湿度温度气压之间的关系

湿度温度气压之间的关系
湿度温度气压之间的关系

大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不易说清,笔者认为,这个问题可归结为温度、湿度与大气压强的关系问题.今谈谈自己的初步认识.我们通常所称的大气,就是包围在地球周围的整个空气层.它除了含有氮气、氧气及二氧化碳等多种气体外,还含有水汽和尘埃.我们把含水汽很少(即湿度小)的空气称“干空气”,而把含水汽较多(即湿度大)的空气称“湿空气”.不要以为“干”的东西一定比“湿”的东西轻.其实,干空气的分子量是 28.966,而水汽的分子量是18.016,故干空气分子要比水汽分子重.在相同状况下,干空气的密度也比水汽的密度大.水汽的密度仅为干空气密度的 62%左右.

应当说,由于大气处于地球周围的一个开放空间,而不存在约束其运动范围的具体疆界,这就使它跟处于密闭容器中的气体不同.对一个盛有空气的密闭容器来说,只要容器中气体未达到饱和状态,那么,当我们向容器中输入水汽的时候,气体的压强必然会增加.而大气的情况则不然.当因自然因素或人为因素使某区域中的大气湿度增大时,则该区域中的“湿空气”分子(包括空气分子和水汽分子)必然要向周围地区扩散.其结果将导致该区域大气中的“干空气”含量比周围地区小,而水汽含量又比周围地区大.这犹如在大豆中掺入棉籽时其混合体密度要小于大豆密度一样,所以该区域的湿空气密度也就小于其它地区的干空气密度.这样,对该区域的一个单位底面积的气柱而言,其重量也就小于其它干空气地区同样的气柱这也就告诉我们,大气压随空气湿度的增大而减小.就阴天与晴天而言,实际上也就是阴天的空气湿度比晴天要大,因而阴天的大气压也就比晴天小.

我们知道,气体分子的“碰撞”是产生气体压强的根本原因.因而对大气压随空气湿度而变化的问题,我们也可以由此作出解释,根据气体分子运动的基本理论,气体分子的平均速率:

则气体分子的平均动量(仅考虑其大小)

由此可见,平均质量大的气体分子,其平均动量也大(有的文献①中所言:“干空气的平均速度也大于湿空气”,是不正确的).而对相同状况下的于空气与湿空气来说,由于于空气中的气体分子密度及分子的平均质量都比湿空气要大,且干空气分子的平均动量也比湿空气大,因而湿度小的干空气压强也就比湿度大的湿空气大.

当我们给盛有空气的密闭容器加热的时候,则其压强当然也会增大.而对大气来说情况就不同了.当某一区域的大气温度因某种因素而升高时,必将引起空气体积的膨胀,空气分子势必要向周围地区扩散.温度高,气体分子固然会运动得快些,这将成为促进压强增大的因素.但另一方面,随着温度的升高,气体分子便向周围扩散,则该区域内的气体分子数就要减少,从而形成一个促使压强减小的因素.而实际的情况乃是上述两种对立因素共同作用的结果.至于这两种因素中哪个起主要作用,我们不妨来看一看大陆及海洋上气压随气温变化的实际情况.我们说,夏季大陆上气温比海洋上高,由于大陆上的空气向海洋上扩散,而使大陆上的气压比海洋上低;冬季大陆气温比海洋上低,由于海洋上空气要向大陆上扩散,又使大陆上气压比海洋上高.而由此可见,在温度变化和分子扩散两个因素中,扩散起着主要的、决定性的作用.应当指出,这里所说的扩散,是指空气的横向流动.因为由空气的纵向流动并不能改变竖直气柱的重量(有的文献②把因温度而产生的气压变化说成是空气沉浮的结果,这是不妥的),因而也就不能改变大气的压强(对重力加速度g因高度变化而产生的影响完全可以忽

略).

由于地球上的大气总量是基本上恒定的.当一个地区的气温增加时,往往伴随着另一个地区温度的降低,这就为高温处的空气向低温处扩散带来了可能.而扩散的结果常常是高温处的气压比低温处低.当我们生活的北半球是接受太阳热量最多的盛夏时,南半球却是接受太阳热量最少的严冬.这时,由于北半球的空气要向南半球扩散而使北半球的气压较南半球要低.而由于大气总量基本不变,则此时北半球的气压就低于标准大气压,南半球的气压当然也就会高于标准大气压.同样,空气的反方向扩散又会使北半球冬季的气压高于标准大气压.因而,在北半球,冬季的大气压就会比夏季要高.当然,大气压的变化是很复杂的,但对中学课本上的说法作上述解释还是可以的

气体的压强跟温度的关系

三、气体的压强跟温度的关系 在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律 通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p -t 图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。 最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A 中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A 连在一起的水银压强计读出。但温度升高后,容器A 中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。 控制变量法 自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。 例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质 相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质, 图2-8 图2-7

气温与气压关系的分析

气温与气压关系的分析 高中地理中图版必修一第二章第一节“大气的热状况与大气运动”中的大气运动部分,先介绍了热力环流,然后介绍了三圈环流,它们都是教学的重点和难点。笔者发现,学生在学习这些内容时,非常容易陷入把气温和气压的关系理解为气温高的地方气压低、气温低的地方气压高的认识误区。 本文谈谈笔者破解学生这一认识误区的思考与做法,敬请读者批评指正。 一、热力环流中气温与气压的关系 热力环流是由于地面的冷热不均而引起的最简单的一种空气环流。其形成过程为:A地由于接受的太阳辐射量较多,空气受热膨胀上升,到高空积聚起来,使高空空气的密度增大,气压增高形成高压区(图1中的c处);B地接受的太阳辐射量较少,空气冷却收缩下沉,高空空气密度减小,气压下降形成低压区(图1中的d处)。于是,高空的空气便从气压高的c处流向气压低的d处。A地空气上升后,近地面空气密度减小,气压比B处近地面低,形成低压区;B地由于空气下沉,近地面空气密度增大形成高压区,于是,近地面的空气就从b处流向a处。过程详见图1。 经上述分析得知,A地近地面低压的形成和B地近地面高压的形成是由于两地受热不均造成的,可称之为热力因素形成的低压和高压,即热低压和冷高压。而A地高空高压是由于不断有气流从低空流入补充形成的,可称之为补偿气流;B地高空的低压是由于气流在垂直方向上不断下沉形成的,可称之为推动气流。无论是补偿气流还是推动气流其成因都与冷热气流不同,它们都是动力原因引起的,由此可以认为,c处相对于d处而言是热高压,而d处相对于c处而言是冷低压。而此时A、B两地等温线的凸向如图2所示。 对比图1和图2可以发现,此时A、B两地近地面等压线的凸向与等温线的凸向相反,而高空等压线的凸向与等温线的凸向则一致。 二、三圈环流中气压与气温关系的分析 教学中我们往往要从热力环流的角度入手分析三圈环流的形成。由于冷热不均和地转偏向力、摩擦力的存在,地球上便形成了不同的气压带和风带。具体如图3所示。 根据热力环流的原理分析我们得知,赤道低气压带和极地高气压带是由热力原因形成的热低压和冷高压;而副热带高气压带和副极地低气压带是由动力原因形成的热高压和冷低压。其等压线与等温线凸向的关系见表1。 表1:三圈环流中气压带成因、等压线与等温线凸向关系

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

标准大气的高度和气温、气压的关系

标准大气的高度和气温、气压的关系 工作中经常用到大气资料,总结如下 这里所说的标准大气指国际民航组织采用的“1964,ICAO标准大气”。在海拔32公里以下,它与“1976,U.S.标准大气”相同。近地面(32公里以下)大气气温的变化为: ---地面:气温的15.0℃,气压P=1013.25mb ---地面至海拔11公里的气温变化率:–6.5℃/公里 在11公里的界面上: 气温为–56.5℃气压P=226.32mb 海拔11—20公里的气温变化率:0.0℃/公里 海拔20—32公里的气温变化率:+1.0/公里 更详细的数据可以参考GJB365.1-87 《北半球标准大气(-2~80公里)》给出的大气参数。 气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的引力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、或使用百帕(hPa)作为单位。测量气压的仪器叫气压表。其它的常用单位分别是:巴(bar,1bar=100,000帕)和厘米水银柱(或称厘米汞柱)。在海平面的平均气压约为101.325千帕斯卡(76厘米水银柱),这个值也被称为标准大气压。另外,在化学计算中,气压的国际单位是“atm”。一个标准大气压即是1atm。1个标准大气压等于101325帕,1.01325巴,或者76厘米水银柱。 大气压会随着高度的提升而下降,其关系为每提高12米,大气压下降1mm-Hg(1毫米水银柱),或者每上升9米,大气压降低100Pa。 下图给出了-0.5-20kM的大气温度、密度、压力分布图。从图中可以看出温度在0-11km成线性关系,压力和温度在0-3km(甚至5km)都成线性关系。

大气压与温度的关系

大气压与温度的关系 大气压:和高度、湿度、温度的变化成反比--注意,这里说的是大气压,而非气压! 详细说明如下: 高度越高--空气越稀薄; 湿度越大--空气中的水分越多,尔水的分子量比空气的混合分子量小,水气的增加,等于稀释了空气; 温度越高--虽然增加了空气分子的对撞机会,但是空气迅速膨胀,对流,尔引起空气变得稀薄,其增加的对撞能量远小于空气变稀薄减小的对撞能量,自然空气压力减小。 有关常识如下: 定义: 1.亦称“大气压强”。重要的气象要素之一。由于地球周围大气的重力而产生的压强。其大小与高度、温度等条件有关。一般随高度的增大而减小。例如,高山上的大气压就比地面上的大气压小得多。 在水平方向上,大气压的差异引起空气的流动。 2.压强的一种单位。“标准大气压”的简称。科学上规定,把相当于760mm 高的水银柱(汞柱)产生的压强或1.01×十的五次方帕斯卡叫做1标准大气压,简称大气压。 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为大气压。在1643年意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒臵在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了。

这4厘米的空间无空气进入,是真空。托里拆利据此推断大气的压强就等于水银柱的长度。后来科学家们根据压强公式准确地算出了大气压在标准状态下为1.013×105Pa。由于当时的信息交流不畅意大利和法国对大气压实验研究结果并没有被全欧洲所熟知,所以在德国对大气压的早期研究是独立进行的。1654年奥托格里克在德国马德堡作了著名的马德堡半球实验,有力的验证了大气压强的存在,这让人们对大气压有了深刻的认识。在那个时期,奥托格里克还做了很多验证大气压存在且很大的实验,也正是在这一时候他第一次听到托里拆利早在11年前已测出了大气压。 标准大气压 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10的5次方帕斯卡=10.336米水柱。 标准大气压值及其变迁 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。 最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。 于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。测量大气压的仪器叫气压计。 为了确保标准大气压是一个定值,1954年第十届国际计量大会决议声明,规定标准大气压值为 1标准大气压=101325牛顿/米2,即为101325帕斯卡(Pa)大气压的变化温度、湿度与大气压强的关系 湿度越大大气压强越大 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不

干球温度、湿球温度湿度对比与联系

1?干球温度与湿球温度的定义 干球温度:暴露于空气中而又不受太阳直接照射的干球温度表上所读去的数值, 用普通温度及所测得的湿空气的正常温度。 湿球温度:是用湿球温度计在空气中测量出来的温度值, 湿球温度计和普通温度计一样, 只是在感温包上裹以脱脂纱布, 并将其下端浸在充水的小容器中, 以使纱布保持湿润。 在理 论上,湿球温度是在定压绝热条件下, 空气与谁直接接触达到稳定热湿平衡时的绝热饱和温 度,也称热力学湿球温度。 2?干球温度与湿球温度的对比 干球温度也就是空气的实际温度, 而湿球温度则不是,它是测得是纱布内部饱和空气温 度,也是水分温度。原因如下: 当空气为饱和空气时,则水与空气处于平衡,则不会出现上图 1和2那样的蒸发,纱 布内的饱和空气温度和外侧空气温度相等, 或者说当干球温度和湿球温度相等时, 空气为饱 和空气。 当空气为未饱和时,由于空气未饱和,则纱布上的水分要蒸发到空气中进行 1和2蒸发 过程,在蒸发过程中,需要吸热,如果水温比空气温度高,则蒸发吸热来自水分,随着蒸发 的进行,则水分温度降低,低于空气温度时,蒸发吸热来自空气和水分,水分温度降低,达 到一定程度时,(空气侧量大,这部分水分的蒸发对空气湿度影响较小, 对温度影响也很小, 忽略不计,认为空气定温定湿),当蒸发所需热量全部来自空气 (通过对流和换热方式) 时, 此时纱布内为饱和空气, 测得也是饱和空气温度, 也就是纱布水分的温度, 空气越干燥,蒸 发动力越大,所需热量阅读,则温差越大,相反,则温差较小,故此,湿度可以通过干湿球 温度测得,两者温差越大,相对湿度越小,就越是越干燥。 干湿温度测量湿度原理: 也就是 空气

压力与温度的关系

压力与温度的关系标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg= J/=287 J/(标准适用),摩尔R= J/ Vm=*10-3m3/mol 空气的 mol 空气的标准密度= m3 空气的标准比体积= m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT,

所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差,即 T(K)=t (℃)+,例如温度为100℃就是热力学温度为 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

大气压与天气的关系

大气压的变化与季节天气的关系 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不易说清,笔者认为,这个问题可归结为温度、湿度、空气流动与大气压强的关系问题.今谈谈自己的初步认识. 1.大气压与天气的关系:晴天大气压比阴天(雨天)大气压高 首先我们来分析:空气密度对大气压的影响。我们通常所称的大气,就是包围在地球周围的整个空气层.它除了含有氮气、氧气及二氧化碳等多种气体外,还含有水汽和尘埃.我们把含水汽很少(即湿度小)的空气称“干空气”,而把含水汽较多(即湿度大)的空气称“湿空气”.不要以为“干”的东西一定比“湿”的东西轻.其实,干空气的分子量是,而水汽的分子量是,故干空气分子要比水汽分子重.在相同状况下,干空气的密度也比水汽的密度大.在晴天的时候,空气中水分含量少,属于“干空气”,密度大,所以大气压比较高。阴天(雨天)的时候,空气中水分含量多,属于“湿空气”,密度反而小,所以大气压比较低。 此外,引起晴天大气压比较高另一个原因是:气流运动对大气压的影响。通常情况下,地面不断地向大气层进行长波有效辐射,同时大气也在不断地向地面进行逆辐射。晴天,地面的热量可以较为通畅地通过有效辐射和对流气层的向上辐散运动向外输运。阴天时,云层覆盖在大气层上方,减少了对流层大气向外的辐散运动。云层这种保存地表和对液层热量的作用称为“温室效应”。这样,阴天地区的大气膨胀就比较厉害,从而导致阴天地区的大气横向(水平)向外扩散,使得阴天地区的空气向外流动,当然阴天地区的密度也就会减小,从而导致阴天的大气压比晴天的大气压低。 大气压和天气的关系 气压跟天气有密切的关系。一般地说,地面上高气压的地区往往是晴天,地面上低气压的地区往往是阴雨天。这里所说的高气压和低气压是相对的,不是指大气压的绝对值。某地区的气压比周围地区的气压高,就叫做高气压地区;某地区的气压比周围地区的气压低,就叫做低气压地区。 在同一水平面上,如果气压分布不均匀,空气就要从高气压地区向低气压地区流动。因此某地区的气压高,该地区的空气就在水平方向上向周围地区流出。高气压地区上方的空气就要下降。由于大气压随高度的减小而增大,所以高处空气下降时,它所受到的压强增大,它的体积减小,温度升高,空气中的凝结物就蒸发消散。所以,高气压中心地区不利于云雨的形成,常常是晴天。如果某地区的气压低,周围地区的空气就在水平方向上向该地区流入,结果使该地区的空气上升,上升的空气因所受的压强减小而膨胀,温度降低,空气中的水汽凝结,所以,低气压中心地区常常是阴雨天。 由于气压跟天气有密切的关系,所以各气象哨所每天都按统一规定的时刻观测当地的大气压,报告给气象中心,作为天气预报的依据之一。 2.大气压与季节的关系:冬天的气压比夏天高 ' 空气温度的变化是引起气压变化的一个很重要的原因。当空气冷却时,空气收缩,密度增大,单位面积上承受的空气柱重量增加,气压也就升高。因此,冷空气一到,总是伴随着气压的升高;而在暖空气来临的同时,气压常常降低。冬天是冷空气的世界,夏季则是暖空气的天地,气压冬高夏低的道理也就很清楚了。需要注意的是,由于空气的密度是随高度的上升而减小的,所以,通常讲气压的高低,都是在同一海拔高度的层面上来做比较的,—般用的最多的是海平面气压。

温湿度变化与菲林稳定性关系表

Dimensional stability table (尺寸稳定表) (计算仅适用于相对湿度在30-70%间)与相对湿度低于30%或高于70% irreversable 尺寸变动发生 参考温度Reference temperature:25°C You may over rule the referention temperature Reference relative humidity:53% RH You may over rule the referention relative humidity 菲林长度Film length: 660mm Fill out the film length at reference conditions 温度膨胀系数 Temperature expansion coefficient:18μm/m °C Default value for silver halide film Relative humidity expansion coefficient: 11μm/m %RH Fill out the correct relative humidity expansion coefficient 相对湿度膨胀系数 The RH coefficient is a value between 9 and 14 μm/m %RH, depending on: Direction of the base material (length or square to the production direction)Centre or board part of the base material RH range Before or after processing Blackness Dimensional change, AFTER FULL ACCLIMATISATION , expressed in μm Remark: the calculations only applies to relative humidities between 30 and 70%With relative humidities lower than 30 % or higher than 70 % irreversable dimensional changes occur a b R H % 参考相对湿度

压力与温度的关系

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg=0.287 J/g.k=287 J/kg.k(标准适用),摩尔R=8.314411 J/mol.k Vm=22.41383*10-3m3/mol 空气的28.97g/ mol 空气的标准密度= 1.294kg/m3 空气的标准比体积= 0.7737 m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT, 所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差273.15,即T (K)=t(℃)+273.15,例如温度为100℃就是热力学温度为373.15K 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。 1

相对湿度

在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。

凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式 计算相对湿度可按照下述公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克 湿空气 大气中的空气总含有水蒸气,通常称为湿空气。在许多工程实际中都要利用湿空气,它所含的水蒸气量虽不多,却显得特别重要。由于水蒸气的性质不同于气体,而有其本身的特殊性,因此本章专题讨论湿空气的基本知识。

大气压的变化跟天气有密切的关系

大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不易说清,笔者认为,这个问题可归结为温度、湿度与大气压强的关系问题.今谈谈自己的初步认识.我们通常所称的大气,就是包围在地球周围的整个空气层.它除了含有氮气、氧气及二氧化碳等多种气体外,还含有水汽和尘埃.我们把含水汽很少(即湿度小)的空气称“干空气”,而把含水汽较多(即湿度大)的空气称“湿空气”.不要以为“干”的东西一定比“湿”的东西轻.其实,干空气的分子量是28.966,而水汽的分子量是18.016,故干空气分子要比水汽分子重.在相同状况下,干空气的密度也比水汽的密度大.水汽的密度仅为干空气密度的62%左右. 应当说,由于大气处于地球周围的一个开放空间,而不存在约束其运动范围的具体疆界,这就使它跟处于密闭容器中的气体不同.对一个盛有空气的密闭容器来说,只要容器中气体未达到饱和状态,那么,当我们向容器中输入水汽的时候,气体的压强必然会增加.而大气的情况则不然.当因自然因素或人为因素使某区域中的大气湿度增大时,则该区域中的“湿空气”分子(包括空气分子和水汽分子)必然要向周围地区扩散.其结果将导致该区域大气中的“干空气”含量比周围地区小,而水汽含量又比周围地区大.这犹如在大豆中掺入棉籽时其混合体密度要小于大豆密度一样,所以该区域的湿空气密度也就小于其它地区的干空气密度.这样,对该区域的一个单位底面积的气柱而言,其重量也就小于其它干空气地区同样的气柱这也就告诉我们,大气压随空气湿度的增大而减小.就阴天与晴天而言,实际上也就是阴天的空气湿度比晴天要大,因而阴天的大气压也就比晴天小. 冬天气压大.通常情况下,地面不断地向大气中进行长波有效辐射,同时大气也在不断地向地面进行逆辐射。晴天,地面的热量可以较为通畅地通过有效辐射和对流气层的向上辐散运动向外输运。阴天时,云层减少了对流层大气向外的辐散运动。云层这种保存地表和对液层热量的作用称为“温室效应”。这样,阴天地区的大气膨胀就比较厉害,从而导致阴天地区的大气横向向外扩散,使空气的密度减小,同时阴天地区大气的湿度比较大,也使大气的密度减小。因这两个因素的影响,从而导致阴天的大气压比晴天的大气压低。同一地区,在一年之中的不同时间其大气压的值也有所不同。这叫大气压的年变化。大气压的年变化,具体

温湿度知识

温湿度知识(了解即可) 湿度 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,%rh表示。总 言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水 蒸气压)的百分比。 湿度测量的历史 湿度和温度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。湿度计测的历史可 以追溯到中国的天秤型(公元前179年)为最早的湿度计测。(温度计测可追溯到记载的希腊时代的温 度计。) 绝对湿度(Absolute humidity) 单位体积(1m3)的气体中含有水蒸气的质量(g)。 表示∶D=g/m3 但是,即使水蒸气量相同,由于温度和压力的变化气体体积也要发生变化,即绝对湿度D发生变化。D为容积基准。相对湿度(Relative humidity) 气体中的水蒸气压(e)与其气体的饱和水蒸气压(es)的比/用百分比表示。 表示∶rh=e/es×100% 但是,温度和压力的变化导致饱和水蒸气压的变化,rh也将随之而变化。 饱和水蒸气压(Saturation Vapor Pressure) 气体中所含水蒸气的量是有限度的,达到限度的状态即可称之为饱和,此时的水蒸气压即称为饱和水蒸气压。此物

理量亦随着温度,压力的变化而变化,并且,0℃以下即使同一湿度,与水共存的饱和水蒸气压(esw)和与冰共存的饱和水蒸气压(esi)的值不同,通常所采用的是与水共存的饱和水蒸气压(esw)。各温度对应的饱和水蒸气压表JIS-Z-8806在卷末记载。 露点(Dew Point) 温度较高的气体其所含水蒸气也较多,将此气冷却后,其所含水蒸气的量即使不发生变化,相对湿度增加,当达到一定温度时相对rh达到100%饱和,此时,继续进行冷却的话,其中一部分的水蒸气将凝聚成露。此时的温度即为露点温度(Dew Point Temperature)。露点在0℃以下结冰时即为霜点(Frost Point)。 不快指数"THI "(temperature humidity index) 不快指数这一术语,流行于表示居住环境,始用于1959年美国气象局。表示为:THI=(乾球温度td+湿球温度tw)×0.72+40.6,此数据70~75为半数不快,80以上基本上为全员不快,最近,市场上有不快指数计在得以销售。 实效温度(Effective Temperature) 不快指数是人体可感知的指数的简易表示方式,随着最近空气调和技术的发展,温度,湿度以外,又导入了风速等人间可感知的项目,从而创造了这个术语。与不快指数的差异不大,其变化较为接近。 等价温度(Equivalent-Warmth) 包含实效温度的要素(温度,湿度,气流)以及辐射等4要素的术语。 混合比"X"(humidity mixing ratio) 对于1kg水蒸气以下的空气(干燥空气),包含Xkg比例的水蒸气,其质量的比例X(kg/kg)为混合比,即使温度压

气温与气压的关系解析

☆专题5 气温与气压的关系 一、热力原因形成的热低压、冷高压 热低压和冷高压都是由于热力原因形成的气压关系。地表的冷热不均是引起气压高低变化的重要原因。 1.热低压:热低压是气温和气压的双重表现,二者具有相关性,“由于热而形成低压”。 如下图1 为热力环流简图,近地面A点附近气体受热膨胀上升,使得近地面空气密度变小,近地面形成低气压。这就是由于热力原因形成的“低气压”。赤道低气压带是最典型的热低压带。北半球夏季,由于陆地和海洋热容量不同,陆地增温快降温也快,因此同纬度的地方陆地比海洋温度要高,在陆地形成了热低压,在亚欧大陆上形成了亚洲低压(印度低压),在北美大陆形成北美低压。我国夏季午后(14 点)“闷热”,多对流雨,就是热低压造成。 2.冷高压:冷高压是指近地面受热少气温低,气体冷却收缩下沉,在近地面空气分子大量集聚,在同一水平面上空气密度增大,气压升高。如热力环流图中的B 点。在三圈环流模式图中,极地高气压带便是典型的冷高压,极地气温低,高空气体下沉。冬季北半球蒙古、西伯利亚一带由于气温低而形成亚洲高压,在这个高压的影响下,我国北方冬季呈现“干压表现为气温与气流的因果关系。其垂直方向的气流可认为是冷热气流。其形成要与气旋、反气旋(气流分布状况)区别开来。气旋的中心气压是低气压,受水平气压梯度力的影响,大气由四周向中心流,中心气体大量集聚,因而垂直方向上形成上升气流,可称之为推动气流。与这相反,反气旋中心是高压,中心气体往四周流,其中心垂直方向上气流下沉补充,可称之为补偿气流。无论是推动气流还是补偿气流其成因都与冷热气流不同,它们都是动力原因引起的。 二、动力原因形成的热高压、冷低压 副热带高气压带(热高压)和副极地低气压带(冷低压)是由于动力原因形成的气压带。1.热高压:如图2,南北纬30°的副热带高气压带就是典型的热高压。热是指纬度低,高压是指气体集聚,二者之间没有因果联系,如果有,可以这样认为高压加剧了“热”。北半球来自赤道上空的源源不断的气流向极地运动,在地转偏向力的作用下(无摩擦力),逐渐偏转为西风,气流在南北纬30°的上空集聚,最后下沉在近地面形成了副热带高气压带,在副高的控制下世界上一些地区形成了热带沙漠气候,终年炎热干燥,如非洲的撒哈拉沙漠、澳大利亚大沙漠等。我国7、8 月份当锋面雨带移动到东北、华北地区,长江流域由于受到副高的控制形成了伏旱天气,持续高温不降,可谓“真热”! 2.冷低压:如图2,在南北纬60°,因地处高纬,气候非常寒冷,近地面来自低纬的暖热气流与来自极地冷气流在此相遇,气体辐合上升,在高空形成高气压,近地面则形成低压,即副极地低气压带。

最新温度和湿度的关系

温湿度关系 温湿度关系temperature-humidity rela-tion 和温度-雨量关系(temperature-rainfall relation)一样,是表示干燥气候或湿润气候的关系。因湿度与蒸发或蒸腾直接有关系,所以对生物的水分平衡的意义比降雨量更为重要。通常以横轴表示湿度,纵轴表示温度制成的图,此称为温湿图. 温度和湿度的关系 为什么在人工气候箱内将温度设定为55度时,相对湿度达不到最高值95%只有75%;将温度调低到40多度时,湿度就就能到最高值 满意回答 温度,是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。 湿度,也称为“相对湿度”,是指大气中的水蒸汽含量,用空气可以包含的最多水蒸气的百分比来表示。这个含量随着温度而变化,暖空气可以含有更多的水蒸气,而冷空气包含的更少。完全干燥的空气不包含水蒸气,其相对湿度为0%,而饱和的空气则不能再吸收更多的水蒸汽,其相对湿度为100%。 温度和湿度两者不是一个概念,所以,在人工气候箱内将温度设定为55度时,相对湿度达不到最高值95%只有75%;将温度调低到40多度时,湿度就就能到最高值。 初中语文基本语法知识(词性和句子成分) 【名词】是表示人或事物名称的词。 名词可分为: 1.个体名词,又叫可数名词。如:(一本)书、(三朵)花、(五条)河。 2.集合名词,不能加个体量词,与集合量词或不定量词"对,批,部分,些"等搭配,如:(一对)夫妇、(一部分)船只、(一些)车辆。 3.专有名词,如:北京、天安门、孔子、长江。 4.时间名词,如:春天、上午、现在、立春、星期二、刚才。处所名词,如:颐和园、商店、亚洲、北京、中国。方位词,如:东、西、上、里、前、内。

3气温与气压的关系

☆专题3 气温与气压的关系 一、热力原因形成的热低压、冷高压 热低压和冷高压都是由于热力原因形成的气压关系。地表的冷热不均是引起气压高低变化的重要原因。 1.热低压:热低压是气温和气压的双重表现,二者具有相关性,“由于热而形 成低压”。 如下图1 为热力环流简图,近地面A点附近气体受热膨胀上升,使得近地面空气密度变小,近地面形成低气压。这就是由于热力原因形成的“低气压”。赤道低气压带是最典型的热低压带。北半球夏季,由于陆地和海洋热容量不同,陆地增温快降温也快,因此同纬度的地方陆地比海洋温度要高,在陆地形成了热低压,在亚欧大陆上形成了亚洲低压(印度低压),在北美大陆形成北美低压。我国夏季午后(14 点)“闷热”,多对流雨,就是热低压造成。 2.冷高压:冷高压是指近地面受热少气温低,气体冷却收缩下沉,在近地面空气分子大量集聚,在同一水平面上空气密度增大,气压升高。如热力环流图中的B 点。在三圈环流模式图中,极地高气压带便是典型的冷高压,极地气温低,高空气体下沉。冬季北半球蒙古、西伯利亚一带由于气温低而形成亚洲高压,在这个高压的影响下,我国北方冬季呈现“干压表现为气温与气流的因果关系。其垂直方向的气流可认为是冷热气流。其形成要与气旋、反气旋(气流分布状况)区别开来。气旋的中心气压是低气压,受水平气压梯度力的影响,大气由四周向中心流,中心气体大量集聚,因而垂直方向上形成上升气流,可称之为推动气流。与这相反,反气旋中心是高压,中心气体往四周流,其中心垂直方向上气流下沉补充,可称之为补偿气流。无论是推动气流还是补偿气流其成因都与冷热气流不同,它们都是动力原因引起的。 二、动力原因形成的热高压、冷低压 副热带高气压带(热高压)和副极地低气压带(冷低压)是由于动力原因形成的气压带。 1.热高压:如图2,南北纬30°的副热带高气压带就是典型的热高压。热是指纬度低,高压是指气体集聚,二者之间没有因果联系,如果有,可以这样认为高压加剧了“热”。北半球来自赤道上空的源源不断的气流向极地运动,在地转偏向力的作用下(无摩擦力),逐渐偏转为西风,气流在南北纬30°的上空集聚,最后下沉在近地面形成了副热带高气压带,在副高的控制下世界上一些地区形成

温度和湿度基础知识

第4节温度和湿度基础知识 学习目标 掌握温度和湿度及其相关概念 了解温度与湿度的关系 理解温度和湿度变化规律和干湿球温度计的测湿原理 能够正确设置、使用干湿球温度计和应用《温度和湿度查对表》知识要求 不同的商品,它们的性能也不一致。有的怕潮,有的怕干,有的怕热,有的怕冻。例如,食糖、食盐潮解融化;奶粉、漂白粉受潮结块;金属受潮锈蚀;闷热、潮湿的空气,容易引起动植物商品生霉、生虫;而空气过分干燥,又会引起肥皂干缩,皮革、竹木制品干裂等。温度过高或过低,也会引起某些商品质量的变化,例如,蜡质品遇热发黏或熔化;医药针剂、 福尔马林、墨水等受冻则聚合沉淀等。影响仓储商品变化的外界因素很多,其中最主要的是 仓库的温度和湿度。商品发生质量变化,几乎都与空气的温度、湿度有密切的关系。 各种商品,一般都具有与大气相适应的性能。按其内在的特性,又都要求有一个适宜的 温度、湿度范围。而库内温度、湿度的变化,直接收到库外自然气候变化的影响。因此,我们不但要熟悉各种商品的特性,还必须了解自然气候变化的规律,以及气候对不同仓库温度、 湿度的影响,以便积极采取措施,适当第控制与调节库内的温度、湿度,创造适宜商品储存 的温度、湿度条件,确保商品质量安全。 一、空气温度及变化规律 1?空气温度 空气温度是指空气的冷热程度,简称气温。空气中热量的来源,主要是由太阳通过光辐 射把热量传到地面,地面又把热量传到近地面的空气中。因为空气的导热性很小,所以,距 地面越近气温越高,距地面越远气温越低。 气温是用温度来测定的。衡量空气温度高低的尺度成为温标。常用的温标有摄氏温标和 华氏温标两种,都以水沸腾时的温度(沸点)与水结冰时的温度(冰点)作为基准点。 摄氏温标的结冰点为0 C,沸点为100C,中间分成100等份,每一份为1摄氏度,摄氏度用符号“C”来表示。 华氏温标的结冰点为32 T,沸点为212 °F,中间分成180等份,每一等份为1华氏度,华氏度用符号“T”来表示。 在仓库哭日常温度管理中,我国规定采用摄氏度表示,凡0C以下度数,在度数前加负 号“―”。 摄氏温标和华氏温标可以互相换算,其公式如下: t1=5/9(t2-32) 式中t1――摄氏度度数,C t2――华氏度度数,F 2?空气温度的变化规律 空气的温度处于经常的、不断的运动变化中。它的变化有周期性变化和非周期性变化两种类型。周期性变化又有日变化和年变化。 (1)气温的日变化。气温的日变化是指一昼夜间气温的变化。一日之中,日出前温度最低,因为在夜间,地面得不到太阳的照射,加上不断地散热,温度下降。日出以后,由于太阳照射地面,地面吸收的热量多于散失的热量,使地面的温度不断升高,空气的温度也随 之逐渐升高,通常在午后 2 —3时,温度上升较快,从午后到黄昏,温度下降较慢,夜间到次日日出,温度下降较快。一日内气温变化最快的时间是上午8—10时,其次是午后6—8 时。 一天中气温的最高值和最低值的差叫做气温日较差。气温日较差的大小受纬度、季节、地形等因素的影响很

大气压与天气的关系

大气压与天气的关系 日照市岚山区黄墩镇初级中学范军华 大气压又称大气的压强。从空气分子运动观点出发,它是空气的分子运动与地球重力场两者综合作用的结果。在这综合的作用下,许多空气分子在每瞬时平均对单位面积的平面所施的撞击力就表现为气压。空气分子密度大的地方,也是空气分子平均动能大的地方,因此,撞击力就大,故气压也大。 当你收听无线电台的天气形势广播时,常听到“高气压”、“低气压”、“高压脊”、“低压槽”等词。这些词都是指的大气压在某一区域的分布类型,那么为什么大气压与天气预报有如此密切的关系呢? 地球表面上的风、云、雨、雪,万千气象,都跟大气运动有关系,而造成大气运动的动力就是大气压分布的不平衡和气压分布的经常变化。由于地球表面各处在太阳照射下受热情况不同,各地的空气温度就有较大差别。温度高的地方,空气膨胀上升,空气变得稀薄,气压就低;温度低的地方,空气收缩下沉、密度增大,气压就高。另外,大气流动也是造成气压不平衡和经常变化的重要因素。这样在地理情况千差万别的地球表面上空,就形成各种各样的气压分布类型,多种气压类型的组合就构成了一定的天气形势,而决定着未来的风云变幻。 气象工作者为何能根据各种气压类型来预报天气呢?这是因为事物间总是相互联系、互为因果的,而一定的气压类型往往导致一定的天气现象出现。例如,在高气压控制的区域,由于低处的空气不断从高压中心向外流散,上层空气就要下沉填补。空气在下沉过程中体积压缩(因大气压随高度的减小而增大),温度升高,原来空气中的细小水珠就会蒸发消散,不利于云雨的形成。因此高压中心附近地区常常是天气晴朗。 而在低气压控制的区域,低层空气是从周围流向低压中心,使低层空气堆积上升。空气在上升过程中体积膨胀,温度降低,空气中的水蒸汽凝结,易形成云雨。所以低气压中心附近往往是阴雨连绵。无怪乎有人把气压计称为晴雨表,是有一定道理的。当然这些规律都不是绝对的,天气的变化是受多种因素影响的。但是气象工作者只要掌握了大面积内(一般包括整个欧亚大陆)的气压类型的分布,结合考虑其他一些因素,就可对本地区的风向、晴雨等做出预报。

相关文档
最新文档