机制砂的特点及其对混凝土性能的影响_刘秀美

机制砂的特点及其对混凝土性能的影响_刘秀美
机制砂的特点及其对混凝土性能的影响_刘秀美

文章编号:1007-046X(2012)06-0036-03

生态建材

机制砂的特点及其对混凝土性能的影响

The characteristics of Machine-Made Sand and Its Influence on Concrete Performance

刘秀美,陶珍东

(济南大学材料科学与工程学院,山东 济南 250022)

摘 要: 以C40混凝土为例研究了机制砂的特点。通过不同砂率、石粉含量、颗粒级配、圆形度分别对混凝土的 坍落度、强度工作性能进行了试验研究,得出了砂率控制在 41%~42%、石粉含量控制在 7%~11% 的最 佳掺入比例。

关键词: 机制砂;发展;混凝土;性能

中图分类号:TU521 TU522.3+2 文献标志码:A

0 前 言

近年来,随着我国建筑行业的迅速发展,混凝土作为现代工程结构的主要材料,其用量逐年增加。每年仅建筑集料用量高达 70 多 亿 t [1]。随着天然砂的日益短缺和国家环保意识的加强,一些地区已经禁止开采河砂[2],因此砂源供需矛盾越来越突出,天然砂价格大幅上升。同时, 在利益驱使下,天然砂的掺杂问题也日益彰显,质量大大下降。在此背景下,机制砂(machine-made sand)的使用和推广成为一种必然趋势[3]。然而,当今人们对机制砂的认识和研究并不完整。

1 试验材料及配合比

(1)水泥:水泥性能见表 1。

36COAL ASH 6/2012

表 5 C40 混凝土配合比 kg/m 3

表 1 水泥

厂家 等级 0.08mm 方孔筛筛余/%初凝/min 终凝

/min 抗压强度/MPa 3 d 抗折强度/MPa 28 d 3 d 28 d 山东水

泥厂

P.O42.5

1.0

120

215 33.3

51.7

3.4

8.0

表 2 粉煤灰 %

(2)粉煤灰:粉煤灰性能见表 2。

厂家 0.045mm 方孔筛筛余 需水量比 烧失量 强度活性指标肥城石横电厂

12

102

2.3

78.4

表 3 碎石

(3)碎石:碎石性能见表 3。

产地公称粒级/mm 针片状颗粒含量/%

含泥量/%济南

5~25

7.5

0.3

(4)机制砂:试验测得相关参数见表 4。

表 4 机制砂参数

筛孔尺寸/mm 下颗粒级配筛余累计/%

细度模数

石粉含量/%

表观密度/kg .m -3

堆积密度/kg .m -3 空隙率/% 圆形度

机制砂Ⅰ 牌号 3.59(MB=3.0) 2 714 1 5500.45 0.87 机制砂Ⅱ

3.64(MB=1.2) 2 700 1 5810.41 0.91 机制砂Ⅲ

2.9

8(MB=0.13) 2 732

1 648

0.40

0.94

(5)配合比:经计算和试配得出 C40 混凝土配合比见表 5。

胶凝材料

水泥 矿粉 粉煤灰水 砂 石子 外加剂

347

88

45

175

677

1 058

14.4

2 机制砂的各参数对混凝土性能的影响2.1 砂率对混凝土性能的影响

本试验采用机制砂Ⅰ,不同砂率的混凝土性能见表 6 。

37

6/2012

粉煤灰

图 3 石粉含量对混凝土坍落度的影响

图 1 砂率对混凝土坍落度的影响

图 2 砂率对机制砂混凝土的 3 d 、28 d 强度影响表 7 不同石粉含量的混凝土坍落度及抗压强度情况

表 6 不同砂率的机制砂混凝土性能

编号砂率/% 坍落度/mm 工作性

3 d 抗压强度/MPa 28 d L01 40180稍泌水流动性差,坍损快21.

4 51.1 L02 42190流动性良好,包裹性差 21.

5 51.4 L03 43180流动性差,坍损快 22.

6 52.0 L04 44185良好,包裹性差 20.8 45.6 L05

45

180

流动性差,坍损快

23.6

46.6

砂率对混凝土坍落度、抗压强度的影响见图 1、图 2 。

178

180182184186188190192394041

4243444546砂率/%

坍落度/m

m

102030405060砂率/%

抗压强度/M P a

从图 1 可以看出,随着砂率的增加,混凝土的坍落度并没有明显可控的规律,砂率在 42% 时工作性能好;但是,总体上所有砂率下的混凝土工作性均不良好,这是因为该机制砂中含泥量较高,影响了外加剂的性能。

从图 2 可看出,随着砂率的增高,机制砂混凝土强度先增高后降低,强度上虽然差别不是很大,但还是有规律可循,基本上为先增后减。这规律符合理论原理,因为砂率增大,填充较完整,但是太大则降低了粗集料的骨架功能。图 2 表明砂率为 42% 时该机制砂混凝土的 3 d、28 d 强度最高。

图 1 与图 2 说明砂率控制在 41%~42% 时机制砂混凝土的工作性能比较好且强度符合要求。

2.2 石粉含量的影响

该试验采用机制砂 Ⅱ,砂率 41%,结果见表 7。 由表 7 作石粉含量对坍落度和混凝土抗压强度影响曲线见图 3、图 4。

编号 石粉含量/%

坍落度/mm 工作性 28 d 抗压强度/MPa S01 4 210 良好 47.1 S02 7 220 好 45.7 S03 10 220 好 53.2 S04 11 220 好 53.0 S05 12 210 稍黏稠 52.9 S06

15 200

稍黏稠

52.8

195

200205210215220225石粉含量/%

坍落度/m m

图 4 石粉含量对抗压强度的影响

图 5

机制砂级配曲线图

44

4648505254石粉含量/%

抗压强度/M P a

图 3 表明:混凝土的坍落度随石粉含量先增高后降低,即石粉含量对混凝土的工作性能有很大影响。图 4 表明:随石粉含量的增加强度增大,但并不会无限地增大,当石粉含量增加到 11% 时,强度基本不再增加。试验结果表明,控制机制砂的石粉含量在 7%~10% 时混凝土性能最好。

2.3 颗粒级配的影响

机制砂Ⅰ、Ⅱ、Ⅲ 级配曲线图见图 5。

20406080100

120 4.752.361.180.60.30.150

筛孔直径/mm

筛余累计/%

以机制砂Ⅰ为基础,调整级配按照 41% 的砂率、8% 的石粉含量进行试验,结果见表 8。

38COAL ASH 6/2012

图 6 圆形度测试结果

表 8 不同颗粒级配的机制砂混凝土

编号级配坍落度/mm

工作性28 d 强度/MPa M01 机制砂Ⅰ 190 稍差 47.1 M02 机制砂Ⅱ 210 良好 39.5 M03 机制砂Ⅲ220 良好(加水) 58.3 M04

Mx=2.8

220

和易性好,黏稠

49.6

注:Mx=2.8 的级配调整为 9.5 mm 至 0.15 mm 的筛余累计是(0 2 20 40 60 80 90)

表 9 机制砂圆形度对混凝土性能的影响

砂源 圆形度 坍落度/mm

工作性能 28 d 强度/MPa

机制砂Ⅲ 0.94 220 良好 60.6 机制砂Ⅱ 0.91 210 良好 45.7 机制砂Ⅰ

0.87

190

良好

41.3

很明显,圆形度越大,即机制砂颗粒越接近球形,混凝土的工作性能越好,抗压强度越高。

3 结 论

(1)与天然砂相比,机制砂的砂率可以适当增加,虽然每批机制砂各不相同,在保证机制砂混凝土的工作性和强度均能满足的同时,砂率均可控制在 41%~42%。 (2) 一直以来人们对石粉含量的限定范围都有不同的认识[4-6],主要是因为机制砂颗粒形貌和外加剂种类对混凝土性能的影响比较大,在保证混凝土的工作性和强度的情况下,对于搅拌站常用机制砂和外加剂的混凝土,机制砂石粉含量控制在 7%~11% 是最佳的;对于球性度良好或外加剂较好的,石粉含量的范围可以放宽。

(3) 不同的机制砂厂生产的机制砂有不同的级配,大部分为粗砂,直接用于混凝土搅拌是不可行的;当然如果颗粒形貌良好另外考虑。对于常见的球形度不好的机制砂,级配调整在细度模数 3.3~3.0 范围内较好。 (4)对机制砂混凝土影响最大的其实是机制砂的颗粒

9182736455463728190圆形度(数量)区间分布/%

(数量)累计分布/%

1020304050607080907142128354249566370圆形度(数量)区间分布/%

(数量)累计分布/

%

481216202428323640圆形度

(数量)区间分布/%

(数量)累计分布/%

0.2

0.40.60.8 1.0 1.2 1.4 1.6 1.8 2.0

9182736455463728190圆形度

(数量)区间分布/%

(数量)累计分布/%

(c) 机制砂Ⅱ

(b) 机制砂 Ⅰ(d) 机制砂 Ⅲ

从表 8 可以看出,机制砂的颗粒级配对混凝土的工作性和强度影响比较大,而且复杂。当级配如机制砂Ⅱ时,工作性能良好,但抗压强度很低。相比机制砂Ⅱ本身的试验分析,其原因可认为在调整机制砂Ⅰ的级配至Ⅱ时细颗粒增加、粗颗粒减少,但是由于Ⅰ的颗粒比Ⅱ粗糙,此级配中间大小的颗粒较少,不能很好地互相咬合;而当把颗粒级配调整成机制砂Ⅲ时,细度整体变小,需水量增加,稍加水后其工作性能良好,且强度达标;继续增加细度,则工作性和强度均降低。

2.4 圆形度的影响

试验通过形貌测试仪对不同机制砂进行圆形度测试,圆形度可以量化机制砂的颗粒形貌,方便试验研究机制砂颗粒形貌的影响。具体测试情况见图 6,分别是天然砂和机制砂Ⅰ、Ⅱ、Ⅲ 的圆形度测试结果。

调整各砂源级配(Ⅱ)、石粉含量(7%)一致,试验砂率(41%)、配合比一致,试验结果见表 9。

(下转第42页)

42COAL ASH 6/2012

参考文献

收稿日期: 2012 年 7 月 25 日

[1] 邵霞,陆文雄.脱硫粉煤灰的综合利用及其资源化[J].洁净煤技术, 2009(5):104-106.

[2] 吕文杰,李胜荣.热电厂脱硫灰的综合利用[J].热力发电,2009,38(9):7-10.[3] 邵霞,陆文雄.脱硫粉煤灰用作混凝土掺合料的应用研究[J].粉煤灰, 2004(2):23-26.

[4] 郭幻,宋存义.烧结脱硫灰制备蒸压加气混凝土砌块的研究[J].环境工 程学报,2011(3):389-695.

[5] 范俊杰,曹德光,黄承好,等.工艺参数对电石渣型蒸压加气混凝土发 气的影响研究[J].新型建筑材料,2010(11):34-36.

作者简介:刘素霞,女,硕士研究生,研究方向为新型建筑材料.单位:河南理工大学材料科学与工程学院.通信地址:河南省焦作市高新区世纪大道2001号河南理工大学1316信箱(454000).电子信箱:liusuxia111@https://www.360docs.net/doc/d813966290.html,.

图 9 表面活性剂掺量对干密度的影响

图 10 表面活性剂掺量对强度的影响

490

5005105205305405505605705800.10.30.50.70.9 1.1

表面活性剂(%)

干密度/k g .m -3

2

2.22.42.62.83

3.23.40.10.30.50.70.9 1.1

表面活性剂/%

强度/M P a

焦磷酸钠、十二烷基硫酸钠、三聚磷酸钠都是表面活性剂,通过表面活性剂的作用,能协助铝粉膏形成复合型的发泡,在料浆发气过程中,气体和液体构成的两相系统,是气体分散在一个连续液相中的现象。当有空气通入含有表面活性剂的料浆体中,表面气泡就具有了双重壁膜,从而能使气泡稳定地存在,可以降低制品密度,增大蒸压加气混凝土砌块制品强度。

参照图 8 可以看出,掺加 3 种表面活性剂,只有焦磷酸钠对料浆稠度影响不大且都在 28~29 cm。参照图 9 可以看出,掺加焦磷酸钠,使蒸压加气混凝土砌块制品干密度较之其他几种表面活性剂要小。参照图 10 可知掺加焦磷酸钠的蒸压加气混凝土砌块制品抗压强度相对也比较高。 综合考虑,本试验应选焦磷酸钠为表面活性剂,其合适的掺量为 0.5%~0.7%。

3 结 论

(1)试验结果表明,采用脱硫灰、电石渣等固体废弃物生产蒸压加气混凝土砌块,且脱硫灰的掺入量高达 30%~40%,电石渣掺量为 8%。这样不仅可以大量有效利用工业废渣,缓解普通粉煤灰供应紧张的矛盾,更为主要的为脱硫灰大掺量综合利用找到一个可行的途径,而且可以节约天然石膏和生石灰的使用。其研究结果对解决日益严重的脱硫灰污染环境问题和节约化石类天然资源问题具有重要的指导作用,同时在新配方下,因生产工艺方面的调整,可以节省能源,能取得显著的经济效益、环境效益和社会

效益。

(2)试验结果表明,采用分散剂和表面活性剂后,砌块制品的气孔较之前未掺入外加剂时孔径均匀分布、细小密集且是球型封闭的孔。经测试,砌块各项性能得到了优化提高,更加利于施工且用于施工后砌块之前具有的一些缺陷问题将会得到一定的解决。其外加剂六偏磷酸钠掺量为 0.7%~1.0%,焦磷酸钠掺量为 0.5%~0.7%。对加大砌块的实际推广应用有重大意义。参考文献

收稿日期: 2012 年 7 月 7 日

[1] 江小红,宋康,张书博. 机制砂的发展及应用与存在问题探讨[J].甘肃科

形貌(以圆形度代表),圆形度不同对机制砂的最佳砂率、石粉含量、级配都是有影响的,圆形度越好,混凝土的性能越好,而对机制砂的其他特性要求就越宽松。

如今,机制砂已随处可见,其生产管理也日臻完善。所以,在机制砂的研究上,仍然需要人们的共同努力,尽早制定出统一的标准要求。 技,2011,27(1): 82-83.

[2] 陈家珑,周文娟. 我国人工砂的发展与问题探讨[J].建筑技术, 2007,38 (11):849-852.

[3] 李勇,龙宇. 浅谈机制砂的生产及其在混凝土中的应用[J].福建建筑, 2009,138(12):56-58.

[4] 王稷良,周明凯,贺图升,等. 石粉对机制砂混凝土抗渗透性和抗冻融 性能的影响[J]. 硅酸盐学报,2008,36(4):482-486.

[5] 王援良,牛开民,刘英,等. 机制砂中石粉对混凝土性能影响的研究现状[J]. 公路交通科技,2008,25(9):302-307.

[6] 李兴贵. 高石粉含量人工砂在混凝土中的应用研究[J]. 建筑材料学报,

2004,7(1):69-71.(上接第38页)

机制砂高性能混凝土的配制及应用

机制砂高性能混凝土的配制及应用 周明凯,王雨利,王稷良,李婷婷,应国量 (武汉理工大学硅酸盐工程中心教育部重点试验室,武汉430070) 摘要:机制砂相比天然砂而言,空隙率略小,但由于粒形和级配较差,不但会影响拌和物的质量,而且还会影响硬化后混凝土的性能。为了消除机制砂混凝土的不利因素,采用掺加高效减水剂和粉煤灰来提高混凝土的性能。利用“双掺”技术配制了C40、C50高性能混凝土,并在工程中应用,取得较好的经济效益和社会效益。 关键词:粉煤灰;机制砂;高性能混凝土 中图分类号:TU528.56文献标识码:A文章编号:1003—1324(2007)01—0058-03 机制砂颗粒有棱角、形状不规则,含有不少针片 状颗粒…,因而互咬合,流动阻力大,造成拌制的混凝土工作性较差,易产生离析晗J。机制砂表面较粗糙,机制砂粗糙度基本在17.0—21.1s,而河砂的粗糙度为14.8—15.5s【3j。机制砂粗糙的表面增加颗粒流动阻力而对工作性产生不利影响,机制砂级配不良,通常是两头多中间少,即粗颗粒(2.36mm以上)和细颗粒(O.15lnlTl以下)较多,但中间颗粒(尤其是1.18~0.3mm之间)较少MJ,配制的混凝土易于离析泌水,对混凝土强度也有不利影响。为了消除机制砂对混凝土造成的不利因素,不少专家采用粉煤灰和高效减水剂来配制机制砂,如田建平等配制了C50粉煤灰机制砂混凝土,并在贵州某大桥主梁中应用瞪1;杨建辉等配制了粉煤灰机制砂自密实混凝土,并在工程中应用旧J,等等。 湖北省境内的沪蓉西高速公路全长约320公里,位于山岭重丘区,地势复杂、桥涵众多,仅宜恩段桥梁全长达53927米,其中设特大桥30座,中大桥153座,建设这些工程无疑需要大量的砂。湖北省 恩施州的天然砂资源已经枯竭,无砂可用,如果从岳阳调进河砂价格高达280形m3,而在沿线采石,制备机制砂成本约为50元/m3,运输费用低廉。 于是,决定利用当地丰富的石灰石资源,来生产机制砂。通过掺加I级粉煤灰和高效减水剂配制了C40、C50机制砂混凝土,在多处大桥的空心板和预制T梁使用,取得了良好的经济效益和社会效益。 机制砂由于自身的特点,如级配较差、颗粒粒形不好、含有一定量的石粉、具有新鲜的颗粒表面,因此用它来拌制的混凝土,既有优点也有缺点,其优点如骨料和界面粘结好,配制的混凝土强度略高等…;缺点有拌制的混凝土和易性较差、需水和水泥量多、拌制的混凝土振动后易液化等。为了充分发挥它拌制的混凝土的优点,避免其缺点。在采用高效减水剂的基础上,又掺加了I级粉煤灰对其拌制的混凝土进行了改善。 1试验用原材料 1.1水泥 采用湖北华新“堡垒牌”42.5级普通硅酸盐水泥,其性能指标见表1。 1.2骨料 粗骨料:恩施市福刚砂石料厂生产的5~25mm连续级配碎石,压碎值7.5%,针片状含量4.4%,含泥量0.4%,表观密度2721kg/m3。 .58.2007年第1期—============一欢地登录山东建材信息网http://www.sdjc.cn 万方数据

含气量对混凝土的影响利弊 李党义

含气量对混凝土的影响利弊 李曦,李党义 (湖南中建五局混凝土有限公司湖南长沙410000) 【摘要】含气量对混凝土性能的影响是多面而又复杂的,含气量对混凝土的和易性、抗折强度、耐磨性能、抗冻性能、抗渗透性能、热传导性能、自身变形等性能有明显的影响,适宜的含气量有利于增强混凝土的综合性能。然而,含气量也会在一定程度上造成混凝土强度的损失,合理适宜的含气量才能使混凝土的综合性能得到有效改善。 【关键词】混凝土含气量;性能;影响 Influence of Air Content on the pros and cons of Concrete Abstract :Air content on the properties of concrete is multi-faceted and complex. The air content has a significant impact on the concrete's workability, flexural strength, wear resistance, frost resistance, anti-permeability, thermal conductivity, its deformation properties. Appropriate air content enhances the overall performance of concrete. However, the air content can also result in the loss of concrete strength. The overall performance of the concrete can only be effectively improved when the appropriate amounts of air is introduced. Key words:concrete air content; performance; affect 在混凝土中添加引气剂,可以调节混凝土中的含气量,从而有效改善混凝土的和易性,增强抗折强度,加强混凝土路面的耐磨性、抗冻性和抗渗透性等性能,有利于延长道路寿命,降低维护力度,具有重要的现实意义。然而,引气剂的掺入,不可避免地会带来一定的反面影响,造成混凝土强度的损失。因此,研究含

浅谈影响型钢混凝土结构抗震性能的因素

浅谈影响型钢混凝土结构抗震性能的因素 浅谈影响型钢混凝土结构抗震性能的因素 摘要:由于型钢混凝土具有刚度大,防火、防腐性能好及重量轻、延性好等优点,因此在土木工程中具有广阔的应用前景。从抗震性能来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。本文总结出了影响型钢混凝土结构抗震性能的六大因素:轴压比、剪跨比、型钢含量和型钢形式、 配箍率、混凝土强度、型钢的锚固形式。 关键字:型钢混凝土;轴压比;剪跨比;配箍率;型钢的锚固形式 中图分类号:TU528文献标识码: A 文章编号: 型钢混凝土组合结构是一种优于钢结构和钢筋混凝土结构的新 型结构,它分别继承了钢结构和钢筋混凝土结构的优点,克服了两者的缺点而产生的一种新型结构体系。型钢混凝土结构充分利用钢(抗拉性能好)和混凝土(抗压性能好)的特点,按照最佳几何尺寸,组成最优的组合构件,这种组合构件具有刚度大的特点,与钢结构相比,防火、防腐性能好,具有较大的抗扭和抗倾覆能力,而且,与钢筋混凝土结构相比,具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工期,节约模板,特别是在高层和超高层建筑及桥梁结构中使用组合构件,更加体现了它的承载能力高和能克服混凝土结构施工困难的特点。 由于型钢混凝土结构具有上述特点,因此在土木工程中具有广阔的应用前景。从抗震角度来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。 通过实验,总结出了影响型钢混凝土抗震性能的主要因素为: 1、轴压比 实验和工程实践表明,轴压比是影响型钢混凝土偏心受压构件破坏形式、延性、变形能力和抗震性能的最重要因素。当轴压比超过一定限值时,无论配箍率如何提高,框架柱的延性都不能得到明显改善,

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

C50机制砂混凝土配合比设计

2011年3月(上) 目前,高强度混凝土的应用越来越广泛,其主要成分之一:天然砂在部分地区已经受到制约,并且挖掘天然砂不仅占用耕地且会破坏环境,因此机制砂的应用越来越广泛。机制砂既可以解决砂资源短缺的问题,又可降低建设成本及保护环境,但机制砂也存在成分和级配不稳定的问题,因此,如何利用机制砂配制具有高耐久性、高体积稳定性、适当的抗压强度及良好的施工性能的混凝土,是目前广为关注的主要问题。 1配合比设计1.1设计思路 根据混凝土配合比有关规范计算,混凝土的实际配制强度应在60Mpa ,但由于预制T 型梁截面面积小,内部钢筋较密,混凝土在浇筑施工时难度较大,因此需要其具有良好的工作性能,其坍落度应达到160mm 左右。 在配合比设计时应遵循确定水灰比、优选砂率以及确定最佳粉煤灰掺加量的思路进行,在用水量与砂率的选择上应充分考虑机制砂自身特性。 由于一般机制砂级配不良、粒型较差且含有一定数量的石粉,因此要达到所要求的坍落度其用水量应高于天然河砂用水量。 同时机制砂砂率对混凝土的工作性与强度存在非常敏感的关系,其合理砂率较天然河砂应高出2~4%,并且机制砂的细度模数越小、级配越好、石粉含量越大则其合理砂率越小。 同时有报道指出在机制砂混凝土内掺加一定量的粉煤灰、矿粉等矿物掺和料可增加混凝土内浆体含量,并可有效改善机制砂混凝土的工作性能,并能起到提高耐久性以及降低成本的作用。 1.2设计要点分析 1.2.1机制砂 由于机制砂是由机械破碎轧制而成,颗粒形状尖锐、棱角分明,在生产过程中可产生较多粉尘,因此在使用前采取风筛或水洗法降低粉尘含量,风筛法易造成环境污染因此施工时采取水洗法,但在冲洗过程中不可将机制砂中的石粉全部冲走,由于机制砂内若不含石粉则其生成的混凝土保水性会大大降低,并可影响其流动性并导致离析现象。 1.2.2外加剂 外加剂的选用对混凝土性能影响较大,尤其是减水剂的选择,由于商品混凝土的水胶比较低,且不是每种符合标准的胶凝材料在使用一定的高效减水剂都可保证良好的流变性能,同样不是每种符合标准的高效减水剂对每种胶凝材料的流变性能影响相同。 因此应保证胶凝材料和高效减水剂性能相适应。若其适应性差则不仅会影响减水剂的减水率,更重要的是会造成混凝土坍落度的严重损失,最终影响拌和物的运输和浇筑。 1.2.3胶凝材料 胶凝材料可使拌和物应保证充足的水泥浆包裹在骨料外围,可保证混凝土内骨料充分润滑以保证混凝土的和易性,其并可增加混凝土的强度,因此其选用也较为重要。 1.2.4矿物掺和料 矿物掺和料应保证其有效的保证混凝土拌和物的工作性能并不能对混凝土强度带来过多的负面影响,其掺加量相对于粉煤灰而言可适量增加。 1.3配合比设计 在配合比设计过程中根据普通混凝土拌和物性能试验方法标准进行测试,其力学性能采用普通混凝土力学性能测试方法测定,并测定试 块的7d 和28d 强度,试验结果如下表: 表1配制混凝土的工作性与强度测试结果 1.4设计结果分析 水灰比对机制砂混凝土强度和工作性的影响。有上表测试结果可知随水灰比增大,机制砂混凝土的工作性可逐步得到改善,但当水灰比增大到0.35时,混凝土则出现泌水现象,并随着水灰比的增大最终拌和物的强度呈下降趋势,但机制砂混凝土的28d 强度降低缓慢,7d 强度降低则较快,因此综合考虑机制砂混凝土的强度和工作性,将水灰比定为0.32左右。 砂率对混凝土工作性和强度的影响。合适的砂率可使混凝土具有较大的流动性,并可保持良好的粘聚性、保水性和可泵性,且砂率还可影响混凝土的强度,通过试验结果可知在机制砂混凝土配制过程中随着砂率在一定范围内增加,混凝土的粘聚性可得到明显改善,但其流动性变化较小,但当砂率增大到一定程度则由于比表面积的增加导致混凝土的工作性明显降低,该时刻混凝土也由于过于黏稠而较为粗涩,因此从各种性能综合角度考虑将C50机制砂混凝土的砂率定为35%左右。 2机制砂混凝土施工控制 施工中应严格控制机制砂的质量,因其为机械制备,在制造过程中易出现人为因素导致的质量波动,如制砂机进料粒度出现较大波动以及工艺参数调整或由于制砂机部件磨损未及时更换等因素均可导致对机制砂的质量产生较大的影响,因此应控制其细度模数在±0.2左右,石粉含量应控制在±1.0%范围内,若超过该范围则应对配合比进行调整,以免影响构件质量; 由于相同工作性的机制砂混凝土较黄砂易液化,因此当机制砂混凝土浇筑过程中应适当缩短其振捣时间以免由于过振导致混凝土出现离析、泌水现象; 由于机制砂内含有一定量的石粉,其可导致机制砂混凝土内浆体含量增加,因此其在早期易由于失水而产生塑性收缩,而后期干燥收缩较大,因此,机制砂混凝土在浇筑后必须加强其早期和中期的养护,一般养护时间应控制在14d 左右。施工过程中通过采取以上优化工艺并在施工中严格控制施工过程,最终混凝土T 型梁浇筑效果较好,其平均强度达到58.4MPa 。 3结语 从试验可知采用机制砂完全可以配制成可满足T ( 下转第133页)[摘要]论述了C50T 型梁机制砂泵送混凝土的配合比设计的设计思路和设计要点,并对其进行了多个配合比设计,通过试验检测结果最终 确定其设计配合比,并对其设计结果进行了分析,最后综述了该混凝土的施工质量控制要点。[关键词]机制砂;混凝土;配合比C50T 型梁机制砂泵送混凝土的配合比设计 杨超 (中铁十一局集团第二工程有限公司,湖北十堰 442013) 118

浅析影响混凝土强度的几个主要因素

浅析影响混凝土强度的几个主要因素 本钢建设公司混凝土分公司梅晓东 [摘要]:混凝土强度的控制对保证工程质量有着重要的作用。影响混凝土强度的因素颇多,本文主要从用水量、砂率、原材料等方面分析其对强度的影响,以便科学、合理的控制混凝土工程质量。 [关键词]:混凝土强度用水量砂率原材料 混凝土作为目前使用最广泛的结构材料之一,它的质量直接关系到工程的质量、使用寿命以及人民的生命、财产的安全。我国正处于基础设施建设的高峰期,如果在生产过程中对混凝土质量不够重视,将会导致沉重的代价。混凝土生产供应是一个连续过程,供应到现场的混凝土又是一种半成品,不能够马上由后续检验工作完全证实是否合格,而就要被立即浇筑使用的产品。生产过程中众多方面的影响因素均会使生产出的混凝土质量产生变异。为了切实、有效地改善试验配合比、提高混凝土强度质量,笔者对一些影响因素进行分析、研究,以供参考。 1、用水量对混凝土强度的影响 在完全密实的情况下,普通混凝土的强度主要取决于其内部起胶结作用的水泥石质量,而水泥石的质量又取决于所采用的水泥特性和水灰比。 当水泥用量一定时,用水量小则水灰比小。水灰比过小会使混凝土干涩,成型质量难以保证,混凝土成品中会出现孔洞(蜂窝)较多,麻面等现象。这不但影响美观,还会降低混凝土的密实度和强度,使工程的耐久性变差。 在生产中,假设混凝土试验室配合比为: 水泥:砂:石子:水=1:1.51:2.83:0.46 现场测定砂的含水率为3%,则每机一次下料量为: 水泥:100kg 砂:100×1.51×(1+3%)=155.5kg 石子:283kg 水:100×0.46-100×1.51×3%=41.5kg 如果此水泥的实际强度为47MPa,粗骨料采用碎石(表面特征新系数A=0.46,B=0.52),按此配合比配制的混凝土其28天可达到的强度R为: R=A·fce·(C/W-B)=0.46×47×〔100/(100×0.46)-0.52〕=35.8MPa 情形一:若因误差而多加1kg的水,则水灰比(W/C)' 为: (W/C)'=(100×0.46+1)/100=0.47 这样配制的混凝土28天可达到的强度R'为: R'=0.46×47×〔100/(100×0.47)-0.52〕=34.8MPa 由于多加1kg水而引起的强度损失为: R-R'=35.8-34.8=1MPa 由此可见,用水量的变化对混凝土强度的影响是很大的,因此出场的混凝土必须制止随意加水。 情形二:若在施工中遇到下雨,雨后测得砂含水率为7%,石子含水率为3%,此时每机一次下料应为: 水泥:100kg 石子:100×2.83×(1+3%)=291.49kg 砂:100×1.51×(1+7%)=161.57kg 水:100×0.46-100×1.51×7%-100×2.83×3%=26.94kg 按此配合比显然是科学的,保证了水灰比为0.46,混凝土28天强度可达到设计要求(仍为

机制砂的优缺点与其在混凝土和工程中的应用

机制砂的优缺点及其在混凝土和工程中的应用 1机制砂的优缺点 根据在云南蒙自地区利用机制砂的经验,将其优缺点总结如下。 1.1机制砂的优点 采用机制砂配置混凝土具有如下优点: ( 1)工厂化生产,质量可以得到保证工厂生产可以从选材、破碎等一系列工艺流程上 建立质量监控体系,生产条件好,砂的质量有保障。 (2)砂的物理力学性能好 可以有意识的选择硬质岩石生产机制砂,避免采用软质、风化岩石,同时,含泥(块) 量可人工筛分控制。化学成份与母材、碎石一致,对混凝土无负面作用,适合做高强混凝土。 (3)机制砂的颗粒级配、细度模数可以调整可以根据工程的需要,结合母材的特点和 混凝土的要求,调整机制砂的细度模数和颗粒级配。调整措施主要通过破碎设备、工艺流 程的选择来完成。 1.2机制砂的缺点 ( 1)天然砂颗粒浑圆,表面光滑。天然中砂细度模数多为 2. 6 3. 0,级配较好,对混凝 土的工作性十分有利。机制砂颗粒尖锐,多棱角,表面粗糙,细度模数多为 3. 0 以上,与天 然河砂相比,机制砂的颗粒级配稍差,大于 2. 5 mm 和小于 0. 08 mm 的颗粒偏多,导致混 凝土的和易性较差,容易引起混凝土的外观质量缺陷。机制砂母材的变化会引起机制砂质量 的波动,给施工质量的控制带来一定的难度。但是,机制砂的缺点可以通过选择合适的碎砂 设备、合理利用砂中含石粉量、调整砂率,以及选用合适的外加剂等措施来克服。 ( 2)机制砂含有一定量的石粉。石粉和泥的粒径虽然都小于0. 075 mm,但是他们的 成份不同,细度相差也较大。泥颗粒大多小于0. 016 mm,而石粉颗粒大都在0. 016 0. 075 mm 之间。泥吸附在砂的表面,妨碍砂与水泥的粘结;而适量的石粉可填充在水泥、细砂的空隙 之间,增强机制砂混凝土的工作性。 2机制砂混凝土的性能 2.1硬化前混凝土的性能 机制砂混凝土硬化前的性能主要涉及到混凝土的稠度、和易性(工作 性)、可塑性、可 加工性(可修饰性或可抹平性)等方面,这些性能并不是孤立的,而是有一定的相互关 联, 是从不同的角度描述新拌混凝土的特 性。其中,混凝土的和易性是非常重要的一个指标,它 不仅表示混凝土浇灌成型的难易程度,也表示混凝土抵抗材料分层离析的能 力。混凝土和易 性的具体指标为坍落度。 在水灰比相同的条件下,机制砂混凝土坍落度要小于河砂混凝土,这主要是机制砂本 身 具有裂隙、空隙及孔洞,其有一部分颗粒为矿物颗粒集合体,这样就增大了砂子的比表面 积, 吸附了更多的水,导致混凝土的需水量增加,坍落度减小。相同条件下,配置相同坍落度 的 混凝土,机制砂比天然河砂需水量增加5 10 kg /m3. 机制砂混凝土的和易性与细骨料 (砂) 的级配和细度模数有关,同时,也牵涉到用水量、水泥用量、砂率等参数,还需要针对工程 实践进行深入研究。一般认为,细度模数以控 制在 3.03.4 之间为佳。若细度模数太大, 则 粗颗粒太多,级配不合理,使混凝土的和易性变差,虽然掺入粉煤灰可以弥补上述缺 陷,但 成本也会相应提高,经济上不合理;若细度模数太小,则小 于0. 075 mm 的细粉过多,需水量增大,混凝土强度降低,水泥用量增加。石粉含量也是影响坍落度的重要指 标,石粉含量

影响混凝土质量的主要因素

影响混凝土质量的主要因素 摘要:在我国的土建工程施工中,掌握影响混凝土质量的主要因素,切实控制施工质量,对促进我国混凝土施工技术等具有重要意义。本文对施工中影响混凝土的施工质量的因素进行了探讨有足够的重视。关键词:土建工程混凝土质量控制 2008年以来,随着国家对实体经济刺激政策的逐步落地生根,我国的基础设施建设和固定资产投资进入一个高速发展的阶段。混凝土作为基础设施建设的主要建筑材料,其质量好坏,直接影响结构物的安全和造价。因此在施工中必须对混凝土的施工质量有足够的重视和有效地控制。 1.混凝土的强度及影响因素 混凝土是由水泥、水、细骨料、化学外加剂、矿物质等材料按照一定比例配合而成,经过均匀拌制,振捣密实成型及养护硬化而成的人工石材。混凝土质量的关键指标之一是抗压强度,混凝土抗压强度与混凝土用水水泥的强度成正比。当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工必须核对、选好水泥标号。 影响混凝土抗压强度的主要因素是水泥强度和水灰比,因此要提高混凝土的质量,关键是控制好水泥和混凝土的水灰比两个主要环节。另外,粗骨料对混凝土强度也有一定影响,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度

比卵石强。因此我们一般对混凝土的粗骨料控制在3.2cm左右,细骨料品种对混凝土强度影响程度比粗骨料小,所以混凝土公式内没有反映砂种柔效,但砂的质量对混凝土质量也有一定的影响。因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。由于施工现场砂石质量变化相对较大,因此现场施工人员必须保证砂石的质量要求,并根据现场砂含水率及时调整水灰比,以保证混凝土配合比,不能把实验配比与施工配比混为一谈。混凝土强度只有在温度、湿度条件下才能保证正常发展,应按施工规范的规定予在养护、气温高低对混凝土强度发展有一定的影响。冬季要保温防冻害,夏季要防暴晒脱水。 2.混凝土标号与混凝土平均强度及其标准差的关系 混凝土标号是根据混凝土标准强度总体分布的平均值减去1.645倍标准值确定的。这样可以保证混凝土确定均有95%的保证率,低于该标准值的概率不大于5%,充分保证了建筑物的安全,从此推定,抽样检查的几组试件的混凝土平均确定一定大于等于混凝土设计标号。通过公式计算可以看出,施工人员不但要使混凝土平均确定大于混凝土标号,更重要的是千方百计的减少混凝土确定的变异性,即要尽量使混凝土标准差降到较低值,这样,既保证了工程质量,也降低了工程造价。 3.混凝土质量控制的有效措施 3.1原材料的质量要保证 混凝土是由水泥、水、细骨料、化学外加剂、矿物质混合材料,

混凝土坍落度影响因素的试验研究

混凝土坍落度影响因素的试验研究 邓初首,夏勇。 【摘要】研究了在用水量一定时,砂率、水灰比、粉煤灰对混凝土坍落度的影响,并分析了粗集料最大粒径对坍落度的影响。结果表明:砂率有一个最佳值,此值下坍落度最大;不同水灰比的混凝土拌合物,通过适当增减砂率,可保持坍落度基本不变;与基准混凝土(不掺粉煤灰)相比,内掺II级粉煤灰的混凝土坍落度增大,内掺III级粉煤灰的混凝土坍落度减小。 【关键词】砂率;水灰比;粉煤灰;坍落度 0前言 混凝土一个重要技术指标是拌合物的和易性,和易性(又称工作性)是指混凝土拌合物易于施工操作(拌和、运输、浇筑和捣实)并能获得质量均匀、成型密实的性能。它包括三方面含义:流动性、粘聚性和保水性。流动性是指混凝土拌合物在自重或施工机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。对于大量使用的塑性混凝土来说,其拌合物流动性用坍落度表征。 如何准确快速地配制出坍落度符合要求的混凝土?这就需要了解引起坍落度变动的影响因素。不容置疑,用水量是决定坍落度的主要因素。本文着重研究了在固定单位用水量的情况下,砂率、水灰比和粉煤灰掺合料对混凝土坍落度的影响,并分析了粗集料最大粒径的影响。 1 试验用原材料和试验方法 1.1 水泥海螺牌P.O3 2.5级水泥。 1.2 粗集料 马鞍山市葛羊山产石灰岩质人工碎石,最大粒径分别取25mm、40mm两种规格。 1.3细集料 江砂(中砂),细度模数2.6。 1.4粉煤灰 经检验,选用马鞍山二电厂提供的II级和III级粉煤灰,检验结果如表l所示。 注:细度为45~rr-方孔筛筛余。 1.5试验方法 执行GB/T50080—2002《普通混凝土拌合物性能试验方法标准》。按标准规定,测得的坍落度值均精确到1mm,修约至5mm。 2结果与讨论 2.1砂率对混凝土坍落度的影响 采用两种研究途径:(1)固定单位用水量和水灰比不变,分别用粗集料最大粒径为25mm、40rnm的碎石混凝土拌合物试验,结果见图1。(2)固定单位用水量和粗集料最大粒径不变,分别取水灰比为0.45、0.55的凝土拌合物试验,结果见图2。

影响高性能混凝土工作性能的因素.

随着科学技术和生产力的发展,高性能混凝土应用越来越广泛,如高速铁路、高层建筑,跨海大桥、海底隧道等,高性能混凝土具有独特的优越性,高工作性、高耐久性,在工程中安全使用寿命、经济合理性、环境条件的适应性等方面产生了明显的效益。 高性能混凝土的工作性能主要是保证混凝土结构成型时无原始缺陷,从而保证混凝土的耐久性。良好的工作性能是使混凝土质量均匀、获得高性能,从而安全可靠的前提。 高性能混凝土的工作性能主要包括三部分内容: 1. 流动性:表征拌和物流动的难易程度。 2. 粘聚性:拌和物在搅拌、运输、泵送、浇注、振实过程中不容易出现泌水和离析分层的性能。 3. 可泵性:拌和物在泵压下在管道中移动摩擦阻力和弯头阻力之和的倒数。 影响高性能混凝土的工作性能的因素: 一、砂 砂的粗细程度、细颗粒含量、级配均严重影响高性能混凝土的工作性,高性能混凝土应采用细度模数在 2.6-3.0之间的 II 区砂, 细颗粒含量 0.315mm 筛以下达到15%, 含泥量控制在 2%以下。往往受资源的局限不容易找到上述要求的砂,偃师西梁场使用的砂细度模数在 2.8-3.3之间满足Ⅰ区和Ⅱ区颗粒级配,但 0.315mm 筛以下颗粒含量在 5%以内,混凝土施工过程中经常出现堵管、爆管现象。在保证混凝土的抗压强度、弹性模量、耐久性的前提下,通过提高砂率和细砂与粗砂掺配的方法,满足了混凝土的工作性。二、碎石 碎石的粒径、形状、级配对混凝土所需的水泥浆量有重大影响,从而影响混凝土的工作性能。高性能混凝土应选择针片状含量少、级配良好、石粉含量少的碎石。颗粒级配良好可以减少混凝土所需水泥浆量。高性能混凝土碎石中的泥和石

机制砂生产(干法)及机制砂混凝土技术指南

浙江省交通建设工程 机制砂生产(干法)及机制砂混凝土技术指南 浙江省交通运输厅 二〇一六年一月

目次 前言................................................................................ I II 1 总则 (1) 2 规范性引用文件 (2) 3 术语和定义 (3) 4 机制砂的料源选择 (4) 5 机制砂的生产设备 (5) 5.1 一般规定 (5) 5.2 生产设备配置 (5) 6 机制砂的生产工艺 (7) 6.1 一般规定 (7) 6.2 生产工艺 (7) 6.3 环境保护 (10) 7 机制砂的质量标准 (11) 7.1 规格与类别 (11) 7.2 技术要求 (11) 7.3 质量检验 (13) 8 机制砂混凝土配合比设计 (14) 8.1 原材料选择 (14) 8.2 配合比设计基本要求 (15) 8.3 普通混凝土配合比设计原则 (15) 8.4 高性能混凝土配合比设计原则 (16) 8.5 试验室试配与调整 (17) 8.6 配合比现场验证 (19) 8.7 工艺性试验验证 (19) 9 机制砂混凝土的施工控制 (20) 9.1 一般规定 (20) 9.2 混凝土施工和易性控制 (20) 9.3 混凝土浇筑过程质量控制 (21) 9.4 混凝土结构裂缝的预防措施 (22) 9.5 混凝土结构表面质量控制 (22) 9.6 混凝土结构力学与耐久性能控制 (23) 附录A(规范性附录)机制砂混凝土外加剂相容性快速试验方法 (24) 附录B(资料性附录)机制砂生产(干法)常用生产设备技术参数 (26) 附录C(资料性附录)机制砂生产规模及相应配置(干法) (27) 附录D(资料性附录)机制砂生产参考设备配置及工艺流程图 (28) 附录E(资料性附录)机制砂混凝土配合比设计案例 (33)

机制砂高性能混凝土在贵广高铁的应用实践

机制砂高性能混凝土在 贵广高铁的应用实践 曾军试验室主任 中铁二局一公司贵广高铁一项目部 摘要:就地取材用洞渣生产优质机制砂,碎石,用25% 95级矿微粉,25%Ⅱ级粉煤灰50% 42.5 P.O水泥,掺聚羧酸减水剂,配制C20-C40等级混凝土,用水量为150-160 kg/m3,,水胶比0.5-0.38,总胶凝材料为300-408,设计选定配合比,加上强有力的施工管理,使混凝土结构高性能化,满足100年耐久性技术标准要求。 关键词:技术条件、机制砂、水洗、配合比成分、耐久性 一、引言 混凝土是工程建设最主要、用量最多的工程材料,混凝土的耐久性直接关系到工程结构物的使用寿命,是关系着国家建设千秋功业的大事。 近代混凝土应用技术经历着许多挫折和变革,挫折反应在不少混凝土结构是不耐久的,设计使用寿命为50年,而在严酷的条件下经20年、10余年或更短的时间就劣化、破坏,需要维修、加固,甚至拆除重建,造成巨大的浪费和环境压力,挫折促使混凝土工作者、建造师们在普通混凝土基础上研究、发展高性能混凝土技术,使之成为混凝土技术发展的主要方向。 铁道部从80年代末立项研究混凝土劣化,历经高强混凝土研究阶段,高性能混凝土研究和应用阶段,特别是经过青藏铁路的工程实践,对高性能混凝土的推广应用有较为明确的认识。强调高性能是与耐久性相关的,高铁混凝土工程必须将耐久性放在首位,无论混凝土强度等级高低,都应满足高性能混凝土技术条件,达到耐久性指标。 二、工程概况 贵广高铁设计行车速度250km/h(预留进一步提速条件),设计使用年限100年。中铁二局一项目部管段线路全长36.39km,共有桥梁工程9301m/37座,其中特大桥4861.6m/6座,隧道21017m/15座,其中平寨隧道7. 1km,太阳庄隧道4. 5km,且为一级风险隧道。该管段桥、隧相连工程艰巨,混凝土数量大,仅高性能砼一项就达105万方。管段内分设八个施工队,建9个搅拌站利用隧道出碴或就近建砂石场制备砂、碎石,配制机制砂高性能混凝土。 三、混凝土技术条件及基本要求 1、混凝土强度满足设计要求

影响混凝土强度因素

影响混凝土强度因素; 1、原材料 水泥强度,包括早期与后期 掺合料,品种与活性 砂石,砂石得级配与含泥量、针片状等含量 外加剂,有得外加剂就是早强,有得缓凝,但不影响后期强度,部分外加剂引气量高会影响强度。 2、配合比 合理得调整水灰比与砂率。 3、养护 养护温度,温度高则强度高,温度低则强度低,当然不不能用火烤,高于60多度混凝土水化产物会分解得,导致强度降低。 4、周边环境 有无腐蚀性得介质存在,如酸碱盐等 我说点现场需具体考虑得: 天气,需考虑就是否下雨,降温。 人员配制,如果砼工劳动力不足,会影响浇筑质量。 掺与料,现在都就是商混,掺与料,水灰比都不需要工长操心了,只要控制如丹落度与禁止工人往砼里加水,基本上就相当于控制住了砼质量。 浇筑方案,大体积砼如果浇筑,一层砼,先浇什么后浇什么都要有方案。 养护要跟上。 收面,找平,做好,就OK了影响因素与控制措施 混凝土内部得温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高得水泥,其内部温度越高,形成温度应力越大,产生裂缝得可能性越大。 对于大体积混凝土,其形成得温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝得危险性也越大,这就就是大体积混凝土易产生温度裂缝得主要原因。因此防止大体积混凝土出现裂缝最根本得措施就就是控制混凝土内部与表面得温度差。 3、1混凝土原材料及配合比得选用 (1)尽量选用低热或中热水泥,减少水泥用量。 大体积钢筋混凝土引起裂缝得主要原因就是水泥水化热得大量积聚,使混凝土出现早期升温与后期降温,产生内部与表面得温差。减少温差得措施就是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。 (2)掺加掺合料 大量试验研究与工程实践表明,混凝土中掺入一定数量优质得粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到润滑作用,可改善混凝土拌合物得流动性、粘聚性与保水性,从而改善了可泵性。 特别重要得效果就是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下得温度升高。在混凝土中掺加一定量得具有减水、增塑、缓凝等作用得外加剂,改善混凝土拌合物得流动性、保水性,降低水化热,推迟热峰得出现时间。

影响混凝土质量的主要因素

影响混凝土质量的主要因素 来工程质量受到越来越多的社会关注。预拌混凝土有利于采用先进的工艺技术,实行专业化生产管理,产品质量好、材料消耗少、工效高、成本较低,又能改善劳动条件,减少环境污染等优势,在施工占有越来越大的比重。由于生产地点与使用地点不同,在施工中必须掌握影响混凝土质量的主要因素,切实控制施工质量。 随着改革开放进程的不断深化我国的建筑业取得了快速的发展。混凝土作为主要的建筑材料,其质量优劣,直接影响到结构物的使用安全及人民生命财产安全。在施工中我们必须对混凝土的施工质量有足够的重视。预拌混凝土是时代发展和市场经济下的产物,由于其优质、高效、环保等特点备受施工企业青睐。近年来,全国各地预拌混凝土厂家犹如雨后春笋建成投产,在为国家建筑业增添活力的同时,也出现了许多值得重视和解决的问题。 1、预拌混凝土质量的外部因素 随着市场竞争愈来愈激烈,生产厂家为生存相互压价,最终导致预拌混凝土质量普遍下降,最近几年较大的工程质量事故的事例屡屡见诸报端。再者生产与施工管理两张皮,预拌混凝土的生产、运输、浇筑成型等环节的质量要求在国家或地方规范、标准中均有相关规定。但在实际过程中,往往出现供需双方管理界限问题,因质量造成的责任纠纷不断,厂家指责施工方浇筑方法不正确,养护不及时,施工方指责厂家产

品不合格,运输超时等。 以上问题的应采用系统的方法加以解决。宏观上积极呼吁地方政府对本地的经济发展规模,对预拌混凝土搅拌站项目要有积极的政策导向,避免出现生产力过剩现象。政府应对企业生产过程中的产品质量起到有效监督、协调等作用。其次,建筑施工企业与混凝土厂家签订合同时,不应局限于合同负责人之间理论性的谈判及笼统模糊的约定,应该要求双方负责现场管理、具有实践经验的技术人员参加,使合同条款具有实用、全面、约束力强、便于责任追溯等特点。 2、预拌混凝土质量的技术性因素 混凝土质量要求是一种综合性指标,根据工程特点,结构设计不仅对混凝土的强度等级提出明确要求,具备相应的变形性能、耐久性等,而且在施工过程中还需混凝土具有和易性。混凝土抗压强度与混凝土所用水泥的强度成正比,按公式计算,当水灰比相等时,高强度等级水泥比低强度等级水泥配制出的混凝土抗压强度高许多。所以预拌混凝土生产时应严格执行技术要求,切勿用错水泥标号及用量。实践中,不少厂家为降低成本,想方设法降低水泥用量,为在数据上使混凝土试块抗压强度符合要求,采用非统计方法评定,但如采用统计方法评定时却不合格,希望工程技术、质量管理人员及监理单位注意此类问题。 由上述可知,影响混凝土抗压强度的主要因素是水泥强度和水灰比,

砂率对混凝土性能的影响

砂率对混凝土性能的影响 砂率:SP= 砂的用量S/(砂的用量S+石子用量G)×100% 是质量比 砂率的变动,会使骨料的总表面积有显著改变,从而对混凝土拌合物的和易性有较大影响。 和易性概念和易性是指新拌水泥混凝土易于各工序施工操作(搅拌、运输、浇灌、捣实等)并能获得质量均匀、成型密实的性能。 和易性是一项综合的技术性质,它与施工工艺密切相关,通常,包括有流动性、保水性和粘聚性三方面的含义。 流动性是指新拌混凝土在自重或机械振捣的作用下,能产生流动,并均匀密实地填满模板的性能。 粘聚性是指新拌混凝土的组成材料之间有一定的粘聚力,在施工过程中,不致发生分层和离析现象的性能。 保水性是指在新拌混凝土具有一定的保水能力,在施工过程中,不致产生严重泌水现象的性能。 新拌混凝土的和易性是流动性、粘聚性和保水性的综合体现,新拌混凝土的流动性、粘聚性和保水性之间既互相联系,又常存在矛盾。因此,在一定施工工艺的条件下,新拌混凝土的和易性是以上三方面性质的矛盾统一。 确定砂率的原则是:在保证混凝土拌合物具有的粘聚性和流动性的前提下,水泥浆最省时的最优砂率。 砂率对和易性的影响非常显著。 ① 对流动性的影响。在水泥用量和水灰比一定的条件下,由于砂子与水泥浆组成的砂浆在粗骨料间起到润滑和辊珠作用,可以减小粗骨料间的摩擦力,所以在一定范围内,随砂率增大,混凝土流动性增大。另一方面,由于砂子的比表面积比粗骨料大,随着砂率增加,粗细骨料的总表积增大,在水泥浆用量一定的条件下,骨料表面包裹的浆量减薄,润滑作用下降,使混凝土流动性降低。所以砂率超过一定范围,流动性随砂率增加而下降 ② 对粘聚性和保水性的影响。砂率减小,混凝土的粘聚性和保水性均下降,易产生泌水、离析和流浆现象。砂率增大,粘聚性和保水性增加。但砂率过大,当水泥浆不足以包裹骨料表面时,则粘聚性反而下降。

机制砂混凝土探讨

机制砂混凝土探讨 摘要:目前,机制砂混凝土在我国的应用还尚处在起步阶段,推行与应用还需要对机制砂的颗粒形状、颗粒级配,高效、优质制砂设备和制砂工艺、混凝土配合比等课题进行深入的探讨。本文对机制砂的优缺点及机制砂混凝土的研究现状进行了介绍,从机制砂混凝土的工作性能、力学性能、耐久性能等方面阐述机制砂对混凝土性能的影响。 关键词:机制砂;混凝土;工作性能;力学性能;经济性 引言:混凝土是现代土木工程中用量最大、用途最广的一种建筑材料,其中,砂同石子、水泥一样,是混凝土的重要组成部分。由于砂资源短缺,在我国很多地区都出现了乱采乱挖天然砂的情况,特别在前几年里,毁田挖砂、破坏河道挖砂的情况很普遍,这些行为不但破坏了有限的耕地、防洪堤坝,并引发了不少工程事故。天然砂这一自然资源在我国出现了逐渐减少、质量日益下降、价格成倍上涨的现象。因此,寻找新的混凝土用砂资源已经迫在眉睫,开发和使用机制砂已成为解决建筑用砂短缺的重要手段之一。机制砂代替天然河砂不仅具有一定的经济性和适应性,还具有一定的环境效益和社会效益,而且由于机制砂生产不受气候、季节的影响,而且在生产工艺上还能得到有效控制。

1.机制砂的优缺点 1.1 机制砂的优点 (1)工厂化生产,质量可以得到保证 工厂生产可以从选材、破碎等一系列的工艺流程上建立质量监控体系,生产条件好,砂的质量才能得到保障。 (2)砂的物理力学性能好 可以有意识的选择硬质岩石生产机制砂,避免采用软质、风化岩石,同时,含泥(块)量可以人工筛分控制。化学成份和母材、碎石一致,对混凝土没有负面作用,适合做高强混凝土。 (3)机制砂的颗粒级配、细度模数可以调整 可以按照工程的需要,结合母材的特点及混凝土的要求,调整机制砂的细度模数与颗粒级配。调整的措施主要是通过破碎设备、工艺流程的选择来完成。 1.2 机制砂的缺点 (1)天然砂颗粒浑圆,表面光滑。 天然中砂细度模数一般为2.6~3.0,级配较好,对混凝土的工作性十分越有利。机制砂颗粒尖锐,多棱角,表面粗糙,细度模数多为3.0以上,与天然河砂相比,机制砂的颗粒级配稍差,大于2.5mm和小于0.08mm的颗粒偏多,导致混凝土的和易性较差,容易引起混凝土的外观质量缺陷。然而,机制砂的缺点可以通过选择合适的碎砂设备、合理利

相关文档
最新文档