激光雷达数据滤波方法

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

雷达大数据处理步骤及效果展示

雷达数据处理步骤及效果展示 一、隧道衬砌质量检测数据处理步骤 1、打开软件RADAN,选择文件夹View→Customize→Directories; 2、打开文件File→Open(*.dzt); 3、扫描信息预编辑:选择一段扫描剖面,切除多余扫描信息Cut,保存特定扫描剖面; 4、文件测量方向反转:打开文件,选择File→Save As ,打勾,另存; 5、距离信息编辑:(1)编辑文件头内的距离信息Edit→File Header, 扫描/ 米[scans/m], 米/标记[m/mark],(2)编辑用户标记,(3)距离归一化处理; 6、里程编辑:Edit→File Header →3D option→X start输入里程起点坐标; 7、水平幅度调整:Process→Horizontal scale(叠加stacking、抽道skipping、加密stretching); 8、调整地面反射信号位置:方法有两种,(1)Edit→File Header→position(ns),(2)Process→Correct Position→delta pos (ns); 9、介电常数调整:利用经验或钻孔获得介电常数,通过Edit→File Header→DielConstant调整; 10、增益调整:Process→Range Gain,增益点数易选5个; 11、水平滤波:Process→FIR Filter; 12、背景去除:Process→FIR Filter; 13、一维频率滤波Process→IIR Filter; 14、反褶积、一维频率滤波:Process→Deconvolution;Process→IIR Filter; 15、文件拼接:选择File→Append files;

8.天气雷达基数据标准格式(v1.0)

天气雷达基数据标准格式(V1.0版) 1 概述 1.1适用范围 本格式规定了天气雷达基数据文件的结构、命名、单位和参数范围,我国各型号天气雷达生成的基数据应符合本格式要求。 本格式适用于基数据的传输、存储和服务。 1.2数据类型定义 文中的数据类型定义均基于32位操作系统(如Linux/Windows ),主要包括: ? INT – 4字节整型 ? SHORT – 2字节整型 ? CHAR*N – N 字节字符型 ? FLOAT – 4字节浮点类型,符合IEEE754规范 ? LONG – 8字节整型 1.3基数据结构 基数据文件分为多个区块,每个区块描述一组信息。如站点配置块用来描述雷达站的信息,包括经纬度、天线架设高度等。 基数据可分为公共数据块和径向数据块两部分(整体结构见表1-1),其中: 公共数据块用于提供数据站点信息、任务配置等公共信息。(见第二章) 径向数据块用于存储天气雷达的探测资料,包括3个子块:径向头、径向数据头以及径向数据。(见第三章) 表1-1 基数据整体结构 注:N 表示第N 个仰角;M 表示第M 个径向;K 表示第K 个数据类型,数据类型定义详见表2-7;I 表 区块 内容 字节 Common Block 公共数据块 GENERIC HEADER/通用头 32 SITE CONFIGURATION/站点配置 128 TASK CONFIGURATION/任务配置 256 CUT #1 CONFIGURATION/扫描配置#1 ┊ CUT #N CONFIGURATION/扫描配置#N 256 ┊ 256 径向数据 块 Radial Block Radial 1 第1个径向 RADIAL HEADER/径向头 64 MOMENT HEADER #1/径向数据头#1 MOMENT DATA #1/径向数据#1 ┊ MOMENT HEADER #K/径向数据头#K MOMENT DATA #K/径向数据#K 32 I ┊ 32 I …… …… …… Radial M 第M 个径向 …… ……

无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统 Li-Air无人机激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择多旋翼无人机、无人直升机和固定翼无人机平台,可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 Li-Air无人机激光雷达系统可搭载多种类型扫描仪,包括Riegl, Optech, MDL, Velodyne等,同时集成GPS、IMU和自主研发的控制平台。 图1扫描仪、GPS、IMU、控制平台 无人机激光雷达扫描系统设备参数见表格1: 表格 1 Li-Air无人机激光雷达扫描系统 图2 八旋翼无人机激光雷达系统图3 固定翼无人机激光雷达系统 设备检校

公司提供完善的设备检较系统,在设备使用过程中,定期对系统的各个组件进行重新标定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4(左)为检校前扫描线:不连续且有异常抖动;图4(中)为检校后扫描线:数据连续且平滑变化;图4(右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图图5(左)为检校前扫描线:不在同一平面;图4(中)为检校后扫描线:在同一平面;图4(右)为检校前后叠加图。 成熟的飞控团队 公司拥有成熟的软硬件团队以及经验丰富的飞控手,保证数据质量以及设备的安全性,大大节约了外业成本和时间。

图6无人机激光雷达系统以及影像系统 完善的数据预处理软件 公司自主研发的无人机系统配备有成套的激光雷达数据预处理软件Li-Air,该软件可对无人机实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。 图7 Li-Air数据预处理功能 成功案例 2014年7月,本公司利用Li-Air无人机激光雷达扫描系统进行中关村软件园园区扫描项目,采集园区高清点云以及影像数据。飞行高度200m,点云密度约50点/平方米,影像地面分辨率为5cm。通过POS数据解算,完成对点云和影像数据的整合,得到地形信息和DOM等。

数据可视化:柱状图、雷达图等六种基本图表的特点和适用场合

数据可视化:柱状图、雷达图等六种基本图表的特点和适用场合2014-11-30数据挖掘与数据分析 “数据可视化”可以帮助用户理解数据,一直是热门方向。 图表是”数据可视化”的常用手段,其中又以基本图表—-柱状图、折线图、饼图等等—-最为常用。 用户非常熟悉这些图表,但如果被问道,它们的特点是什么,最适用怎样的场合(数据集)?恐怕答得上来的人就不多了。 本文是电子书《Data Visualization with JavaScript》第一章的笔记,总结了六种基本图表的特点和适用场合,非常好地回答了上面的问题。

序言 进入正题之前,先纠正一种误解。 有人觉得,基本图表太简单、太原始,不高端,不大气,因此追求更复杂的图表。但是,越简单的图表,越容易理解,而快速易懂地理解数据,不正是”数据可视化”的最重要目的和最高追求吗? 所以,请不要小看这些基本图表。因为用户最熟悉它们,所以只要是适用的场合,就应该考虑优先使用。 一、柱状图(Bar Chart) 柱状图是最常见的图表,也最容易解读。 它的适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较。年销售额就是二维数据,”年份”和”销售额”就是它的两个维度,但只需要比较”销售额”这一个维度。 柱状图利用柱子的高度,反映数据的差异。肉眼对高度差异很敏感,辨识效果非常好。柱状图的局限在于只适用中小规模的数据集。

通常来说,柱状图的X轴是时间维,用户习惯性认为存在时间趋势。如果遇到X 轴不是时间维的情况,建议用颜色区分每根柱子,改变用户对时间趋势的关注。 上图是英国足球联赛某个年度各队的赢球场数,X轴代表不同球队,Y轴代表赢球数。 二、折线图(Line Chart)数据 折线图适合二维的大数据集,尤其是那些趋势比单个数据点更重要的场合。

超声波雷达及探测数据滤波

超声波雷达及探测数据滤波 摘要:在本次实验中,利用Arduino中超声波模块的测距功能,搭配舵机,模拟雷达装置,实现180°扫描测距,并用processing呈现可视化的实时测 量结果。然后针对超声波模块测量结果中出现的大量的偶然脉冲,使用 中位值滤波法后,有效消除了其中的偶然脉冲。 一、引言: 雷达是利用电磁波探测目标的电子设备,发射电磁波对目标进行照射并接受其回波,由此获得目标至电磁波发射点的距离、距离变化率、方位、高度等信息。从一战中雷达出现用于战争用途,在二战中雷达更是得到充分的发展,发展出了各式各样的雷达,出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。用途也愈加广泛,不仅用于军事用途,也越来越多地用于民用,日常生活中随处可见。基于雷达基本的物理原理,可以利用Arduino组装超声波模块做一个简单的超声波雷达,探索这一重要装置的原理及功能。 二、实验原理: 实验使用的HC-SR04超声波模块接受10微秒以上的信号输入后能够发射8个40kHz的超声波矩形脉冲。超声波在碰到物体后反射回超声波模块并由接受端接受信号,输出具有一定时间长度的高脉冲。脉冲时间是超声波运行距离所用时间的两倍,单位一般是微秒。在Arduino中使用pulseIn()函数计算超声波模块输出的时间长度,就可用d = t*340/2得到探测的距离,也可以用d = t /58.8得到单位为cm的探测距离。 由于实验装置本身的原因,探测到的实验数据中存在一些偏移很大的偶然脉冲,如果在模拟雷达装置中,存在这种偶然脉冲,则探测到的结果就将很不可靠。因为一定的角度上停留的时间很短,一般探测的数据也少,一般只有一两个,所以偶然脉冲就将导致该角度上测量的结果是错误的。为了避免这种情况,就需要使用滤波算法排除其中的偶然脉冲干扰。排除偶然脉冲可以选择中位值滤波法和

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

EXCEL在会计中的应用——雷达图的制作

EXCEL在会计中的应用——雷达图的制作 EXCEL在会计中的应用——雷达图的制作 学习背景 在进行财务报表综合评价分析时,往往涉及很多指标,需要将指标与参照值一一比较,往往会顾此失彼,难以得出一个综合的分析评价。这时便借助EXCEL中的雷达图。 培训要点 1、雷达图的作用 雷达图是专门用来进行多指标体系比较分析的专业图表。从雷达图中可以看出指标的实际值与参照值的偏离程度,从而为分析者提供有益的信息。 2、雷达图的阅读与分析 雷达图通常由一组坐标轴和三个同心圆构成。每个坐标轴代表一个指标。同心圆中最小的圆表示最差水平或是平均水平的1/2;中间的圆表示标准水平或是平均水平;最大的圆表示最佳水平或是平均水平的1.5倍。其中中间的圆与外圆之间的区域称为标准区。 在实际运用中,可以将实际值与参考的标准值进行计算比值,以比值大小来绘制雷达图,以比值在雷达图的位置进行分析评价。 3、如何绘制雷达图

雷达图是由多个坐标轴构成的图形,用手工制作还是比较复杂的。利用Excel,只需将有关的数据输入到工作表中,即可以方便、快捷地制作雷达图,而当数据变动时,相应的图形可以自动更新。 4、制作雷达图数据准备 数据的准备包括下述几方面的工作。 ①输入企业实际数据 ②输入参照指标, 比较分析通常都需要将被分析企业与同类企业的标准水平或是平均水平进行比较。所以还需要在工作表中输入有关的参照指标。我国对不同行业、不同级别的企业都有相应的标准,因此可以用同行业同级企业标准作为对照。 ③计算指标对比值 注意有些指标为正向关系,即对比值越大,表示结果越好;有些指标为负向关系,对比值越大,则表示结果越差。在制图时,最好将所有指标转变为同向指标。 ④创建雷达图 数据准备好以后,即可制作雷达图了。 应用实例 下面以CL公司的财务指标为例,绘制雷达图: CL公司财务指标总汇表需考察的方面

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 - 0 - 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: - 1 -

- 2 - (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: ( 2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中

如何做出专业的雷达图

如何做出专业的雷达图 导语: 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 免费获取商务图表软件:https://www.360docs.net/doc/d49681203.html,/businessform/ 一般用什么软件绘制专业的雷达图? 雷达图算得上是颜值较高的一个图表类型了,它是一种以二维形式展示多维数据的图形。它的可以描述为线图, X 轴以折叠形式环绕 360 度,Y 轴表示每一个 X 轴上的值。由中心向外辐射出多条坐标轴,每个多维数据在每一维度上的数值都占有一条坐标轴,并和相邻坐标轴上的数据点连接起来,形成一个个不规则多边形。相比绘制其他图表,绘制雷达图的门槛较高,一般多用亿图图示软件绘制专业的雷达图。

用亿图图示软件怎么做出专业的雷达图? 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。 从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

激光雷达在电力巡检的创新应用

除了通道排查树障以外,雷达在通道中还有哪些创新点,对运维有哪些帮助? 应用机载激光雷达技术进行输电线路巡检的优势如下: 1、能够快速获取线路走廊高精度的三维空间信息及高分辨率的真彩色影像信息,可实现线路交叉跨越高度、树高房高、线路与周边地物空间距离的高精度实时测量等; 8、结合电塔三维模型、线路走廊三维地形地物数据以及收集的线路属性参数,还可以辅助实现线路资产管理,与智能电网方案结合,效果更好。 9、可根据巡检不同的技术要求,集成可见光相机/多光谱相机/红外相机。 后台数据处理后,软件有哪些模块可以实际运用?

数据处理巡检分析一体化软件集航迹解算、点云分类处理、影像处理及线路巡检分析为一体,可操作性强,简单易学。该软件功能模块主要包括线路当前工况缺陷分析检测、净空排查、线路交叉跨越分析、塔杆定位、塔杆倾斜测量分析、杆塔位移监测、弧垂分析、线路不同工况模拟及检测,软件内置国网线路安全运行规程等,支持自定义配置规程参数并自动分析报告输出,可根据实际需求灵活使用。 巡检效率 1、由上两图可见,对于10km的线路长度,30分钟即可采集完所有数据;50分钟 内即可生成巡检报告,获取通道内的净空数据,外业人员可及时联系相关人 员,在短时间内,排除净空障碍隐患。这种效率是传统人工巡检无法做到的,

以下是具体比较: 无人机载激光雷达电力巡线社会经济效益一览表

2、巡线数据真实可靠性:由于传统的人工巡线很难确保巡线人员能够百分之百到 达位置,即使是使用GPS“打考勤”,也不能确保巡线人员对每个检测点都 进行认真可靠的检测。因此,对于数据收集的可靠性上,使用无人机搭载激 光雷达,是更具备真实客观性。 1、数据预处理功能:包括全息数据导入、航迹姿态数据处理、激光点云数据解算、激光点云/高清影像/红外图像等精确匹配等; 数据预处理功能主要应用到的坐标转换如下。 (1)扫描仪局部坐标到IMU坐标转换;

专业雷达数据分析模块

专业雷达数据分析模块 PCI Geomatica 高级SAR数据滤波:包括增强的Frost, Lee, Kuan 滤波功能 极化SAR数据分析:读取、分析并校准JPL aircraft SAR Stokes和散射矩阵数据. SAR 数据校准:包括生产校准的后向散射系数和雷达亮度。 SAR 数据分析:包括特征提取和变化检测 EarthView 产品系列 EarthView 套装软件提供从航天SAR数据生成高质量影像、DEM及变形图的完整的软件包。套装软件目前由四个产品组成: 1) EarthView APP v3.1 -- 完整解释为The Advanced Precision Processor,可将原始航天SAR数据转换为高质量影像产品。 2) EarthView InSAR v3.1 -- 干涉测量工作站可从处理的航天SAR影像生成DEM及变形图。CTM模块-- EarthView InSAR v3.1新增了CTM模块,CTM InSAR用来对连续性的目标进行变化监测。 3) EarthView Hypac -- 高光谱处理软件包,用来进行大数据量的高光谱图像处理。 4) EarthView Stereo v3.1 -- 三维模块应用一对SAR影像,生成区域的数字地形高程模型。产品特点 Atlantis致力于现代化其生产线,提供新水平的集成与交互操作能力、改进的易用性、常用的“look and feel”、对所有支持平台的可移植性。产品的几个主要特点包括: 1) 采用多CPU增强生产的能力; 2) 更新的生产“look and feel”以确保直观的版面、更新的设计及改进的交互生产连贯性; 3) 新的借助于硬件加速能力的可视化技术; 4) 简化的安装和授权程序; 5) 教育版,包含所有操作模式,但只支持有限数量的训练数据(注意教育版只能在Windows NT/2000下操作)。

利用激光雷达点云生成城市级三维道路地图

Computer Science and Application 计算机科学与应用, 2019, 9(6), 1169-1182 Published Online June 2019 in Hans. https://www.360docs.net/doc/d49681203.html,/journal/csa https://https://www.360docs.net/doc/d49681203.html,/10.12677/csa.2019.96132 Combine Laser Scan Data with Open Street Map to Produce a Three-Dimensional Road Map Chenjing Ding, Xingqun Zhao School of Biological and Medical Engineering, Southeast University, Nanjing Jiangsu Received: Jun. 7th, 2019; accepted: Jun. 21st, 2019; published: Jun. 28th, 2019 Abstract With the continuous development of computer technology, the method to acquire spatial data has updated rapidly. Three-dimensional digital map attracts so much attention to be developed. Gene-rating a three-dimensional digital map requires a basic map. Because the Open Street Map (OSM) is open-source and free, it has received widespread attention. However, the height information of the road is very sparse in the OSM, and the mean square error is higher than 5 meters, which makes more and more researchers focus on the generation of high-precision three-dimensional maps. Due to the Light Detection and Ranging (LiDAR) point cloud’s high-precision characteristics whose average square error is about 20 cm, it can extend the OSM to generate high-precision 3D maps. This paper studies the method of OSM combined with LiDAR point cloud to generate a three-dimensional digital map. Due to the sampling characteristics of the airborne LiDAR used in the overhead view, the oc-cluded area cannot be sampled. The method proposed in this paper can solve the challenge of occlu-sion. It is composed of 3 main parts: 1) dealing with indoor area; 2) handling with outdoor area; 3) applied Weighted Hough Transform (WHT) for recalculation. The main steps for dealing with indoor area are as follows: 1) The three-dimensional road surface is projected into a two-dimensional line by orthogonal projection. 2) To find a set of road candidate points, the line is fitted by Hough Transform (HT). 3) Random Sampling the Uniform Sample Consensus (RANSAC) combined with the least squares method (LSM) is used to fit the road plane according to the obtained set of candidate points. This pa-per proposes a method for estimating the height of an indoor road using the height of the associated outdoor channel which is added up with different weights according to their projection distance. For the road with abnormal slope, the Weighted Hough Transform (WHT) is used for recalculation. This paper uses the airborne lidar point cloud (root mean square error is about 20 cm) provided by the municipal government of Cologne, Germany, to establish a three-dimensional road map for the city of Aachen. The results show that compared with the Ordering Points to Identify The Clustering Structure (OPTICS) algorithm, PHT successfully predicts 87% of the scenarios, which is greater than the 13% success rate of the OPTICS algorithm. In conclusion, the accuracy of the PHT algorithm is higher. In addition, PHT is more robust to the occlusion problem, change of point cloud density and the interfe-rence of noise points. Keywords 3D Reconstruction, Lidar, Hough Transform, 3D Map

机载激光雷达数据处理流程

机载激光雷达数据处理 编制:深圳飞马机器人科技有限公司版本号:V0.1 日期:2019-3-22

版权声明 本文档版权由深圳飞马机器人科技有限公司所有。任何形式的拷贝或部分拷贝都是不允许的,除非是出于有保护的评价目的。 本文档由深圳飞马机器人科技有限公司提供。此信息只用于软件业务项目管理的成员或咨询专家。特别指出的是,本文档的内容在没有得到深圳飞马机器人科技有限公书面允许的情况下不能把全部或部分泄露给任何其它单位。

目录 机载激光雷达数据处理 (1) 1.概述 (5) 2.软件准备 (5) 3.数据整理 (6) 3.1.GPS数据 (6) 3.2.LIDAR原始数据 (7) 3.3.影像数据...........................................错误!未定义书签。 3.4.数据整理与存放..............................错误!未定义书签。 4.差分解算 (7) 4.1.GPS数据格式转换 (7) 4.2.影像POS数据处理..........................错误!未定义书签。 4.3.点云轨迹解算 (10) 5.影像数据处理..............................................错误!未定义书签。 6.点云数据预处理 (26) 6.1.新建项目 (26) 6.2.点云解算 (30) 6.3.数据检核 (31) 6.4.特征提取 (33) 6.5.航带平差 (34) 6.6.点云赋色 (35)

6.7.坐标转换 (36) 6.8.点云标准格式(LAS)导出 (38) 7.点云数据后处理 (39) 7.1.数据分块 (39) 7.2.噪声点滤除 (40) 7.3.分类编辑 (41) 7.4.DEM输出 (44) 7.5.EPS采集DLG (45) 7.6.基于点云采集DLG (51) 8.成果精度检查与汇交 (57) 8.1.点云精度检查 (58) 8.2.成果提交(只列出点云成果,不含影像) (58)

如何制作雷达图mac

如何制作雷达图mac 导语: 说到雷达图,可能很多办公人士第一反应就是用Excel。Excel拥有强大的制图功能,能很好的满足我们平时处理数据的需求。但是想要在Excel中绘制出好看的雷达图并非一件易事,尤其是对于初出职场的人来说,将数据转成雷达图已经不易,更何谈美观度?其实,对于很多Mac电脑的新手来说,想要画好雷达图也不难,文本将带你详细了解一下! 免费获取商务图表软件:https://www.360docs.net/doc/d49681203.html,/businessform/ 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 一款软件助你轻松绘制雷达图、蜘蛛图

亿图图示专家可以轻松绘制相关图表,软件为用户提供多个雷达图(蜘蛛图)的模板,只需改变数据值,软件便能自动更新雷达图(蜘蛛图)的状态。亿图软件不仅能帮助用户创建普通雷达图,还可以创建面积雷达图、百分比雷达图、极性图等。 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。

从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

基于三维激光雷达技术的大比例尺地形图解决方案

基于三维激光雷达技术的大比例尺地形图解决方案 一激光雷达技术 1.1 综述 激光雷达测量技术(LiDAR)是当今测绘业界先进的遥感测量手段,是继GPS空间定位系统之后又一项测绘技术新突破。自20世纪60年代末世界第一部激光雷达诞生以来,激光雷达技术作为一种重要的航空遥感技术,与成像光谱、成像雷达共同被誉为对地观测三大核心技术。迄今为止,激光雷达的研究与应用均取得了相当大的进展,已成为航空遥感领域主流之一,其应用已超出传统测量、遥感以及近景测量所覆盖的范围,成为一种独特的数据获取方式。LIDAR技术具有高精度、高分辨率、高自动化且高效率的优势,集激光扫描、全球定位系统和惯性导航系统技术于一身,同时配备高分辨率数码相机,可实现对目标的同步测量,生成高密度激光点云数据,已成为世界各国进行大面积地表数据采集的重要主流与趋势。与传统摄影测量技术相比,激光雷达技术生成三维信息更快、更准确,特别能穿透地表覆盖的森林植被快速获取地形信息的能力,具有其他技术无可比拟的优势。采用激光雷达技术获取地面及其覆盖物(植被、电力线等)的精确三维坐标,生成高精度地形信息,可作为土地利用、工程建设规划、城市管理、河海地形、水库大坝、山坡检测、防灾、矿业、农业、林业、公共管理等方面数字化、自动化等应用基础。 1.2 激光雷达技术基本原理 激光雷达是一种有效的主动遥感技术,通过发射激光脉冲及精准的量测回波所经过的时间计算传感器与目标物之间的距离,再结合飞行器姿态信息、位置信息进行相关解算和坐

标转换可以得到高精度的三维数据。机载激光雷达系统主要由飞行平台、激光测距系统、全球定位系统(GPS)、惯性导航系统(INS)以及相关的控制存储单元组成。 激光测距系统是激光雷达的核心组成部分,通过发射、接收激光信号可以精确测量发射器和目标物的距离。激光测距一般采用方式:脉冲测距和连续波的相位差测距。连续波激光器市场上较为少见,因此现有的激光雷达系统多采用脉冲测距的方式。通过激光器发射一束窄脉冲,与目标物接触后产生反射,并通过接收器接收回波信号。由于脉冲的速度已知(光速),接收器可以精确测量脉冲发射到接收到反射信号的时间,从而获得目标物与激光器的距离,其测量精度常常可以达到毫米级。 随着激光雷达技术的发展,激光雷达的飞行平台可以根据需要和实际作业条件进行多种选择,目前常见的搭载平台有小型飞机、固定翼飞机、直升飞机、无人机、动力三角翼、无人飞艇等。 激光雷达系统工作原

雷达图数据如何更改

雷达图数据如何更改 导语: 雷达图是一种有效的数据展示图表,它能够清晰的展示数据,让关系繁杂的数据变得一目了然,数据趋势变得明显,数据内在关系变得明确。那么,如何修改雷达图的数据,如何绘制出让领导满意,让同事羡慕的雷达图呢? 免费获取商务图表软件:https://www.360docs.net/doc/d49681203.html,/businessform/ 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 一款软件助你轻松绘制雷达图、蜘蛛图 亿图图示专家可以轻松绘制相关图表,软件为用户提供多个雷达图(蜘蛛图)的模板,只需改变数据值,软件便能自动更新雷达图(蜘蛛图)的状态。亿图软

件不仅能帮助用户创建普通雷达图,还可以创建面积雷达图、百分比雷达图、极性图等。 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。

从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

雷达图怎么做好看

雷达图怎么做好看 导语: 对比一些枯燥的Excel表格数据,言简意赅的雷达图要更受欢迎。作为职场人,如何将Excel的数据更好的展示出来,也是职场中必备的一项技能!如果你也在为此感到困扰,不妨跟着小编了解一下,别人家精美专业的雷达图是怎么做出来的! 免费获取商务图表软件:https://www.360docs.net/doc/d49681203.html,/businessform/ 雷达图如果是手工绘制,是非常麻烦的,不过可以用软件制图。在制作雷达图时,需要将各项数据,按重要程度集中画在一个圆形的图表中,来展示一个其中的比率情况,读表者可以快速获取到有效信息。 一款软件助你轻松绘制雷达图、蜘蛛图 亿图图示专家可以轻松绘制相关图表,软件为用户提供多个雷达图(蜘蛛图)的模板,只需改变数据值,软件便能自动更新雷达图(蜘蛛图)的状态。亿图软

件不仅能帮助用户创建普通雷达图,还可以创建面积雷达图、百分比雷达图、极性图等。 创建雷达图 打开亿图图示软件,选择“新建”——“图表”——“蜘蛛(雷达)图”——“创建”,即可开启画布。

操作界面左侧为符号库,使用者可以从这里,选择合适的雷达图模板,添加至画布中。根据不同的展示场景,雷达图可分为普通雷达图、面积雷达图、百分比雷达图、极性图。本文以普通雷达图为例,介绍基本的操作技巧。

从文件加载数据 亿图图示软件支持用户从本地导入数据,一键生成雷达图。具体的操作方法如下: 1、启动文本模板:另外创建一个空白画布,将符号库中的“如何使用”拖动至画布。

选择复制“example 1”或“example 2”中的文本内容。 2、编辑数据:在电脑本地新建txt记事本,将上文所复制的文本内容,粘贴在txt记事本里。根据模板,进行自定义修改。第一行是类别的名称,从左到右,依次填写。第二行至第n行是系别,第一列为系别名称,其它列为数据。每个数据之间需要用逗号隔开,避免导入出错。

激光雷达出图数据介绍

激光雷达出图数据介绍 本文介绍的是能够从MPL或者是miniMPL上得到的探测数据信息,以及这些信息的重要性。下面将逐步解说激光雷达,解释软件每一项设置和每一组出图的意义。 1 打开历史数据 本文所示抽样数据是一台MPL仪器在2010年10月9日周末期间的监测数据。 打开电脑SigmaMPL软件,点击File-Open文件选项,导航到存储数据的文件夹,MPL激光雷达所有可用的数据就会按照日期和时间的顺序被显示在右边的Open Files对话框里面,如图1所示。 在图1界面左下角是关于数据文件选择的一些信息,如积分时间、分辨率、打开数据所需内存以及可用内存等信息。关于需求内存和可用内存的信息在我们打开数据量大的信息时是非常重要的,一定要使所需求的内存小于可用内存,从而避免系统崩溃。如果我们需要打开一周或者是一个月的数据,需求的内存很可能大于可用内存,SIGMA公司的MPL软件提供了down-sampling选项,在图1右下方所示。down-sampling选项可以让用户选择平均时间较长、空间分辨率粗糙或集中在一小段范围内的数据,这种方式可以减少数据对内存的需求。 图1 Open Files对话框

2 数据介绍 2.1 原始数据 根据打开的文件,你看到的第一组数据是原始数据、R2修正数据和SNR(信噪比)数据。在图2里面,X轴是UTC时间,Y轴指示的是地面高度范围。返回的信号用人工的彩色显示来标注,它的颜色条在右侧。原始数据包含我们所得到的所有信息但不是很直观的。进一步加工之前必须将有用信息提取出来。我们看到三个蓝带,代表白天。 图2 原始数据 2.2 SNR信噪比数据 我们从原始数据里面就可以直接得到信噪比,SNR决定了我们数据的质量和可靠性。图3和图4展示了用不同颜色条设置来显示用人工彩色显示SNR。当SNR很高的时候(SNR>=10),Mini MPL的检测范围在白天使5km,在晚上是9km范围内。当平均SNR(SNR>=1)足够的时候,Mini MPL的检测范围在白天是9km,在晚上是14km。作为比较,在一个晴天,一个标准的MPL可以检测范围达到白天15km,晚上24km的范围。 图3 SNR的极限值为10

相关文档
最新文档