水轮发电机定子线圈参考资料

水轮发电机定子线圈参考资料
水轮发电机定子线圈参考资料

水轮发电机定子线圈

采用环氧云母绝缘制成的新式大型水轮发电机定子绕组的预期寿命是50年以上[1]。最近一项与加拿大电气协会有关组织所赞助的对新式和老式绝缘系统的全球调查显示, 定子绕组在重新绕制前可正常运转50年[2]。但有一些迹象表明,在过去十多年所生产的发电机寿命是无法达到50年的。

决定定子绕组寿命的关键因素是被使用作为隔离高电压铜导体及定子铁芯的电气绝缘。比起定子绕组内其他的组成材料如铜或钢, 绝缘材料有较低的熔点和较弱的机械强度。结果是,随着运转时间的增长, 绝缘是最有可能发生老化及恶化,最终导致接地故障。另一个可能出现故障的是铜导体- 特别是线棒没有被牢靠的固定在线槽内(因此产生振动),或两个线棒间焊接品质不良。

遗憾的是,现在要对过去十年所生产的发电机定子绕组的预期寿命有相同或较低稳定度的统计进行证明还言之过早。然而, 在线局放测试[3]已被世界各地的发电公司采用, 侦测发电机运行中定子绕组可能发生的绝缘问题和连接问题。在说明近期水轮发电机的故障现象前,从数千台电机上采集的局放数据与老旧机组比较后,显示了定子绕组问题似乎是过去十年中较普遍发生的故障。最后, 讨论发电公司如何确保定子绕组的长期寿命。

局放量大小与电机制造年代的关系

在对数以千计的电动机和发电机所采集的在线局放数据分析后发现, 一些电机制造厂在过去十年所生产的电机定子绕组的局放量超过他们10年前所生产的电机定子绕组的局放量[4]。例如, 图1显示位于欧洲、北美和日本的大型电机制造商在不同年代生产的定子绕组局放量与生产年代的关系。这些电机包含了13-15kV的空冷型机组。这一数字显示,四家电机制造厂于2003年所出厂电机的局放量比1995年前出厂的电机局放量明显高出许多。而高的局放量通常代表了定子绕组绝缘正快速老化,同时存在电气接触不良的隐

患。高的局放幅值是对近期制造的电机定子一个值得关心的客观资讯。

图一:9个电动机及发电机制造厂家定子绕组制造或重新绕制的年代与其局放值的关系。大多数局放测试于2003年。

定子绕组的故障

防晕涂层的问题

大部分电压高于6 千伏的定子绕组,位于线槽内的线棒或线圈表面都会涂上/包上掺入石墨的涂层或绷带。这个“半导体”涂层防止了存在于线圈表面与铁芯间无可避免的间隙所发生的局放。此外,大多数电机制造商对靠近线槽出口端10厘米左右的线圈表面涂上/包上掺有硅碳的涂层或绷带。这种硅碳涂层(防晕涂层)与小部分的半导体涂层重叠,可以降低发生在半导体涂层末端的高电场。

1970年代, 因制造过程的涂层问题, 导致许多的电机出现了非常高的局放量和高臭氧浓度。原因似乎是来自半导体涂层及防晕涂层没有均匀的分布于绝缘表面或施工时造成涂层与绝缘表面间的微小空隙。这两种情况都会造成局放的产生。局放会引起臭氧进而对涂层表面及绝缘造成化学腐蚀(不是指热交换器金属和橡胶部件),并进一步扩散。如果绕组绝缘运行在高电压应力和/或高温条件下,这一问题会更严重。如下面讨论的,现今制造的绕组绝缘,比起过去更薄且工作在更高温度下[6]。也许正是因为这个原因,这类故障现象在过去几年一直重现。

图二显示了一部水轮发电机在半导体涂层及防晕涂层的交界处有非常明显的白带现象。图三显示了因半导体涂层的涂抹工艺不当, 导致线槽内线棒的半导体涂层已消失。这个现象通常仅发生在11千伏(含)以上的空冷型机组。

图二:由于半导体涂层的涂抹工艺不当或没有适当的防晕涂层,在两个涂层的交界处有非常明显的退化现象(显现白带处)。

图三:显示了因半导体涂层的涂抹工艺不当引起的局放及臭氧,破坏线槽内线棒的表面涂层。槽楔已被取下,图片中白色的区域显示了涂层已消失。

定子槽内的绕组松动

绕组松动对于采用热固化绝缘系统(如环氧云母)的定子而言, 一直是个长期存在的问题。第一个被报导的实例发生于50年前[1、5]。故障问题的根源是电机在满载运转时,如果线棒未被紧紧的固定在线槽内,会有相当于二倍电源频率的电磁力施加于线棒上,使其在槽内产生运动。因此,主绝缘会与如锉刀般的铁芯相摩擦。首先线棒或线圈表面的半导体涂层会被磨蚀掉, 紧接着是主绝缘受损。这种故障通常称为槽内放电,因为一旦导电涂层表面被磨损,局部放电就会在线棒表面和铁芯间的空隙产生,进一步加速绝缘的恶化。

图四显示了正在从槽内取出的一根定子线棒, 其表面的半导体涂层和约30%的主绝

缘厚度已被磨损。这是由于电机制造厂没有采用合适的线棒固定措施, 例如侧面填充材料, 波纹弹簧板, 对头槽楔, 及槽内适形材料等等。可能的原因是为了降低制造成本。

图四:由于发电机槽内没有足够的侧面填充材料或径向紧固槽楔, 导致绕组松动造成线棒磨损。线棒正被从线槽中取出以进行更换。

振动火花

与发生在槽内的线棒松动相似的问题是振动火花(有时称为火花侵蚀)。其发生的前提是线棒松动(非采用整体浸渍制成的传统绕组)。另一重要因素是制造厂在槽内的线棒表面使用的半导体涂层导电率过高[7、8]。因此,当槽内的线棒松动,线棒的表面与铁芯就会形成隔离, 在线棒表面的半导体涂层,矽钢片及铁芯背部的定位筋间会形成一个电流回路。在铁芯上的主磁场作用下, 如果半导体涂层有足够的导电性, 电流就会在这个回路流动。由于线棒振动, 使得线棒表面涂层与铁芯失去接触,进而产生火花并破坏线棒绝缘。这种故障源于两种原因,设计欠佳或制造质量问题所引发。

这种故障的破坏力是非常惊人的,可在5年内就使电机发生故障。虽然大多数的电机制

造厂都非常谨慎的涂上具最小电阻的半导体涂层, 但下方显示了一部10年的汽轮发电机因过高导电率的半导体涂层而导致故障(图5)。振动火花是由于磁场所引发的, 会发生在绕组的任何部位,与仅仅会发生在靠近高压出线端部位的槽放电不同。

图五:因振动火花造成电机故障的线棒正被从线槽中取出, 这根线棒是位于绕组的中性点附近。

端部绕组放电

高压绕组与来自邻近不同相位的另一绕组间, 必须有一定的间隔,否则在绕组间的空气中就会产生局部放电。这个放电将逐渐的侵蚀主绝缘,并导致相对相短路故障。电机的电压愈高,主绝缘愈薄,绕组间距必须更大[5]。

不幸的是,我们发现近几年制造的水轮发电机, 因绕组间距不足而引发高局放(及臭氧)。图6显示来自不同相位的两根绕组, 因间距不足产生放电(及臭氧)并形成白粉残留。图7显示出同一现象, 来自不同相位的两路汇流环。二个案例皆是因间距不足引发局放及臭氧对绝缘的破坏, 如果绝缘材料是环氧云母, 这将是缓慢的破坏过程。但是, 如果局放发生在线棒连接处的端盒间, 因为此处的材料通常是对局放抵御力较低的环氧树脂(而非环氧云母), 因而故障将会更快的来临。

图六:显示来自不同相位的高压绕组, 因间距不足产生放电。图中显示各绕组间的间距是不规则的, 这是明显的制造质量问题。

图七:来自不同二个相的汇流环, 因间距不足引起的局放。

电气接触不良

在一个水轮发电机的定子绕组内, 有成千上万个电气接点。大多数的接点是线棒间的连接。通常是通过将两根线棒焊接在一起, 并在连接处套上端盒进行绝缘。这种大量且冗长乏味的工作, 需要有熟练技巧的技工来完成。如果技能不足, 或因体力不支造成质量不均, 那么某些连接点的阻抗将会过高。这些高阻抗接点会产生较高的温升, 高温又使得阻抗进一步提高, 接点附近的部位将因高温而劣化。此外,绕组端部振动(由于100Hz磁力)会加快这种劣化的进程。最后,因接点温度很高, 造成绝缘及线棒熔化。一旦接点断裂,这两根线棒端部间会出现严重的电弧,导致闪络及严重的局部破坏(图9)。

图九:一部13.8千伏,10.4万千伏安水轮发电机的线棒连接处故障。

避免定子过早的故障

上述这些过早的故障皆是定子线圈设计和/或制造的问题。具体地说:

?由于涂层的涂抹不良, 造成防晕涂层的问题。涂层劣化的加速造成绝缘系统在120oC以上的高温条件下运行和/或主绝缘承受高于3KV/mm的平均电压应力。

?端部绕组局放的可能原因:(一)线棒尺寸控制不佳和/或线槽内

紧邻的线棒排列不一致。(二)线棒端部转折半径过小, 导致连接处没有足够间距。和/或(三)在安装紧固和支撑结构件时考虑的间距及爬电距离不够。

?绕组松动的原因可能是未详细考虑因绝缘材料及楔块逐渐收缩

的影响,或为使线棒能容易安装入线槽内, 而牺牲了线棒于线槽的密合度。

?线棒与线棒间的焊接问题常是因为制造技艺不成熟, 绑匝品质管理不严谨所导致。

参考[1] 内包含了如何让线圈运转50年的细节, 其中重要部分将在以下说明。

较优良的绕组技术规范

避免定子线圈绝缘过早出现问题的最好办法,就是需要有一个适当的采购技术规范。IEC 60034要求定子线圈绝缘仅需通过AC耐压测试。此外,电机制造厂经常对线圈运转温度限制的设计有所混淆。因此,除了IEC60034要求的有关部分外,用户应载明下列规范:

?对30年寿命的电机, 在Class B的运转温升条件下, 需采用Class F 的绝缘系统。这意味着线圈温度(线槽内RTD所量测)不得高于120oC。要求电机寿命更久,更低的温度限制是必要的。

?要求主绝缘必须通过IEEE1043和IEEE1553(IEC没有同等规范)所规定的电压耐久性测试。要求通过电压耐久性试验比规范最高电压应力的设计更有效, 但是,这样可能会推迟引进新材料和新工艺。为了更进一步的保证,可以要求从定子线棒批量生产线中提取线棒供接受电压耐久性试验用。

?要求对新线圈进行局放试验, 并与常规防晕测试同时进行,以

确保线圈被适当的浸渍, 及端部线圈有足够的间距[9、10]。

?对于多匝式线圈, 要求依据IEEE522(IEC60034 第15节是通用规范, 不容易发现匝间绝缘的问题)进行电涌测试。

?要求使用当槽内线棒收缩时, 有抑制效果的槽楔或侧面填充材料,确保槽内物体不会松动。这可以包括使用两个或三个的部分槽楔, 波纹弹簧板和/或槽内适形材料,例如硅橡胶。另一方面,考虑规定线圈和铁芯的间距不超过0.1毫米。

?坚持有权在不需事前通知的情况下, 买方或代表买方的专

家, 可在定子制造过程中, 到电机制造厂对线棒或线圈的制造进行厂验。

上述大多数条件可能会增加定子线圈的制造成本, 但可换来线圈更长的

寿命及较少的维护。业主亦有责任确保电机在规定条件下运转, 确保线圈清

洁及牢固,并在电机制造厂提供的保修期结束前进行目视检查。如果电机制造厂可以向用户解释电机成本与寿命间的取舍, 对他们在设计新线圈时, 将是非常有帮助的。

监测

另一方面, 对定子线圈进行状态监测,侦测到线圈的问题时及早进行维修, 使得定子线圈有更长的寿命。对于水力发电厂的用户, 现在有许多工具可以侦测到发展中的潜在问题。而最重要的信息是来自专业人员定期对电机进行的细部目视检查。许多用户在每年几天的停机时间, 在不拉出转子的情况下进行局部检查。主要检查部位包括了定子槽楔(是否松动)、端部绕组(绷带是否有断裂或腐蚀迹象)和确定线圈是否受到了污染。

为扩大简易的目视检查, 还需执行:

?绝缘电阻和极化指数测试[5],客观地评估线圈是否被污染。

?离线或在线的局放测试[5,10], 可以侦测绝缘过热, 热循环、线圈松动, 防晕涂层等问题, 及上述所提到的一些制造问题。这些潜在故障在被目视检查发现前, 都可被有效的侦测到。

?高电压(hipot)测试, 以确保尤其是在端部绕组部位的主绝缘没有严重裂缝。但是,这种试验的风险是可能将绕组击穿。

结论

1. 线槽内线圈的磨损, 防晕涂层的退化及端部绕组的局部放电等问题, 已经导致近期生产的发电机在仅仅运转五年的时间就出现故障。事实证明, 某一些电机制造厂近年所生产的电机局放量要高于10年前出厂的同类型电机。

2. 为避免过早的故障, 新式水轮发电机的用户应确保有一个良好的采购规范和确保电机制造厂有优良的品质管理流程。要使电机长寿, 用户应对定子线圈进行状态监测并积极地修理任何早期发现的问题。

如何让图片转变成CAD格式

很多制图方面的朋友会遇到,如何把漂亮的、复杂的图片勾出在CAD里,成为CAD格式,下面跟着大地102一起,介绍下过程。

方法/步骤

1.在网络搜索一款能转变图片成为CAD格式的软件,因为软件挺多,可以随意下载。

我们这里介绍的是Algolab PtVector 这软件来作为实例。

2.软件说明书:

Algolab Photo Vector 提供了强大的位图文件矢量化功能,只需要简单几个步骤便可达到与繁复的矢量图描制工作相同效果。Algolab Photo Vector 是套自动化的点阵 / 矢量图转换工具,使用者无需做任何特别的设定即可将点阵格式图象转换为矢量格式。

当然,如果有特殊的需求,如需要得到较为精确的矢量格式,Algolab Photo Vect or 也提供了进阶设定的功能如修正颜色及线条矢量化的宽容度等,目前可供输入转换的格式包括 BMP、JPG 以及 PNG,在输出格式的选择上则为 WMF、EMF、DXF以及 AI 等几种,使用者可视需求自行选择。

3.打开软件发现界面很简洁,都是中文常见的几个按钮。

4.点击打开按钮,就是那个黄色文件夹的图标按键,选择一个图片,这里选择一个飞

机。

5.飞机进入了Algolab PtVector转变的页面,现在还是老样子,没发生变化。

6.如果选错了,我们可以重新点击这个,重新选择图片。

7.点击这个准备转变的按钮,起跑动作。

8.点击起跑动作的那个按钮后,可以发现图片已经变成了模糊的效果。

9.我们点击文件,另存,这里好几个格式,大家可以选择PS的,可以选择CAD的。

10.弹出一个内容框,可以选择保存的路径。

11.查阅桌面的文件,看属性,是CAD的格式。

12.哇塞,看到了吗,CAD格式的飞机出来了,不用自己画,多爽啊。

焊缝质量标准

4.1 保证项目

4.1.1 焊接材料应符合设计要求和有关标准的规定,应检查质量证明书及烘焙记录。

4.1.2 焊工必须经考试合格,检查焊工相应施焊条件的合格证及考核日期。

4.1.3 Ⅰ、Ⅱ级焊缝必须经探伤检验,并应符合设计要求和施工及验收规范的规定,检

查焊缝探伤报告。

4.1.4 焊缝表面Ⅰ、Ⅱ级焊缝不得有裂纹、焊瘤、烧穿、弧坑等缺陷。Ⅱ级焊缝不得有

表面气孔、夹渣、弧坑、裂纹、电弧擦伤等缺陷,且Ⅰ级焊缝不得有咬边、未焊满等缺陷。

4.2 基本项目

4.2.1 焊缝外观:焊缝外形均匀,焊道与焊道、焊道与基本金属之间过渡平滑,焊渣和

飞溅物清除干净。

4.2.2 表面气孔:Ⅰ、Ⅱ级焊缝不允许;Ⅲ级焊缝每50mm 长度焊缝内允许直径≤0.4t;

且≤3mm 气孔2 个;气孔间距≤6 倍孔径。

4.2.3 咬边:Ⅰ级焊缝不允许。

Ⅱ级焊缝:咬边深度≤0.05t,且≤0.5mm,连续长度≤100mm,且两侧咬边总长≤10%焊缝

长度。

Ⅲ级焊缝:咬边深度≤0.lt,且≤lmm。

注:t 为连接处较薄的板厚。

4.3 允许偏差项目,见表5-1。

5 成品保护

5.1 焊后不准撞砸接头,不准往刚焊完的钢材上浇水。低温下应采取缓冷措施。

5.2 不准随意在焊缝外母材上引弧。

5.3 各种构件校正好之后方可施焊,并不得随意移动垫铁和卡具,以防造成构件尺寸偏

差。隐蔽部位的焊缝必须办理完隐蔽验收手续后,方可进行下道隐蔽工序。

5.4 低温焊接不准立即清渣,应等焊缝降温后进行。

6 应注意的质量问题

6.1 尺寸超出允许偏差:对焊缝长宽、宽度、厚度不足,中心线偏移,弯折等偏差,应

严格控制焊接部位的相对位置尺寸,合格后方准焊接,焊接时精心操作。

6.2 焊缝裂纹:为防止裂纹产生,应选择适合的焊接工艺参数和施焊程序,避免用大电

流,不要突然熄火,焊缝接头应搭10~15mm,焊接中木允许搬动、敲击焊件。

6.3 表面气孔:焊条按规定的温度和时间进行烘焙,焊接区域必须清理干净,焊接过程

中选择适当的焊接电流,降低焊接速度,使熔池中的气体完全逸出。

6.4 焊缝夹渣:多层施焊应层层将焊渣清除干净,操作中应运条正确,弧长适当。

注意

熔渣的流动方向,采用碱性焊条时,上须使熔渣留在熔渣后面。

7 质量记录

本工艺标准应具备以下质量记录:

7.1 焊接材料质量证明书。

7.2 焊工合格证及编号。

7.3 焊接工艺试验报告。

7.4 焊接质量检验报告、探伤报告。

7.5 设计变更、洽商记录。

7.6 隐蔽工程验收记录。

7.7 其它技术文件。

焊缝等级分类及无损检测要求

焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质量等级,

1. 在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质量等级为

1) 作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级;

2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。

2 .不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级

3 .重级工作制和起重量Q≥50t吊车梁的腹板与L冀缘之间以及吊车析架上弦杆与节点板之间的T形接头焊缝均要求焊透.焊缝形式一般为对接与角接的组合焊缝,其质量等级不应低于二级

4 .不要求焊透的’I'形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为:

1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50t的中级工作制吊车梁,焊缝的外观质量标准应符合二级;

2) 对其他结构,焊缝的外观质量标准可为二级。

外观检查一般用目测,裂纹的检查应辅以5 倍放大镜并在合适的光照条件下进行,必要时可采用磁粉探伤或渗透探伤,尺寸的测量应用量具、卡规。

焊缝外观质量应符合下列规定:

1 一级焊缝不得存在未焊满、根部收缩、咬边和接头不良等缺陷,一级焊缝和二级焊缝不得存在表面气孔、夹渣、裂纹和电弧擦伤等缺陷;

2 二级焊缝的外观质量除应符合本条第一款的要求外,尚应满足下表的有关规定;

3 三级焊缝的外观质量应符合下表有关规定

焊缝质量等级

检测项目

二级

三级

未焊满≤0.2+0.02t 且≤1mm,每

100mm 长度焊缝内未焊满累积

长度≤25mm ≤0.2+0.04t 且≤2mm,每

100mm 长度焊缝内未焊满累积长度≤25mm

根部收缩≤0.2+0.02t 且≤1mm,长

度不限≤0.2+0.04t 且≤2mm,长度不限

咬边≤0.05t 且≤0.5mm,连续

长度≤100mm,且焊缝两侧咬边总长≤10%焊缝全长≤0.1t 且≤1mm,长度不限

裂纹不允许允许存在长度≤5mm 的弧坑裂纹

电弧擦伤不允许允许存在个别电弧擦伤

接头不良缺口深度≤0.05t 且≤

0.5mm,每1000mm 长度焊缝内不得超过1 处缺口深度≤0.1t 且≤1mm,每1000mm 长度焊缝内不得超过1 处

表面气孔不允许每50mm 长度焊缝内允许存在直径≤0.4t 且≤3mm 的气孔2 个;孔距应≥6倍孔径

表面夹渣不允许深≤0.2t,长≤0.5t 且≤

20mm

设计要求全焊透的焊缝,其内部缺陷的检验应符合下列要求:

1 一级焊缝应进行100%的检验,其合格等级应为现行国家标准《钢焊缝手工超声波探伤方法及质量分级法》(GB 11345)B 级检验的Ⅱ级及Ⅱ级以上;

2 二级焊缝应进行抽检,抽检比例应不小于20%,其合格等级应为现行国家标准《钢焊缝手工超声波探伤方法及质量分级法》(GB 11345)B级检验的Ⅲ级及Ⅲ级以上;

3 全焊透的三级焊缝可不进行无损检测。

4 焊接球节点网架焊缝的超声波探伤方法及缺陷分级应符合国家现行标准

JG/T203-2007《钢结构超声波探伤及质量分级法》的规定。

5 螺栓球节点网架焊缝的超声波探伤方法及缺陷分级应符合国家现行标准

JG/T203-2007《钢结构超声波探伤及质量分级法》的规定。

6 箱形构件隔板电渣焊焊缝无损检测结果除应符合GB50205-2001标准第7.3.3 条的有关规定外,还应按附录C 进行焊缝熔透宽度、焊缝偏移检测。

7 圆管T、K、Y 节点焊缝的超声波探伤方法及缺陷分级应符合GB50205-2001标准附录D的规定。

8 设计文件指定进行射线探伤或超声波探伤不能对缺陷性质作出判断时,可采用射线探伤进行检测、验证。

9 射线探伤应符合现行国家标准《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的规定,射线照相的质量等级应符合AB 级的要求。一级焊缝评定合格等级应为《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的Ⅱ级及Ⅱ级以上,二级焊缝评定合格等级应为《钢熔化焊对接接头射线照相和质量分级》(GB 3323)的Ⅲ级及Ⅲ级以上。

10 以下情况之一应进行表面检测:

1)外观检查发现裂纹时,应对该批中同类焊缝进行100%的表面检测;

2)外观检查怀疑有裂纹时,应对怀疑的部位进行表面探伤;

3)设计图纸规定进行表面探伤时;

4)检查员认为有必要时。

铁磁性材料应采用磁粉探伤进行表面缺陷检测。确因结构原因或材料原因不能使用磁粉探伤时,方可采用渗透探伤。磁粉探伤应符合国家现行标准《焊缝磁粉检验方法和缺陷磁痕的分级》(JB/T 6061)的规定,渗透探伤应符合国家现行标准《焊缝渗透检验方法和缺陷迹痕的分级》(JB/T 6062)的规定。磁粉探伤和渗透探伤的合格标准应符合外观检验的有关规定。

设计要求全焊透的一、二级焊缝应采用超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出判断时,应采用射线探伤,其内部缺陷分级及探伤方法应符合现行国家标准《钢焊缝手工超声波探伤方法和探伤结果分级》GB11345或《钢熔化焊对接接头射结照相和质量分级》GB3323的规定。

焊接球节点网架焊缝、螺栓球节点网架焊缝及圆管T、K、Y形点相贯线焊缝,其内部缺陷分级及探伤方法应分别符合国家现行标准JG/T203-2007《钢结构超声波探伤及质量分级法》、《建筑钢结构焊接技术规程》JGJ81的规定。一级、二级焊缝的质量等级及缺陷分级应符合下表的规定。

一、二级焊缝质量等级及缺陷分级

焊缝质量等级一级二级

内部缺陷

超声波探伤评定等级ⅡⅢ

检验等级B级B级

探伤比例100% 20%

内部缺陷

射线探伤评定等级ⅡⅢ

检验等级AB级AB级

探伤比例100% 20%

注:探伤比例的计数方法应按以下原则确定:(1)对工厂制作焊缝,应按每条焊缝计算百分比,且探伤长度应不小于200mm,当焊缝长度不足200 mm时,应

对整条焊缝进行探伤;(2)对现场安装焊缝,应按同一类型、同一施焊条件的焊缝条数计算百分比,探伤长度应不小于200 mm,并应不少于1条焊缝。

说明:根据结构的承载情况不同,现行国家标准《钢结构设计规范》GBJ17中将焊缝的质量为分三个质量等级。内部缺陷的检测一般可用超声波探伤和射线探伤。射线探伤具有直观性、一致性好的优点,过去人们觉得射线探伤可靠、客观。但是射线探伤成本高、操作程序复杂、检测周期长,尤其是钢结构中大多为T

形接头和角接头,射线检测的效果差,且射线探伤对裂纹、未熔合等危害性缺陷的检出率低。超声波探伤则正好相反,操作程序简单、快速,对各种接头形式的适应性好,对裂纹、未熔合的检测灵敏度高,因此世界上很多国家对钢结构内部质量的控制采用超声波探伤,一般已不采用射线探伤。

随着大型空间结构应用的不断增加,对于薄壁大曲率T、K、Y型相贯接头焊缝探伤,国家现行行业标准《建筑钢结构焊接技术规程》JGJ81中给出了相应的超声波探伤方法和缺陷分级。网架结构焊缝探伤应按现行国家标准

JG/T203-2007《钢结构超声波探伤及质量分级法》的规定执行。

本规范规定要求全焊透的一级焊缝100%检验,二级焊缝的局部检验定为抽样检验。钢结构制作一般较长,对每条焊缝按规定的百分比进行探伤,且每处不小于200mm的规定,对保证每条焊缝质量是有利的。但钢结构安装焊缝一般都不长,大部分焊缝为梁一柱连接焊缝,每条焊缝的长度大多在250-300mm之间,采用焊缝条数计数抽样检测是可行的。

1.T形接头、十字接头、角接接头等要求熔透的对接和角对接组合焊缝,其焊脚尺寸不应小于t/4;设计有疲劳验算要求的吊车梁或类似构件的腹板与上翼缘连接焊缝的焊脚尺寸为t/2,且不应小于10mm。焊脚尺寸的允许偏差为0-4 mm。检查数量:资料全数检查;同类焊缝抽查10%,且不应少于3条。

检验方法:观察检查,用焊缝量规抽查测量。

说明:以上1.对T型、十字型、角接接头等要求焊透的对接与角接组合焊缝,为减少应力集中,同时避免过大的焊脚尺寸,参照国内外相关规范的规定,确定了对静载结构和动载结构的不同焊脚尺寸的要求。

2.焊缝表面不得有裂纹、焊瘤等缺陷。一级、二级焊缝不得有表面气孔、夹渣、弧坑裂纹、电弧擦伤等缺陷。且一级焊缝不许有咬边、未焊满、根部收缩等缺陷。检查数量:每批同类构件抽查10%,且不应少于3件;被抽查构件中,每一类型焊缝按条数抽查5%,且不应少于1条;每条检查1条,总抽查数不应少于10处。

检验方法:观察检查或使用放大镜、焊缝量规定和钢尺检查,当存在疑义时,采用渗透或磁粉探伤检查。

说明:以上考虑不同质量等级的焊缝承载要求不同,凡是严重影响焊缝承载能力的缺陷都是严禁的本条对严重影响焊缝承载能力外观质量要求列入主控项目,并给出了外观合格质量要求。由于一、二级焊缝的重要性,对表面气孔、夹渣、弧

坑裂纹、电弧擦伤应有特定不允许存在的要求,咬边、未焊满、根部收缩等缺陷对动载影响很大,故一级焊缝不得存在该类缺陷。

相关文档
最新文档