赛车车轮的空气动力特性

赛车车轮的空气动力特性
赛车车轮的空气动力特性

赛车车轮的空气动力特性

作者:张英朝

来源:《汽车与运动》2006年第12期

前几期为大家介绍了赛车车身的空气动力学方面的知识,这期我们为大家介绍车轮的空气动力特性。以前我们介绍过,赛车分两大类,一类是裸露车轮的赛车,一类是非裸露车轮的赛车,这两种赛车空气动力特性有非常大的差别。产生这种差别的主要原因,就是它们轮胎安装方式的不同。

简单的看来,裸露车轮暴露在气流之中,肯定对空气动力特性产生巨大的影响,而非裸露车轮的赛车相对来说影响就会小些。

从空气动力学来讲,轮胎可以看成是圆柱体,它的空气动力特性就类似与圆柱绕流的空气动力特性。但是它们之间又有很大的不同:一是圆柱绕流是匀速气流中的对称的流场,而轮胎有旋转,流场不对称;二是圆柱绕流悬于空气中,而轮胎与地面接触,三是轮胎周围气流要同轮胎周围的汽车车体相互干扰作用,裸露车轮的赛车前后车轮之间也会产生相互作用。从图一中非常直观地可以看到这种差别,图中上图是车轮旋转的情况,中图是地面附近的情况,下图是理想流体的绕流问题。

一些研究表明:滚动车轮的汽车模型所受到的气动升力比静止车轮的汽车模型大30%,而对于车轮完全暴露的赛车,其车轮阻力占汽车总阻力的比例可以高达45%。车轮的旋转速度对车轮气动力系数影响非常地巨大,气动力系数甚至可能成倍增长。

对于裸露车轮的赛车来说,能够改善前后轮的空气动力特性是非常重要的。即使是F1车队也是在努力探索改善车轮附近流场的方式。F1赛车的前翼两边的小翼、后轮翼等等都是为了疏导赛车车轮附近的气流而设置的。对于裸露车轮的赛车一般后轮都可以得到更好的处理,在前轮的“保护”下,其气动阻力一般小于前轮,约为前轮的一半。

对于非裸露车轮的汽车,由于轮腔的包裹,可以大大地减小气动阻力和升力。轮胎只有接近地面部分才和气流正面碰撞,减小了迎风面积,车轮周围的车身也可以改善车轮周围的气流,因此气动阻力降低。在汽车轮腔内有高速的气流流过,可以对轮腔产生较大的方向向下的负压,减小气动升力。同裸露车轮的赛车一样,非裸露车轮的赛车前轮所受的气动阻力和升力要比后轮大。

就F1赛车而言,前后翼是关键的空气动力学附加装置,但是前后翼的位置和前后轮非常的接近,这样车轮的干扰对前后翼会产生重大的影响。由于前轮的阻挡,前翼附近的气流速度会降低,由于后轮的干扰,流经赛车尾翼的气流方向会发生倾斜,可以减小尾翼产生负升力的效能。

F1方程式赛车的空气动力学课件.doc

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1 领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学 几乎主宰着一辆赛车的全部性能。从上纪六十年代F1 赛车第一次使用尾翼,到七十年代地 面效应的引进,再到近些年双层扩散器、废气驱动扩散器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。

空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯 中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气 动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上 的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究 中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种 翼形不仅成熟,而且有效。 F1赛车在高速行驶时,流过前翼所在区域的气流被前前翼分割为两部分:一部分从翼 片的上表面流过,另一部分则流过翼片的下表面,这两股气流依附在翼片上流动,最后在前

汽车空气动力学

随着高速公路的发展,燃油价格的上涨以及越发严格法规的颁布,对汽车的动力性、经济性、操纵稳定性和舒适性提出了越来越高的要求,这使得汽车空气动力学的研究成为汽车行业的重点研究方向之一。采用计算流体力学方法对其性能进行预测,相比风洞试验可以节约资金,缩短新车型开发周期。面对这种形势,本文针对车身设计提出了一种通过空气动力学性能分析来确定造型的工业设计方法,并对汽车三维外流场进行了数值模拟。本文首先阐述了轿车外流场数值模拟的整个过程,包括几何、物理模型的建立、湍流模型的选取、边界条件的添加等。所分析的模型选择某豪华轿车1:2实车模型,对实车模型作了如下简化:忽略车身外部突起物如后视镜、刮雨器等部分;没有考虑车轮影响;对车身底部做了简化,没有模拟车底真实的几何形状。为了节省计算耗费,只取实车模型沿纵向对称面的一半。利用FLUENT进行模型分析,得出车身表面压力分布图、压力场的流态显示,并计算了相应的阻力系数,从而较好地模拟了轿车的外流场,确定了车身空气动力学特性,并对模型在不同的边界条件下和不同的湍流模型下进行了比较和分析,为数值模拟的实用化做了一些有益的尝试。本文还详细论述了基于空气动力学的车身造型设计方法,以及其两条技术路线,积极探索空气动力学在车身造型中的具体应用,为车身设计提供了新的思路。最后得出结论,汽车空气动力特性的数值模拟可以辅助汽车设计师,在设计初步完成之后,对其进行流场的数值模拟,对设计提出改进意见,争取达到美学与空气动力性完美结合的程度。 汽车空气动力学主要是应用流体力学的知识,研究汽车行驶时,即与空气产生相对运动时,汽车周围的空气流动情况和空气对汽车的作用力(称为空气动力),以及汽车的各种外部形状对空气流动和空气动力的影响。 自从世界上有了第一辆汽车以后,德国就在航空风洞中进行了车身外形实验研究。后来德国人贾莱·克兰柏勒提出前圆后尖的水滴状最小空气阻力造型设计方案,从而找到了解决形状阻力的途径。美国人W.Elay 于1934年用风洞测量了各种车身模型的空气阻力系数。法国人J.Andreau则提出了汽车表面压差阻力的概念,并研究了侧风稳定性。2O世纪40年代,另一位法国人L.Romani对诱导阻力进行了研究。6O年代初,英国人white通过风洞实验提出了估算空气阻力系数的方法。到7O年代,汽车空气动力学才真正成为一门独立学科。我国是在8O年代才较为系统地研究汽车空气动力学的。 目前世界上许多公司都在汽车空气动力学研究方面进行探索与竞争,并且大都实力雄厚、各有建树。美国几乎各大汽车公司都有自己的飞机制造子公司。通用有休斯飞机公司,克莱斯勒有湾流公司。苏联的伏尔加有一个27m2的风洞,最高风速1 20km/h。法国雷诺已经开展了计算机空气动力学的研究。西德大众最近也购得CDCgo00型计算机,其目的之一可能就是汽车空气动力学的摸拟。现在世界上计算空气动力学一流水平当属美国NASA。NASA在飞行器计算空气动力学方面拥有一流的学术、研究和应用水平,并且在不断更新其巨型机。许多高超音速空气动力试验无法进行,就用计算机进行摸拟。 我国汽车工业由于近年来开始生产轿车才开始了汽车空气动力学的研究。当前的主要任务应该是抓住太好时机,建立起我国自已的汽车空气动力学研究,试验、设计的综合系统,争取国家及有关高等院校科研单位的支持,建立相应的开放实验室,争取第一流的专家及广泛的国际交流。开放实验室主要进行汽车空气动力学的计算机摸拟、外形的空气动力学优化设计及相关的并行软、硬件,计算数学的研究。其中轿车的空气动力学摸拟与优化必将太大加快新车型的开发速度,以提高产品在世界市场的竞争力,并为我国产品参与世界市场竞争创造一个开放的高水乎研究环境。在空气动力学的研究、应用的世界范围的角逐

旋翼的空气动力特点9页

旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为r的圆柱面把桨叶裁开(参阅图2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度(等于Ωr)和垂直于旋转平面的速度(等于Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加不同。与机翼相比较,这就是桨叶工作条件复杂,对它的分析比较麻烦的原因所在。 旋翼拉力产生的滑流理论 现以直升机处于垂直上升状态为例,应用滑流理论说明旋翼拉力产生的原因。此时,将流过旋翼的空气,或正确地说,受到旋翼作用的气流,整个地看做一根光滑流管加以单独处理。假设: 空气是理想流体,没有粘性,也不可压缩; 旋转着的旋冀是一个均匀作用于空气的无限薄的圆盘(即桨盘),流过桨盘的气流速度在桨盘处各点为一常数; 气流流过旋翼没有扭转(即不考虑旋翼的旋转影响),在正常飞行中,滑流没有周期性的变化。 根据以上假设可以作出描述旋翼在:垂直上升状态下滑流的物理图像,如下图所示,图中选取三个滑流截面,So、S1和S2,在So面,气流速度就是直升机垂直上升速度Vo,压强为大气压Po,在S1的上面,气流速度增加到V1= Vo+v1,压强为P1上,在S1 的下面,由于流动是连续的,所以速度仍是V1,但压强有了突跃Pl下>P1上,P1下一P1上即旋翼向上的拉力。在S2面,气流速度继续增加至V2=Vo+v2,压强恢复到大气压强Po。 这里的v1是桨盘处的诱导速度。v2是下游远处的诱导速度,也就是在均匀流场内或静止空气中所引起的速度增量。对于这种现象,可以利用牛顿第三用动定律来解释拉力产生的原因。 旋翼的锥体

揭秘F1赛车科技(三):空气动力学及TC系统

【知识贴】揭秘F1赛车科技(三):空气动力学及TC系统 1楼 一、空气动力学 现代F1赛车就像是一架贴地飞行的战斗机,只不过它的“机翼”产生的力是向下的。随着技术的完善,空气动力学已经成为车队最后可 以竞争的领域之一,这也是为什么各支车队每年要花费几百万到数千 万美元在空气动力学套件的研发上,所以空气动力学可谓是赛事制胜 的法宝。 简单的空气动力模型 虽然空气动力学是非常复杂的工程,但是工程师们考虑的问题其 实只有两个:一、增加下压力,让赛车紧抓地面,这样可以以更高的 速度过弯;二、减小阻力,通过减小气流扰动产生的阻力以提高赛车 在直道的速度。因为增加下压力的同时会产生风阻,所以两个看似矛 盾方向的平衡点,正是制胜的关键。 F1车队开始研究空气动力学始于上世纪60年代末期,但是它的原理早在莱特兄弟的飞机上天之前就已经由伯努利发现了。当气流以不 同的速度通过一个机翼的上下表面,就会产生压强差,为了平衡这种 压强差,机翼就会向压强小的一面运动。我们只要让气流通过的两个 翼面的长度不一样,就可以产生速度差,进而产生我们需要的升力, 或者对于F1来说的下压力。F1就像是倒过来的机翼,现代F1赛车 可以产生3.5倍于自身重量的下压力,简单的说,就是只要达到一定 的速度,这些赛车都可以贴在天花板上开而不掉下来。 理论上说合适的设计可以产生非常高的下压力,但是过高的下压 力所带来的高速会让车手的身体无法承受,而导致一些事故的发生, 从七十年代开始,定风翼的位置、大小、角度等逐步被限制,从而限

制车速的提高。但是F1车队的工程师很快找到了产生下压力的新方法,那就是七十年代莲花车队曾在Brabham BT46B赛车上使用的地效应底盘,这种底盘就是在车后安装一个巨大的风扇,然后把车底部的空气全部抽走产生几乎真空的环境,让大气压把赛车紧紧压在地面上。这辆赛车只参加过一站比赛,它的巨大优势让国际汽联马上禁止了这种设计。 地效应底盘的莲花F1赛车 现在的F1赛车底盘主要靠车底的侧裙和后部的扩散器来达到相似的效果:底盘周围的侧裙对空气扰流可以产生气坝,气坝阻止了周围的空气进入底盘下部,而扩散器可以加速车底的空气离开,等于抽走了车底的空气而在底盘与地面之间生成了一个超低压区,由此可以产生巨大的下压力。 标注的地方就是扩散器,平整的底盘利于气流高速通过,纵贯车身的突起是底盘龙骨,也是整个赛车最坚固的部分

大学生方程式赛车队员培养规划

锐狮电动方程式赛车队人员培养规划 2018.5.04 一、指导思想 社会是人才需求的提出方和最终的决定者,并长期处于市场主导地位。为了缩短毕业生的磨合期,提高学生能力,高校通过修正培养目标及培养计划、提供实践平台等方式以满足社会的需求;学生为了以后能尽快适应工作岗位,可以在在校期间,通过丰富理论知识、增加实践过程来完善自己。 大学生方程式赛车项目,是学生理论与实践相结合的平台,为培养学生的专业技能和团队协作能力奠定了基础。上海工程技术大学锐狮电动方程式赛车队提供了该项目的岗位培训与实践平台,该项目要求大学生团队在一年内完成一辆方程式赛车的设计、加工、组装、调试,并通过营销报告、设计报告、成本报告全方位锻炼学生能力,同时通过团队的管理、财务的运营、车队宣传交流及商业赞助协恰提高了学生管理、财务、交流、商务等方面能力,符合上海工程技术大学面向生产一线培养优秀人才的办学宗旨和建设现代化特色大学的办学理念,适应了我国社会、经济和工程技术发展对高等工程技术人才的需求。 二、培养目标 上海工程技术大学锐狮电动方程式车队面向全校各专业,培养具有扎实的理论基础,掌握工业设计、工程制图、工业制造、电子电工、商务营销、项目管理、财务会计等理论知识和实践能力的专才和全才。培养能够担任车队运营、发展任务的战略人才。培养具有零部件设计、生产工艺、成本控制、产品试验及质量控制等工程实践能力,具有良好的团队合作精神、创新意识和创业精神,具备适应现代行业快速发展的优良专业素养,能够在企业从事管理、财务、商务、设计、制造、研发、测试、质量控制等工作的工程应用型人才。 三、培养方案 1.各组根据各组培养规划进行组内培训,车队按期举办全体培训。 2.队员以各组培养规划为纲领,结合个人分工,自学为主,车队培训为辅。 3.通过学习完成知识体系构建,形成自主学习意识,并能够将理论与实践相结合。 四、能力要求 1. 工程知识:能够利用工程基础理论和专业知识解决一般工程问题。 2. 问题分析:能够应用自然科学和工程科学的基本原理,识别、表达、并通过文献分析复杂工 程问题,并获得有效结论。 3. 设计/开发解决方案:能够设计针对优化问题的解决方案,设计满足方程式赛车需求的系统、 零部件,熟悉项目整套运营方案,并能够在设计环节中体现创新意识。 4. 研究:能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计实验、分析与 解释数据、并通过信息综合得到合理有效的结论。 5. 使用现代工具:能够针对复杂工程问题,选择与使用恰当的技术、资源、工具和软件,包括 对复杂工程问题的预测与模拟,并能够理解其局限性。 6. 个人和团队:能够在多学科背景下的团队中承担个体、团队成员以及负责人的角色。 7. 沟通:能够就复杂工程问题与相关负责人进行有效沟通,包括撰写设计报告和成本报告、陈 述发言或回应指令。并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。 8. 项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用。 9. 文件处理:能够按照规范编写各种文件,能够与正规公司进行邮件的接洽交流。 10.自主学习:大学不是填鸭式教育,也不可能靠督促来学习,但人与人之间的差距往往就在自 主学习中拉开,所以要具有自主学习的意识,能够根据目标快速学习并应用。

汽车空气动力学重点

第一章 绪论 1. 空气动力学的研究方法1实验研究2理论分析3数值计算 2. 汽车流场包括和内部流场车身外部流场 3. 气动阻力增加,加速能力下降。当汽车达到最大车速时,加速度的值就瞬低为零 4. 消耗于气动阻力的功率T D A C P ηρ23 a u =,功率与速度3次方、阻力与速度2次方成正比 5. 汽车空气动力特性对操纵稳定性的影响:1.升力和纵倾力矩都将减小汽车的附着力,从 而使转向轮失去转向力,使驱动轮失去牵引力,影响汽车的操纵稳定性,质量轻的汽车,特别是重心靠后的汽车,对前轮胜利越敏感。2.为提高汽车的方向稳定性,要减小侧向力,使侧向力的作用点移向车身后方 6. 汽车空气动力学发展的历史阶段 答:(1)基本形状化造型阶段(2)流线形化造型阶段:①杰瑞提出“最小阻力的外形是以流线形的一半构成的车身”‘只有消除尾部的分离,才能降低阻力’;②雷提出:短粗的尾部与长尾相比,仅使气动阻力系数有较小的升高,1934年起,雷提出的粗大后尾端的形状逐渐发展为快背式。③康姆提出,对大阻力的带棱角的车型,气动阻力系数随横摆角的增加变化很小,而对于流线型汽车,随着横摆角变化,阻力系数有很大变化,即地租汽车侧风稳定性差、。(3)车身细部优化阶段:汽车空气动力学设计的原则是首先进行外形设计,然后对形体细部逐步或同时进行修改,控制以及防止气流的分离现象发生以降低附着力,成为细部优化法(4)汽车造型的整体优化阶段:整体优化法设计的原则是首先确定一个符合总部制要求的理想的低阻形体,在其发展成实用化汽车的每一设计步骤中,都应严格的保证形体的光顺性,使气流不从汽车表面分离,称之为形体最佳化 第二章 汽车空气动力学概述 7. 气动升力及纵倾力矩:1.由于汽车车身上部和下部气流的流速不同,使车身上部和下部 形成压力差,从而产生升力。作用于汽车上的升力将减小轮胎对地面的压力,使轮胎附着力和侧偏刚度降低,影响汽车的操纵稳定性。 2.车身底部外形对升力系数影响很大,故不能仅根据侧面形状来分析汽车空气动力特性 8. 侧向力及横摆力矩:1.侧向力和横摆力矩都影响汽车的行驶稳定性,在非对称气流中, 横摆力矩有使汽车绕垂直轴转动的趋势。 2.流线型系数越大,侧向力系数越小,并且侧向力系数几乎与横摆角成比例增加,一般长度较小、宽度较大、车身低矮的汽车空气动力稳定性好 9. 侧倾力矩:汽车的高度和宽度对侧倾力矩影响很大,一般低而宽的汽车侧倾力矩系数比 高而狭长的汽车的汽车的侧倾力矩系数小,汽车设计时,应尽量使风压中心接近侧倾轴线 10. 阻力分类:气动阻力:外部阻力(形状阻力、诱导阻力)和内部阻力(发动机冷却系阻 力、驾驶室内空调阻力、汽车部件冷却阻力),诱导阻力是升力的水平分力。 11. 空气动力特性影响因素:前端形状、风窗玻璃与发动机罩形状、顶盖外形、车身侧面 外形、后窗周围形状、车身底部外形。 12. 在设计中,前端形状如能尽量倒圆棱角,使外形接近流线型,并减小车头的正面投影面 积,就可得到较好的空气动力学效果 13. 影响风窗玻璃与发动机转角部位空气动力特性的主要因素是:发动机罩与风窗玻璃的夹 角、发动机罩的三维曲率及结构、风窗玻璃的三维曲率及结构 14. 车身侧面外形对空气动力特性的影响:在保证总布置设计要求即在居住空间控制的范 围内,影视侧面外形曲率达到最佳化,消除侧面部件的外凸和棱角,使其平滑以消除和

走近F1——空气动力学基础

空气动力学 与公路上普通汽车相比,现代一级方程式赛车和喷气式战斗机有更多的相似之处。空气动力学是赛车运动中致胜的关键,每年车队们都会投入几千万美元用于这方面的研发。 气动设计师有两个首要关注点:第一,制造下压力使赛车轮胎更贴近赛道地面,同时提升回旋力;第二,将由空气涡流引起、使车速减慢的空气阻力降低至最小。 20世纪60年代,一些车队开始尝试现在我们熟知的车侧翼实验。赛车侧翼与飞机机翼的运转法则完全相同,只不过方向刚好相反。根据伯努利定律,飞机所在等高线的飞行距离不同,机翼上下的气流速度也不同,导致压强不同。因为上下压力要保持平衡,机翼就会向压力小的方向运动。飞机就是利用机翼起飞,赛车用它的侧翼产生下压力。正因为空气动力的下压力存在,一部现代一级方程式赛车在侧面可以产生3.5g的回旋力,这个大小是其车身重量的3.5倍。即为,理论上讲,这个压力可以让赛车高速时挨着地面行驶。 早期试验中使用的可移动的车翼和单点悬挂造成过几起极为严重的事故,因此1970年赛季引入了车翼大小和位置的限制规定。随着时间推移,这些规定直到今天仍然大面积适用。

20世纪70年代中期,人们发现了“地面效应”下压力。莲花公司的工程师发现,通过在赛车的底面安装巨大的车翼可以使车子像翅膀一样运动同时又紧贴地面。源于这一想法最典型的例子是戈登?墨里设计的布拉汉姆BT46B,这部车加装冷却风扇抽取车身裙角处的空气以增加巨大的下压力。在其它车队技术革新后,这部车仅在赛场上出现一次之后便销声匿迹了。根据“地面效应”的成效,规则也跟着不断改变。起先,禁止在车身裙角处控制低压区域。之后,对阶形地板提出要求标准。

空气动力学的公式SAE

大学生方程式赛车的空气动力学:初步设计和性能预测 斯科特Wordley和杰夫·桑德斯 莫纳什风洞,机械工程 莫纳什大学 版权所有?2005 SAE国际 摘要 一个空气动力学套件的初始设计描述了SAE方程式赛车。式SAE审查关于空气动力学的规则是用来开发对前、后规范的实际参数倒置的机翼,―翅膀‖。这种翼包为了在产生最大的下压力规定的可接受的范围内增加阻力和减少最高速度。这些翅膀上公式的净效应SAE汽车的性能在动态事件之后预测。一个配套文件[ 1 ]详细介绍,CFD,风洞和赛道上的测试这的空气动力学套件的开发。 简介 SAE方程式是一个大学生设计竞赛,学生设计组,建立自己的开放的比赛轮赛车。自1981开始在美国[ 2 ],这个公式已经蔓延到欧洲,亚洲,南美国和澳大利亚,几百国际团队,每年都有许多赛车比赛举行的世界。不同于传统的赛车比赛,球队获得八分不同的事件,和最高的球队累积总获胜。有三的静态事件(成本,演示,设计)在球队是判断他们设计的理由,介绍和成本技术,五动态事件(加速,刹车盘,越野,燃油经济性,耐久性)测试的汽车和赛道上的[ 3 ]学生驾驶性能。这个加权分系统决定,成功是一种仔细平衡赛车的各个方面的事过程设计和开发。 SAE方程式:设计收敛? 不同于其他形式的长期稳定的比赛规则,大学生方程式赛车已经收敛于一个单一的,好的定义,设计模式。有几种理论这是为什么:规则的权重可以更仔细通过对竞争对手在其他车辆性能的一个方面的性能提升地区。例如涡轮增压器可用于在潜在费用增加发动机功率燃油经济性和成本的评分贫困和知识信息管理保持团队内由于高翻身成员可以破坏长期设计验证周期,造成重复错误经常回广场的人。大多数的团队在一个只有竞争竞争每年,意味着实际的时间在驱动开发这些车是有限的,与周的顺序。缺乏定期比赛和与其他球队的比较因此限制了接触,并通过,最佳实践。竞争仍然集中在学习,这样的团队将继续技术感兴趣的人以及那些看到提供一个整体的性能优势。过去的SAE方程式比赛的结果[ 4 ]分析表明,迄今为止,最简单的方法往往是最成功的十强,绝大多数完成团队的运行空间钢框架的汽车自然吸气发动机600cc。虽然这是假设这种趋势还会持续一段时间,四在设计理念的重大转变,已经出现在最近的年。碳纤维硬壳式底盘使用的增加,为球队尽力降低底盘重量同时保持或提高抗扭刚度。宽传播对涡轮增压也浮出水面随着康奈尔的不断成功,伍伦贡大学。新一代单缸摩托车的发动机提供的性能增益在相反的方向,像RMIT和代尔夫特理工队使用减小的重量和燃料使用的大学抵消减少的功率。几支球队,包括在阿灵顿,密苏里罗拉德克萨斯大学,加州—聚和莫纳什都使用了机翼和其它气动装置产生压力的提高过弯速度的主要目的。一些球队采用一个以上的这些方法。主要的设计变化以上,性能气动设备可能是最困难的学生小组预测和量化。像这样的,相当多的争论仍在继续的SAE方程式社区的利益(或其他)的使用倒翼型的―翅膀‖,这种竞争。莫纳什大学队(墨尔本,澳大利亚)用他们的SAE方程式空气动力装置汽车运行近四年来。这个团队也在有定期的访问有些独特的位置一个全面的汽车风洞空气动力学测试。本文中,第二由同一作者【1】,总结了四年之久的气动设计和发展过程中所进行的这个团队,和提出了在公共领域的第一个数据气动性能的SAE方程式赛车。这是希望的信息和方法,包含这里将作为一个指导和基准其他球队考虑气动使用在SAE方程式装置。SAE方程式规则的思考与大多数其他赛车类相比,目前的SAE方程式规则[ 2 ]提供了一些独特的气动使用的机遇和挑战设备。这些规则将简要探讨在这里,从那些对通用汽车的设计和性能,并移动到更多的有关对气动助手的使用。广阔的这些规则对设计的影响一个SAE方程式赛车性能也将讨论了在适当的地方越野/耐力轨道设计而轨道布局为滑锅加速事件是固定的几何形状,参加比赛/耐力轨道设计每年都在变化按规则,个人描述参数通过不同的比赛场地的限制全世界。

空气动力学套件的设计要点

空气动力学套件的设计要点 在近几年的FASE的比赛中,空气动力学套件在国内车队中得到越来越多的应用,从我个人的观察来看,14年中国赛使用空气动力学套件的车队至少达到70%以上。那么,空气动力学套件的设计要考虑那几点呢?我就以我两年在HRT车队做空套的经验,简单地和大家交流一下。 空气动力学套件的设计重点应放在三个方面:升阻比、导流、风压中心。 首先从升阻比来讲吧,我把这一部分分为三个方面来讲,如何选择翼型,如何进行翼型的组合,以及整车下压力及阻力的取舍。 第一点,如何选择翼型。这对一个刚开始做空套的车队来说花较多的时间选择一个好的翼型是非常有必要的。那么如何才能算是一个好的翼型呢?第一,好的翼型需要一个较大的升阻比;第二,要保证翼型在大攻角下不失速;第三,翼型要有足够的厚度,以保证可加工性及刚度。 我们车队目前所用的翼型是13年选的,我们使用的翼型是NACA四位数字翼型,我们从3系列到9系列中选出大概10几种翼型,分析他们在不同攻角下的下压力、阻力及升阻比。但如果只关注这些数据就大错特错了,最重要的是找到从3系列到9系列的这几个数据的变化趋势。通过变化趋势,分析变化趋势的原因,并进而指导下一组更小范围的对比实验。总之选翼型是个重复再重复的过程,但选出了一个好的翼型之后,会对以后的设计来了极大的方便,也可以一直沿用下去。 第二点,如何进行翼型的组合。众所周知,主翼加襟翼的组合式翼型可以保证翼型在大攻角下不失速,极大地提高升力系数。但是,主翼和襟翼的不同相对位置自然也会有不同的升阻比,所以,主翼与襟翼的相对位置的确定又成为了一个繁琐但不得不进行的工作。翼型组合的确定的最大问题是要找到变量是什么。如图所示,我们车队使用的是三片式组合翼型,如果从翼型的侧面看的话,三片翼都有极大的活动空间。因此,三片翼是位置应该怎么调,调的梯度是什么,这一系列的问题都需要考虑。影响翼型的升阻比的一个重要因素就是总攻角,但同一总攻角下,不同翼型的组合又会带来不同的升阻比,而调节翼型相对位置的时候又很难保证总攻角不变。类似这样棘手的问题,我就不多说了。我选攻角的原则就是保证变量统一,在大梯度下做多组对比实验,找清规律后,再做小梯度实验。15赛季我们主要研究了襟翼前缘与主翼后缘形成的流管长度和宽度对总体升阻比的影响。

F1方程式赛车的空气动力学资料

F1方程式赛车的空气 动力学

F1方程式赛车的空气 动力学 班级: 学号: 姓名: 年月号 引言 空气动力学在F1领域中扮演着重要的角色。在引擎的研发相对稳定的下,空气动力学几乎主宰着一辆赛车的全部性能。从上纪六十年代F1赛车第一次使用尾翼,到七十年代地面效应的引进,再到近些年双层扩散器、废气驱动扩散

器等设计的提出,空气动力学在短短的几十年时间里取得了长足的进步,几乎可以与航空工业并驾齐驱,甚至有超越后者的势头。 空气动力学是流体力学的一个重要分支,主要研究空气或其它气体的运动规律、空气或其它气体与飞行器或其他物体相对运动时的相互作用和伴随产生的物理变化。 F1的空气动力学主要研究下压力,阻力和灵敏度三个方面,其中,提高压力是提升弯中表现的有效手段,降低阻力是获得高尾速输出的必要手段,灵敏性又称敏感度,主要研究空气动力学环境改变而导致的自身变化的强度。确切地说,就是研究由路况差异而导致的气动翼片与底盘间距的变化对赛车性能的干预强弱。 前翼 前翼是安装在车体最前端的气动附加装置,它不仅负责制造赛车前部的下压力,还影响向后流动的气流的走向。F1赛车的前翼的工作受到多种因素的影响,首先,作用在翼面上的气流并不是理想状态的,风速,风向都时刻变化,且不确定,此外,赛车在弯道中行驶时,作用在翼面上的气流会发生横向的偏转和移动,形成不稳定的流场,这不仅降低了前翼产生的气动负升力的效率,还影响到了前翼后部的气流环境,不利于气流的正常传输。 人类在流体力学的研究过程中一直在发展,进步,在可以产生气动负升力的翼形的研究中更是如此,先后出现了伯努利,牛顿等不同时期的翼形,这些翼形在气动性能上也不断提升,今天F1赛车所采用的主襟翼结合的翼形就是人类经过长期探索换来的智慧结晶,这种翼形不仅成熟,而且有效。

大学生方程式赛车的空气动力学套件的建模与流场分析

大学生方程式赛车的空气动力学套件的建模与流场分析 摘要:汽车的空气动力学特性被越来越多的人所重视,对汽车的操控性与稳定性都产生影响。该文利用Catia 软件对设计的空气动力学套件进行三维模型的建立,并与赛车装配,利用有限元分析软件ANSYS进行流场分析,得出赛车的流场特性,为其改进设计提供依据。空气动力学在赛车领域的应用是非常广泛的,我们将此应用于大学生方程式赛车上面,给赛车加装空气动力学套件,使其的操纵性能得以提升。 关键词:Catia ANSYS 流场分析 中图分类号:U461.1 文献标识码:A 文章编号:1672-3791(2015)03(a)-0025-01 1 赛车空气动力学研究意义 在赛车运动中运用负升力原理而改善赛车性能措施被证明是极其有效的,气动负升力在不增加赛车质量的情况下改善了轮胎与路面的附着情况,提高了赛车在平直赛道高速行驶时的动力性及紧急刹车时的制动性能,也改善了赛车的操纵稳定性能[1]。该文中空气动力学套件由前翼、尾翼、底部扩散器组成,通过对加装空气动力学套件和不加装空气动力学套件的三维模型分别进行流场分析,得出赛车的流场特

性。 2 赛车空气动力学套件的三维建模 中国大学生方程式赛车的比赛中,赛车由在校学生按照赛事规则和赛事标准,进行独立设计制造,赛事组委会因考虑赛事安全,在比赛中会在赛道上人为设置一些绕桩区,人为限制赛车在赛道中的最高车速,并且赛道以弯道为主,提升过弯速度与加速性能变得尤为重要。考虑到这些原因,空气动力学套件设计的目标就是在较低速度下20 m/s的情况下获得较大的下压力,并尽可能减少空气阻力。 在赛车的行驶过程中,由前翼、尾翼和底部扩散器产生下压力,其中前翼和尾翼产生下压力的来源是升力翼片,升力翼片的不同结构会影响不同的空气动力学性能,而底部扩散器的负升力来源是利用地面效应。鉴于负升力翼片结构在航天发展中已经较为成熟,并且NACA翼型库(National Advisory Committee for Aeronautics,美国国家航空咨询委员会)中有较为全面的翼型结构,在建模中从NACA翼型库选取低速翼型,在Catia中建立多组三维模型,并且在Ansys 中进行流场分析,经过对比分析结果选取最终翼片规格。 在前翼设计中,由于前翼是气流首先到达的地方,它的结构影响着气流在赛车其他结构处的流动,并且要求前翼能使气流尽量绕开前轮,减少阻力。结合以上因素,选取两片半的设计形式,使第三层襟翼对气流进行引导,避免对前轮

大学生方程式赛车车身外流场ANSYS分析报告

大学生方程式赛车 车身外流场ANSYS分析报告 指导老师:詹振飞 小组序号:第五小组 小组成员:刘宇航黄志宇 谢智龙陈治安 重庆大学方程式赛车创新实践班 二〇一六年十月

摘要 大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。 利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。ANSYS在此过程中起到极其重要的作用。 对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。 本小组利用CATIA等建模软件建立了适当的赛车外观模型。在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。 关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元

1.利用三维建模软件建立车身模型 在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。 2.2016年大赛关于车身的部分规则要求 1)赛车的轴距至少为 1525mm(60 英寸)。轴距是指在车轮指向正前方时同侧 两车轮的接地面中心点之间的距离。 2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。 3)在正常乘坐并系好安全带的情况下,车的尺寸需适合男性第 95 百分位模板 的乘坐尺寸相关要求。 3.车身模型方案 赛车轴距越大,车身内部纵向空间大。但相应的车身越大,相应的质量越大。出于轻量化的原则,且要求赛车的灵活性及降低成本。综合考虑,车身外形建模轴距定为1620mm。 赛车轮距越大,赛车横向稳定性越好,车内部横向空间更大。但同样轮距大,质量大,并影响转弯直径。此外设计前轮距大于后轮距,使赛车具有更好地转向能力。于是综合考虑,前轮距定为1240mm,后轮距为1190mm。 4.小组作品

第三章 螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动转换原理,即认为推进器是固定的,而水流自无穷远前方以速度V (鼓动盘)。图 A流向推进器 260

汽车空气动力学仿真

汽车空气动力学仿真
Vehicle Aerodynamics Simulation
张扬军
Zhang Yang-Jun
清华大学汽车工程系应用空气动力学组 汽车安全与节能国家重点实验室
Applied Aerodynamics Group, Dept of Auto Eng., Tsinghua Univ. State Key Lab of Automotive Safety and Energy

Vehicle Aerodynamics Simulation
汽车空气动力学仿真
1 2 3 4 5 6
汽车空气动力学概述 汽车空气动力学仿真特点 汽车空气动力学仿真难点 汽车空气动力学仿真平台 仿真平台(VASS)应用 总结与展望
1 2 3 4 5 6
Introduction to Road Vehicle Aerodynamics Some Salient Features of Road Vehicle Flow Simulation Main Difficulties of Road Vehicle Flow Simulation Vehicle Aerodynamics Simulation System (VASS) VASS Applications Conclusions and Open Features

1 汽车空气动力学概述
1.1 空气动力学对汽车性能的影响 1.2 汽车空气动力学性能 1.3 汽车空气动力学特点 1.4 空气动力学研究方法
Introduction to Vehicle Aerodynamics
1.1 1.2 1.3 1.4
Vehicle Attributes Affected by Aerodynamics Vehicle Aerodynamics Characteristics Peculiarities of Road Vehicle Aerodynamics Methods for Vehicle Aerodynamic

经典汽车空气动力学

《工程流体力学-汽车空气动力学》复习大纲(答案仅供参考) 1、 汽车空气动力学的发展有哪几个时期? 基本型时期、流线型时期、最优化时期 2、 汽车空气动力学的研究方法有哪些? 实验 理论 数值模拟(CFD ) 3、 汽车空气阻力与哪些因素有关? 式中,CD 称为空气阻力系数;A 称为迎风面积;ρ是空气密度;ur 是相对速度,无风时即为汽车的行驶速度ua (m/s )。 4、 什么是流体的粘性?流体的粘性与什么有关,怎样变化? 粘性是指在运动状态下,流体具有抵抗剪切变形的能力。 温度是影响流体粘性的主要因素,液体的粘性随温度的升高而减小,气体的粘性随温度的升高而增大。 5、 什么是音速?什么是马赫数?它们是衡量气体的什么性质的指标? 音速(a ):微小扰动在某种介质中的传播速率。用来衡量气体的压缩性。音速越大,越不易压缩。 马赫数:用来衡量运动气体的压缩性。 v----气体的运动速度;a---气体的当地音速。 6、 在什么情况下气体可看作不可压缩流体? Ma 小于0.3时,气体可看作不可压缩流体。 7、 什么是流线?流线有什么性质? 流线(Streamline )是某一时刻在流场中画出的一条空间曲线,在该时刻,曲线上的所有质点的速度矢量均与这条曲线相切。 流线的几点性质 ? 1. 流线簇的疏密程度反映了该时刻流场中各点速度的变化。 ? 2. 对于恒定流,流线的形状和位置不随时间而变化。 ? 3. 恒定流时,流线和迹线重合。 ? 4. 一般情况下,流线不能相交,不能折转,只能是一条光滑曲线。 8、 什么是层流?什么是紊流? 层流(Laminar Flow ):各流层质点互不掺混,分层有规则的流动状态。 紊流(Turbulent Flow ):质点运动轨迹极不规则,各流层质点剧烈掺混。 9、 什么是不可压缩一元流连续方程?有什么物理意义? 221r D w u A C F ρ?=a v Ma =

2.螺旋桨及其副作用要点

编号 南京航空航天大学 毕业论文题目 2.螺旋桨及其副作用 学生姓名顾军 学号070750526 学院民航(飞行)学院 专业飞行技术 班级0707505 指导教师蔡中长实验师 二〇一二年九月

南京航空航天大学 本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的毕业设计(论文)(题目:2.螺旋桨及其副作用)是本人在导师的指导下独立进行研究所取得的成果。尽本人所知,除了毕业设计(论文)中特别加以标注引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写的成果作品。 作者签名:年月日 (学号):070750526

螺旋桨及其副作用 摘要 从第一架飞机诞生直到第二次世界大战结束,几乎所有的飞机都是螺旋桨飞机。飞行学员的飞行生涯也都是从螺旋桨飞机开始的,螺旋桨是为飞机提供动力的主要组成部分,但其在提供动力的同时也给飞行带来一些副作用。在飞行过程中,飞行员应该根据各种飞行需要,克服螺旋桨所带来的副作用,保证飞机的正常飞行。本文先简单的介绍了螺旋桨的结构和工作原理,然后是螺旋桨的主要四种副作用:反作用力矩、滑流效应、进动效应和不对称载荷,从根本上讲述了各个副作用的形成原因以及作用结果,最后谈论了改正措施和个人DA42双发螺旋桨飞机的训练经验。希望本篇文章会为以后飞行学员训练提供很大的帮助。 关键词:螺旋桨,工作原理,副作用

Propeller and the Side Effect Abstract From the birth of the first aircraft until the end of World War II, almost all of the aircraft are propeller aircraft. All the pilot students start by propeller aircraft. Propeller is the main component to provide power to the flight, but at the same time it brings some side effects. In flight, the pilot should overcome the side effects caused by the propeller basing on a variety of operational needs, in order to ensure the aircraft has normal flight. In this paper, firstly there is a brief introducing the propeller structure and principle of work. Then I talk about four kinds of side effects of the propeller mainly. They are reaction torque, slipstream effect, the precession effect and asymmetric loads. This article explains the causes and the results of the side effects fundamentally. Finally some corrective measures and training experience of DA42 propeller aircraft are shared. I hope this will be helpful for the pilot students. Key Words: Propeller; Principles of work; Side effect

相关文档
最新文档