩B={x|x∈A且x∈B} 并集:A∪B={x|x∈A或x∈B} 补集:{|} U C A x x U x A =∈? 且 韦恩图; 数轴 子集; 真子集 函数概念 定义域 对应关系 值域 表示 解析法 图象法 列表法 性质 单调性 定义 图象特征 最值 奇偶性 定义 图象特征:对称性 映射映射的概念上升或下降 第二章函数

第三章基本初等函数(Ⅰ) 基本初等函数(Ⅰ) 指 数 与 指 数 函 数 指 数 根式n a 分数指数幂(0,,*,1) m n m n a a a m n N n =>∈> 无理数指数幂 运算性质 指 数 函 数 定义(0,1) x y a a a =>≠ 图象: “一撇或一捺”,过点(0,1).见教材P91 性质: 位于x轴上方,以x轴为渐近线 对 数 与 对 数 函 数 对 数 定义:x a N x a N = 若则叫以为底的对数 运算性质 对 数 函 数 定义:log(0,1) a y x a a =>≠ 图象:位于y轴右侧,以y轴为渐近线.见教材P103 性质:过点(1,0) log()log log log log log log log a a a a a a n a a M N M N M M N N M n M ?=+ =- = () () r s r s r s rs r r r a a a a a ab a b + = = = 幂 函 数 定义:y xα = 具体的五 个幂函数 2 3 1 2 1 y x y x y x y x y x- = = = = = 特征:过点(1,1), 当0 α>时在(0,) +∞ 上递增;当0 α<时, 在(0,) +∞上递减。 换底公式: log log(0,1,0,1,0) log c a c b b a a c c b a =>≠>≠> 图象:P109

高中数学填空题解题技巧与填空题十大经典解题方法.doc

高中数学填空题解题技巧与填空题十大经 典解题方法 高中数学填空题解题技巧与填空题十大经典解题方法 高中数学填空题解题技巧 方法一、高中数学填空题解题技巧直接法 直接法就是从题设条件出发,运用定义、定理、公式、性质等,通过变形、推理、运算等过程,直接得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法. 适用范围:对于计算型的试题,多通过计算求结果. 方法点津:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键. 方法二、高中数学填空题解题技巧特殊值法 当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例. 适用范围:求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解. 高中数学填空题解题技巧方法点津:填空题的结论唯一或

题设条件中提供的信息暗示答案是一个定值是适用此法的前提条件. 方法三、高中数学填空题解题技巧数形结合法 对于一些含有几何背景的填空题,若能以数辅形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,如Venn图、三角函数线、函数的图象及方程的曲线、函数的零点等. 适用范围:图解法是研究求解问题中含有几何意义命题的主要方法,解题时既要考虑图形的直观,还要考虑数的运算. 方法点津:图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果. 方法四、高中数学填空题解题技巧构造法 构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型(如构造函数、方程或图形),从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决. 方法点津:构造法实质上是化归与转化思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决. 填空题十大经典解题方法 直接法

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 1.移项法构造函数 2、作差法构造函数证明 3、换元法构造函数证明 4、从条件特征入手构造函数证明 5、主元法构造函数 6、构造二阶导数函数证明导数的单调性 7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数 1.移项法构造函数 【例1】 已知函数x x x f ?+=)1ln()(,求证:当1?>x 时,恒有 x x x ≤+≤+?)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(?++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+?=?+=′x x x x f ∴当01<′x f ,即)(x f 在)0,1(?∈x 上为增函数 当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(?,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞?上的最大值为0)0()(max ==f x f ,因此,当1?>x 时,0)0()(=≤f x f ,即0)1ln(≤?+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(?+++=x x x g , 22) 1()1(111)(+=+?+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′?∈x g x x g x 时当时 ,

微专题1:构造函数法解选填压轴题

微专题:构造函数法解选填压轴题 高考中要取得高分,关键在于选准选好的解题方法,才能省时省力又有效果。近几年各地高考数学试卷中,许多方面尤其涉及函数题目,采用构造函数法解答是一个不错的选择。所谓构造函数法是指通过一定方式,设计并构造一个与有待解答问题相关函数,并对其进行观察分析,借助函数本身性质如单调性或利用运算结果,解决原问题方法,简而言之就是构造函数解答问题。怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 几种导数的常见构造: 1.对于()()x g x f ''>,构造()()()x g x f x h -= 若遇到()()0'≠>a a x f ,则可构()()ax x f x h -= 2.对于()()0''>+x g x f ,构造()()()x g x f x h += 3.对于'()()0f x f x +>,构造()()x f e x h x = 4.对于'()()f x f x > [或'()()0f x f x ->],构造()()x f x h x e = 5.对于()()0'>+x f x xf ,构造()()x xf x h = 6.对于()()0'>-x f x xf ,构造()()x x f x h = 一、构造函数法比较大小 例1.已知函数()y f x =的图象关于y 轴对称,且当(,0),()'()0x f x xf x ∈-∞+<成立,0.20.22(2)a f =,log 3(log 3)b f ππ=,33log 9(log 9)c f =,则,,a b c 的大小关系是 ( ) .Aa b c >> .B a c b >> .C c b a >> .D b a c >> 【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为[()]'()'()xf x f x xf x =+, 所以当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减, 当(0,)x ∈+∞时,函数()y xf x =单调递减. 因为0.2122<<,0131og π<<,3192og =,所以0.23013219og og π<<<,所以b a c >>,选D. 变式: 已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x + >, 若111(),2(2),ln (ln 2)222 a f b f c f ==--=,则下列关于,,a b c 的大小关系正确的是( D ) .Aa b c >> .B a c b >> .C c b a >> .D b a c >> 例2.已知()f x 为R 上的可导函数,且x R ?∈,均有()()f x f x '>,则有

高中数学奥赛的技巧(上篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?= 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

相关文档
最新文档