自动装置励磁系统设计

自动装置励磁系统设计
自动装置励磁系统设计

课题:励磁控制系统主回路设计及系统性能分析专业:电气工程及其自动化

班级:4班

学号:

姓名:

指导教师:

设计日期:2016.5.30-2016.6.8

成绩:

自动装置励磁系统设计报告

一、设计目的

1、回顾发电机励磁控制系统主回路的设计原理。

2、进一步了解发电机励磁控制的系统性能分析。

3、学会建立发电机励磁系统的数学模型。

二、设计要求

励磁控制系统的动态特性如上升时间、超调量、调整时间等都要满足要求。因为本设计主要针对PID 调节在励磁控制中的作用,因此设计方案设有无PID 调节励磁控制和有PID 调节控制两个方案,并进行对比,分出优劣,选取效果极佳的方案。

2号题:发电机型号QF —25—2

基本数据:额定容量(MW ):25 转速;3000

额定电压(KV ):6.3 功率因数cos ?:0.8

额定电流:(A ):2860 效率(%):97.74

励磁数据:空载励磁电流(A ):149.4 满载励磁电流(A ):372

空载励磁电压(V ):62.5 满载励磁电压(V ):180

参数:定子线圈开路时励磁线圈时间常数(s ):11.599

转子电阻:(75℃)(Ω):0407(

c 75?R =1.24c 15?R )

电压降之和ΔU=3

三、设计过程

1、系统概述

(1)设计发电机励磁控制系统的数学模型,并以PID控制方式,搭建仿真模型。(2)性能分析:应用控制理论的各种分析方法分析所设计的励磁控制系统的性能,并给出典型运行方式下的最佳参数整定值,要求打印主要分析曲线及计算结果。

(3)主回路设计

主回路设计包括:励磁方式选择;励磁变压器选择;起励问题及计算;整流元件参数确定及选择;主回路保护配置;要求绘出励磁系统主回路原理图。

励磁方式:自并励方式

励磁控制系统分为直流励磁机励磁系统、交流励磁机励磁系统和发电机自并励系统。在这里励磁方式我选择自并励励磁方式。

(4)发电机自并励系统的主要优点是:

a.励磁系统接线和设备比较简单,无转动部分,维护费用省,可靠性高。

b.不需要同轴励磁机,可缩短主轴长度,这样可减小基建投资。

c.直接用晶闸管控制转子电压,可获得很快的励磁电压响应速度,可近似认为具有阶跃函数那样的响应速度。

由于自并励励磁方式具有上述优点,所以励磁方式采用自并励励磁系统。(5)磁变压器选择

由由于同步发电机的励磁电压教端电压低得多,所以自并励系统中一般都需设置励磁变压器进行降压。其主要作用:

a.使晶闸管工作时的导通角大小适当,控制教、较稳定。

b.降低整流元件的电压等级。

c.使整流回路、控制回路、励磁绕组三者都机端隔离,降低了回路对地的电位和对绝缘的要求,有利于安全运行并减少日常维修工作。

2、计算与分析过程

(1)变比k :

变压器二次侧电压l U 的确定:

取=α0°,c K =2,)(e fd U =180V ,)(e fd I =372A ,ΔU=3,取k X =0.06 由公式:U X I K U K U k e fd c e fd c l ?++=+?)()(min 32cos 135.1π

α得 306.037223180221135.1+???+?=+?π

l U l U 35.1=405.627 ∴l U =300.465V

已知1U =6.3KV ∴变压器变比k=

21465

.30010003.6=? (2)变压器的容量计算

]1300675.0306.03723180arccos[]1675.03arccos[)(-?+??+=-?∑+??+=ππαl k fd e fd U U X I U =89.49°

∵3

π≤α≤π ∴]3724972.0[15.1][15.1)(?-=-=πππαπe fd l I I =303.36(A )

∴整流变压器的容量为:)(158.036.303465.30033MVA I U S l l =??==

(3)接线方式

变压器的接线方式选择Y/Δ-11接线方式,即一次侧为Y 接,二次侧为Δ接。一次侧为Y 接的三相绕组中,三次谐波电流不能流通,即变压器励磁电流中不含有三次谐波而接近正弦波,二次侧为△接,是为了避免发电机侧的谐波影响励磁系统侧的波形,或避免由励磁系统产生的谐波影响到发电机侧,所以变压器的接

线方式其中有一侧必须接成角形。

(4)系统三种典型运行方式计算(选做)

一般按空载、额定、强励三种工况进行计算,计算的目的是看这些控制角是否在一般所希望的范围之内,并在调试中将实测的与计算的相比较。

空载时: A I I V U U fd fd fd fd 4.149,5.62)0()0(====

]1300

675.0306.04.14935.62arccos[]1675.03arccos[)0(-?+??+=-?∑+??+=ππαl k fd fd U U X I U =129.37°

)(06.74306.04.1493

5.623

)0()0()0(V U X I U U k fd fd d =+??+=?++=∑ππ

额定运行时: A I I V U U e fd fd e fd fd 372,180)()(====

]1300

675.0306.03723180arccos[]1675.03arccos[)(-?+??+=-?∑+??+=ππαl k fd fd e U U X I U =89.49°

)(31.204306.03723

1803

)()()(V U X I U U k e fd e fd e d =+??+=?++=∑ππ

强励运行时: A I K I V U K U e fd c fd e fd c fd 744,360)()(====

]1300

675.0306.07443360arccos[]1675.03arccos[)(-?+??+=-?∑+??+=ππαl k fd fd q U U X I U =11.21°

)(63.405306.074433603)()()(V U X I K U K U k e fd c e fd c q d =+??+=?++

=∑ππ

由以上计算得表格如下:

由计算结果可以看出:)0(α> )(e α > )(q α,且控制角的灵敏度比较大,满足励磁系统的要求。

(5)起励问题及计算

在同步发电机启动时,起励电源可以采用厂用电起励和蓄电池起励两种方法,但一般情况下,采用厂用电起励。

起励容量: )(167418037240

1401401)()(VA I U S S e fd e fd e q =??===

起励电压: )(933724141)(V U U e fd qi =?==

(6)整流元件参数确定及选择

整流元件参数的选择,首先保证半导体励磁装置可靠运行,设计时主要选择硅元件的额定正向同态平均电流和额定正反向峰值电压中的较大者。

整流电路采用三相桥式半控整流电路。

同步发电机输出交流电流中的一小部分,经励磁变压器降压和可控整流器整流后,供给励磁绕组励磁电流。励磁电流的大小,决定与晶闸管,而晶闸管的导通角由自动励磁调节器控制,当发电机端电压高于整定值时,自动励磁调器发出信号脉冲推迟,晶闸管导通角变小,励磁电流减小,从而使发电机端电压降低。当发电机端电压低于整定值时,自动励磁调器发出信号脉冲提前,晶闸管导通角变大,励磁电流增大,从而使发电机端电压升高。上述两种过程使发电机的端电压于稳定值,达到恒定的目的。

(7)硅元件额定电流计算

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

励磁系统建模危险点预控措施表(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 励磁系统建模危险点预控措施表 (新版)

励磁系统建模危险点预控措施表(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 作业名称 励磁系统建模 序号 危险点 控制措施 检查执行情况(工作负责人填写) 1 人员思想状态不稳 班组长或工作负责人要对言行、情绪表现非正常状况的成员进行沟通、谈心,帮助消除或平息思想上的不正常波动,保持良好的工作心态,否则不能进入生产现场进行作业 2 人员精神状态不佳 班组长或工作负责人要观察、了解成员精神状态,对酒后上班、

睡眠不足、过度劳累、健康欠佳等成员严禁进入工作现场3 工作票 1、工作票上所填写的安全措施应完善; 2、工作票上的安全措施确已正确执行,并确认无误; 3、工作负责人应向工作班成员交待安全注意事项; 4、外协人员或厂家工作人员必须在监护下进行作业。 4 人身触电 1.试验设备摆放时应轻起轻放,避免碰撞。 2.远离带电设备,对高压设备保持一定的距离(10kV及以下的带电设备应保持0.7米的安全的距离、20kV/35kV应保持1.0米的安全距离、110kV及以下的应保持1.5米的安全距离、220kV应保持 3.00米得安全距离) 3.接线时严格参照试验接线图。 4.接线完成以后由试验负责人检查核实。 5.严禁试验中人员私自改动接地线 5

自动调节励磁系统原理简介(广科所)

自动调节励磁系统原理简介 随着电力系统的迅速发展,对励磁系统的静态和动态调节性能以及可靠性等提出了更高的要求。计算机技术、控制理论、电力电子技术的发展也促进了自并励励磁制造技术逐渐趋向于成熟、稳定、可靠。相对其它励磁方式而言,自并励励磁系统具有主回路简单、调节性能优良、可靠性高的优点,已取代励磁机励磁方式和相复励方式,在水电厂得到普遍使用。最近几年,自并励励磁方式也取代了三机励磁方式,成为新建火电厂的首选方案,逐渐在大型汽轮发电机组中推广应用。 1、组成 励磁系统由励磁调节器、功率整流器、灭磁回路、整流变压器及测量用电压互感器、电流互感器等组成。 2、工作原理 自并激励磁系统的励磁电流取自发电机机端,经过整流变压器降压、全控整流桥变流的直流励磁电压,由晶闸管触发脉冲的相位进行控制。一般情况下,这种控制以恒定发电机电压为目的,但当发生过励、欠励、V/F超值时,也起相应的限制作用。恒压自动调节的效果,在发电机并上电网后,表现为随系统电压的变化,机端输出无功功率的自动调节。 一、调节器 励磁系统作为电厂的重要辅机设备,励磁调节器的设计,应对电力系统的变化有较大的适应性,随着计算机技术的发展,励磁调节器已经由模拟式向计算机控制的数字式方向发展,大大增加了励磁系统的可靠性。 1、调节器的控制规律 一般用于励磁调节器的控制规律有:PID+PSS、线性最优控制、非线性最优控制等。关于励磁控制规律,国内外学者普遍认为,励磁调节器的设计,应对电力系统的变化有较大的适应性,而不是在某种条件下最优。同时,励磁调节不仅要考虑阻尼振荡,还必须考虑调压指标等性能要求。由于PID+PSS控制方式有很强的阻尼系统振荡的能力,具有较好的适应性以及很好的维持发电机电压水平的能力,又具有物理概念清晰、现场调试方便的优点,因而在国内外得到普遍应用。我公司的励磁调节器的控制规律也采用PID+PSS控制方式。 国内有些单位也开展了线性最优控制或非线性最优控制规律的研究,并有样机投入工业运行。但到目前为止,还未见到成功应用实例的报道,并且,在现场进行调节器性能的测试时,特别是进行PSS性能测试时还存在着数学模型不够清晰,难以进行参数校正的问题,故在国内的应用还难以推广。 2、调节器通道的冗余 目前,在调节器调节通道的组成上,大多数厂家采用热备用双通道单模冗余结构,即调节器包含两个独立的通道。这两个通道软硬件结构完全相同,调节模式、工作原理完全一致,一套工作,一套备用。这种结构存在一个较大的弱点,那就是单一的工作模式,由于两个通道的完全一致性,同时出现故障的机率比较大。国内曾有多家电厂发生失磁事故,其原因就是调节器的两个通道由于受到干扰而同时死机。 也有少数制造商采用三取二表决型通道,这种冗余结构原理很简单,三个调节通道在反馈、脉冲输出等环节通过软件或硬件比较,选择中间值作为真值。显然,若有两个通道出现问题,表决逻辑就变得混乱了。国内外有学者对其进行过分析,认为这种结构的可靠性远低于热备用双通道单模冗余结构。因此,采用表决器结构的制造商另外加了一个独立的手动通道作为表决器的备用通道,当表决器故障时切换到手动通道运行。这实质上是花费四个通道的成本来获得两个通道的可靠性,得不偿失。国外有些制造商起初也选用过表决型冗余通道,但后来逐渐摈弃不用了。 我公司在90年代初开发了热备用双通道模式冗余结构的励磁调节器,即主通道采用总线工控机为核心的数字式调节器,而备用通道采用以可编程控制器为核心的模数混合式调节器,这两个通道软硬件结构、调节模式、工作原理完全不同,因而被称为双模结构。这种类型的调节器一经推出,即获得用户广泛欢迎,在国内四十多家电厂近百台机组投入运行。 在总结该调节器成功经验的基础上,针对大中型发电机组,我们于97年研制成功微机/微机/模拟三通道双模冗余结构的励磁调节器。 该调节器由两个自动电压调节通道(A、B)和一个手动调节通道(C)组成,这三个通道从测量回路到脉冲输出回路完全独立。A套调节器和B套调节器是以STD总线工控机为核心的数字式调节器,而C套调节器则是基于集成电路的模拟式调节器。以下是这两种不同类型调节模式的对比:

电力系统自动装置原理知识点汇编

学习-----好资料 第二章同步发电机的自动并列 1】同步发电机并列操作应满足什么要求?为什么? 答:同步发电机并列操作应满足的要求:(1)并列断路器合闸时,冲击电流应尽可能小, 其瞬时最大值一般不超过1~2倍的额定电流。(2)发电机并网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。因为:(1)并列瞬间,如果发电机的冲击 电流大,甚至超过允许值,所产生的电动力可能损坏发电机,并且,冲击电流通过其他电气 设备,还合使其他电气设备受损;(2)并列后,当发电机在非同步的暂态过程时,发电机处 于振荡状态,遭受振荡冲击,如果发电机长时间不能进入同步运行,可能导致失步,并列不成功。 2】什么是同步发电机自动准同期并列?有什么特点?适用什么场合?为什么? 答:调节发电机的电压Ug,使Ug与母线电压Ux相等,满足条件后进行合闸的过程。特点:并列时冲击电流小,不会引起系统电压降低;但并列操作过程中需要对发电机电压、频率进行调整,并列时间较长且操作复杂。 适用场合:由于准同步并列冲击电流小,不会引起系统电压降低,所以适用于正常情况下发电机的并列,是发电机的主要并列方式,但因为并列时间较长且操作复杂,故不适用紧急情况的发电机并列。 3】什么是同步发电机自同期并列?有什么特点?适用什么场合?为什么? 答:是将一台未加励磁电流的发电机组升速到接近电网频率,滑差角频率不超过允许值, 且在机组的加速度小于某一给定值的条件下,首先合上断路器QF,接着合上励磁开关开关SE给转子加励磁电流,在发电机电动势逐渐增长的过程中,又电力系统将并列的发电机组拉入同步运行。 特点:并列过程中不存在调整发电机电压、频率问题,并列时间短且操作简单,在系统频率和电压降低的情况下,仍有可能实现发电机的并列;容易实现自动化;但并列发电机未 经励磁,并列时会从系统吸收无功,造成系统电压下降,同时产生很大的冲击电流。 适用场合:由于自同步并列的并列时间短且操作简单,在系统频率和电压降低的情况下, 仍有可能实现发电机的并列,并容易实现自动化,所以适用于在电力系统故障情况下,有些 发电机的紧急并列。 4】同步发电机自动准同期并列的理想条件是什么?实际条件是什么? 答:理想条件:频率相等,电压幅值相等,相角差为零。 实际条件:①电压差不应超过额定电压的5%?10 %;笑频率差不应超过额定频率的 0.2 %?0.5 %;③在断路器合闸瞬间,待并发电机电压与系统电压的相位差应接近零,误差不应大于5°。 5】在自动并列装置中,三个条件的检测? 答:频率差的检测:(1)数字并列装置:直接测得机端电压和电网频率求出.计、二兰 ct 进行判断。(2)模拟并列装置:比较恒定越前时间电平检测器和恒定越前相角电平检测器动 作次序来实现检测;恒定相角先于恒定时间动作时滑差小于允许值,符合并列条件。 电压差的检测:直接读入Ub和LR值,然后作计算比较:采用传感器把交流电压方均根值转换成低电平直流电压,然后计算两电压间的差值,判断其是否超过该定限值,并获得待 并发电机组电压高于或低于电网电压的信息; 直接比较U G和I X的幅值大小,然后读入比较结果。待并发电机电压U G和电网电压U X分别 经变压器和整流桥后,在两电阻上得到与U b U X幅值成比例的电压值U‘G和U X,取U AE=U X-U‘ G,用整流桥得检测电压差的绝对值U AB I ,电压差测量输出端的电位为U D= I △ U A E I -U set , 其中U Set为允许电压差的整定电压值,当U b为正时,表明电压差超过并列条件的允许值。 相角差的检测:把电压互感器二次侧U X、U G的交流电压信号转换成同频、同相的两个方波, 把这两个方波信号接到异或门,当两个方波输入电平不同时,异或门的输出为高电平,用于 控制可编程定时计数器的计数时间,其计数值N即与两波形间的相角差二相对应。CPU可 读取矩形波的宽度N值,求得两电压间相角差的变化轨迹。 学习-----好资料 8】同步发电机自动准同期并列时,不满足并列条件会产生什么后果?为什么?

励磁系统建模试验方案资料

励磁系统建模试验方案

目录 1.试验目的 (1) 2.试验内容 (1) 3.试验依据 (1) 4.试验条件 (1) 5.设备概况及技术数据 (2) 6.试验内容 (4) 7.试验分工 (5) 8.环境、职业健康安全风险因素辨识和控制措施 (6) 9.试验设备 (6)

1.试验目的 对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。 2.试验内容 2.1励磁系统模型传递函数静态验证试验。 2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。 2.3发电机时间常数测量。 2.4 A VR比例放大倍数测量试验。 2.5系统动态响应测试(阶跃试验)。 2.6 20%大干扰阶跃试验。 2.7对发电机进行频率响应测试。 3.试验依据 Q/GDW142-2012《同步发电机励磁系统建模导则》 设备制造厂供货资料及有关设计图纸、说明书。 4.试验条件 4.1资料准备 励磁调节器制造厂应提供AVR和PSS模型和参数。 电机制造厂应提供发电机的有关参数和特性曲线。 4.2设备状态要求 被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。

5.设备概况及技术数据 容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。其励磁系统结构框图如图1: 图1 励磁系统框图 5.1励磁调节器模型: 图2 励磁调节器模型

5.2发电机: 生产厂家:南京汽轮机电机厂 型号:QFR-135-2 额定视在功率:158.8 MV A 额定有功功率:135 MW 额定定子电压:13.8 kV 额定定子电流:6645 A 额定功率因数:0.85 额定励磁电流:893 A 额定励磁电压:403 V 额定空载励磁电流:328 A 额定空载励磁电压:147 V 额定转速:3000 r/min 发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2 转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感: 直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15 直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02 直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67 横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36 横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42 横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79 直轴开路瞬变时间常数Td0’ : 9.8 秒 横轴开路瞬变时间常数Tq0’ : 1.089秒 直轴开路超瞬变时间常数Td0” : 0.06秒 横轴开路超瞬变时间常数Tq0” : 0.054秒

自动装置励磁系统设计

课题:励磁控制系统主回路设计及系统性能分析专业:电气工程及其自动化 班级:4班 学号: 姓名: 指导教师: 设计日期:2016.5.30-2016.6.8 成绩:

自动装置励磁系统设计报告 一、设计目的 1、回顾发电机励磁控制系统主回路的设计原理。 2、进一步了解发电机励磁控制的系统性能分析。 3、学会建立发电机励磁系统的数学模型。 二、设计要求 励磁控制系统的动态特性如上升时间、超调量、调整时间等都要满足要求。因为本设计主要针对PID 调节在励磁控制中的作用,因此设计方案设有无PID 调节励磁控制和有PID 调节控制两个方案,并进行对比,分出优劣,选取效果极佳的方案。 2号题:发电机型号QF —25—2 基本数据:额定容量(MW ):25 转速;3000 额定电压(KV ):6.3 功率因数cos?:0.8 额定电流:(A ):2860 效率(%):97.74 励磁数据:空载励磁电流(A ):149.4 满载励磁电流(A ):372 空载励磁电压(V ):62.5 满载励磁电压(V ):180 参数:定子线圈开路时励磁线圈时间常数(s ):11.599 转子电阻:(75℃)(Ω):0407( c 75?R =1.24c 15?R ) 电压降之和ΔU=3 三、设计过程 1、系统概述 (1)设计发电机励磁控制系统的数学模型,并以PID 控制方式,搭建仿真模型。

(2)性能分析:应用控制理论的各种分析方法分析所设计的励磁控制系统的性能,并给出典型运行方式下的最佳参数整定值,要求打印主要分析曲线及计算结果。 (3)主回路设计 主回路设计包括:励磁方式选择;励磁变压器选择;起励问题及计算;整流元件参数确定及选择;主回路保护配置;要求绘出励磁系统主回路原理图。 励磁方式:自并励方式 励磁控制系统分为直流励磁机励磁系统、交流励磁机励磁系统和发电机自并励系统。在这里励磁方式我选择自并励励磁方式。 (4)发电机自并励系统的主要优点是: a.励磁系统接线和设备比较简单,无转动部分,维护费用省,可靠性高。 b.不需要同轴励磁机,可缩短主轴长度,这样可减小基建投资。 c.直接用晶闸管控制转子电压,可获得很快的励磁电压响应速度,可近似认为具有阶跃函数那样的响应速度。 由于自并励励磁方式具有上述优点,所以励磁方式采用自并励励磁系统。(5)磁变压器选择 由由于同步发电机的励磁电压教端电压低得多,所以自并励系统中一般都需设置励磁变压器进行降压。其主要作用: a.使晶闸管工作时的导通角大小适当,控制教、较稳定。 b.降低整流元件的电压等级。 c.使整流回路、控制回路、励磁绕组三者都机端隔离,降低了回路对地的电位和对绝缘的要求,有利于安全运行并减少日常维修工作。 2、计算与分析过程

半导体励磁调节装置结构及原理

2.2节半导体励磁调节装置结构及原理 半导体励磁调节装置结构及原理 励磁调节器是励磁控制系统中的智能设备,它检测和综合励磁控制系统运行状态及调度指令,并产生相应的控制信号作用于励磁单元,用于调节励磁电流大小,满足同步发电机各中运行工况的需要。 半导体自动调节励磁装置的型号很多,但其基本构成却相似,由基本控制和辅助控制两大部分作成。如图5—15虚线框内所示基本控制由调差单元,测量比较单元,综合放大单元,移相触发单元和可控整流桥等构成,实现励磁电流的自动调节,以便维持系统电压水平和合理分配机组间的无功功率;辅助控制是为了满足电机不同工况要求,改善电流系统稳定性和励磁系统动态性能而设置的,包括励磁系统稳定器,电力系统稳定器和励磁限制器等,视具体要求设置。 半导体励磁调节系统结构框图 励磁调节器的几个基本环节: 1.测量,给定与比较单元 测量比较环节框图 该单元的任务:测量发电机机端电压,并于给定电压相比较,输出机端电压的偏差信号到综合放大单元。给定电压要求在规定范围内可调。 2.综合放大单元 综合放大电源对电压偏差型号,稳定控制信号,励磁限制信号和各种补偿信号等起综合

和放大的作用(线性迭加),经综合放大后的控制信号输出到移相出发单元作为触发脉冲角度的移相控制信号。其中,电压偏差信号来自上述测量给定比较单元,稳定控制信号来自励磁系统稳定器(ESS)和电力系统稳定器(PSS),励磁限制信号来自各种励磁限制器,补偿信号来自励磁绕组时间补偿器等。 3.移相触发单元 移相触发单元根据综合放大单元从来的控制信号的变化,改变输出到晶闸管的触发脉冲的相应,即改变控制角?,从而控制晶闸管整流电流的输出电压,达到调节发电机的励磁电流的目的。 移相触发器的基本原理:利用主回路电源电压信号产生一个频率与主回路电源同步的,副值随时间单调变化的信号(称为同步信号),将其与来自综合放大单元的控制信号比较,在两者相等的时刻形成触发脉冲;移相触发器一般由三个功能环节组成:脉冲形成和脉冲放大。 根据信号的形成划分,常见的移相触发器有锯齿波移相(或线性移相)和余玄波移相两种。 锯齿波移相原理:将主回路电源的正弦电压信号整形为方波信号作为门信号,用来控制一个恒流元积分器的充方电,积分器充电时输出一个线性上升的电压波形,该电压波形就是具有与主回路同步且随时间单调变化特点的同步信号,将调节器输出的控制信号与该线性变化的同步信号相比较两者相等时发出触发脉冲。锯齿波移相原理如图3-11所示。 锯齿波移相的特点:(1)控制角与控制电压成正比(或反比)关系(锯齿波移相又称线性移相);(2)控制角不受主回路电源电压副值得影响;(3)(全空桥输出电压与控制电压成余弦关系。 余弦波移相原理:(1)控制角与控制电压成反余弦关系(2)控制角受主回路电源电压副值的影响;(3)全空桥输出电压与控制电压成正比关系。 4.调差单元 调差单元是并列运行各同步发电机之间合理分配无功功率的关键环节。所谓合理分配无功功率,就是指负荷总无功功率按机组容量百分比(即标玄值)相等的原则分配给各并列机组。

发电机励磁系统建模及参数测试现场试验方案

发电机励磁系统建模及参数测试现场试验方案 1.概述 电网“四大参数”中发电机励磁系统模型和参数是电力系统稳定分析的重要组成部分,要获得准确、可信度较高的模型和参数,现场测试是重要的环节。根据发电机励磁系统现场交接试验的一般习惯和行业标准规定的试验内容,本文选择了时域法进行发电机励磁系统的参数辨识及模型确认试验。这种试验方法的优点在于可充分利用现有设备,在常规性试验中获取参数且物理概念清晰明了容易掌握。发电机励磁参数测试确认试验的内容包括:1)发电机空载、励磁机空载及负载试验;2)发电机、励磁机时间常数测试;3)发电机空载时励磁系统阶跃响应试验;4)发电机负载时动态扰动试验等。现场试验结束后,有关部门要根据测试结果,对测试数据进行整理和计算,针对制造厂提供的AVR等模型参数,采用仿真程序或其他手段,验证原始模型的正确性,在此基础上转换为符合电力系统稳定分析程序格式要求的数学模型。为电力系统计算部门提供励磁系统参数。 2.试验措施编制的依据及试验标准 1)《发电机励磁系统试验》 2)《励磁调节器技术说明书》及《励磁调节器调试大纲》 3) GB/T7409.3-1997同步电机励磁系统大、中型同步发电机励磁系统技术要求 4) DL/T650-1998 大型汽轮发电机自并励静止励磁系统技术条件 3 试验中使用的仪器设备 便携式电量记录分析仪,8840录波仪,动态信号分析仪以及一些常规仪表。 4 试验中需录制和测量的电气参数 1)发电机三相电压UA、UB、UC(录波器录制); 2)发电机三相电流IA、IB、IC(录波器录制); 3)发电机转子电压和转子电流Ulf、Ilf(录波器录制); 对于三机常规励磁还应测量: 1)交流励磁机定子电压(单相)Ue(标准仪表监视) 2)交流励磁机转子电压和转子电流Uef、Ief(录波器录制); 3)永磁机端电压Upmg(录波器录制和中频电压表监视); 4)发电机端电压给定值Vref(由数字AVR直读); 5)励磁机用可控硅触发角(由数字AVR自读); 对于无刷励磁系统除发电机电压电流外,仅需测量励磁机励磁电压电流;但需制造厂家提供励磁机空载饱和特性曲线及相关参数。 5.试验的组织和分工 参加发电机励磁系统模型参数确认试验的单位有:发电厂、励磁调节器制造厂、山东电力调度中心、山东电力研究院等。因有关方面提供的机组参数不完整或不正确,使励磁系统参数测试工作有一定的难度和风险性,为保证试验工作的正常顺利进行和机组的安全,应建立完善的组织机构,各部门的职责和分工如下: 1)电厂生技部负责整个试验的组织和协调。 2)电厂继电保护班负责试验的接线及具体安全措施。 3)电厂运行人员负责常规的操作及机组运行状态的监视。

励磁系统励磁调节器技术要求

励磁系统励磁调节器技术要求 4.1.1 自动励磁调节器 4.1.1.1 自动励磁调节器应有两个独立的自动电压调节通道,含各自的电压互感器、测量环节、调节环节、脉冲控制环节、限制环节、电力系统稳定器和工作电源等。两个通道可并列运行或互为热备用。 4.1.1.2 自动励磁调节器的各通道间应实现互相监测,自动跟踪。任一通道故障时均能发出信号。运行的自动电压调节通道任一测量环节、硬件和软件故障均应自动退出并切换到备用通道进行,不应造成发电机停机,稳定运行时通道的切换不应造成发电机无功功率的明显波动。 4.1.1.3 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.4 自动励磁调节器应具有在线参数整定功能,各参数及各功能单元的输出量应能显示,设置参数应以十进制表示,时间以秒表示,增益以实际值或标幺值表示。 4.1.1.5 自动励磁调节器电压测量单元的时间常数应小于 30ms。 4.1.1.6 自动励磁调节器直流稳压电源应由两路独立的电源供电,其中一路应取自厂用直流系统。

4.1.1.7 励磁调节器的调压范围和调压速度: a)自动励磁调节时,应能在发电机空载额定电压的 70%-110%范围内稳定平滑的调节; b)手动励磁调节时,上限不低于发电机额定磁场电流的 110%,下限不高于发电机空载磁场电流的 20%; c)发电机空载运行时,自动励磁调节的调压速度应不大 于发电机额定电压的 1%/s,不小于发电机额定电压的 0.3%/s。 4.1.1.8 自动励磁调节器应配置电力系统稳定器(PSS)或具有同样功能的附加控制单元。 a)电力系统稳定器可以采用电功率、频率、转速或其组 合作为附加控制信号,电力系统稳定器信号测量回路 时间常数应不大于 40ms,输入信号应经过隔直环节处 理,当采用转速信号时应具有衰减轴系扭振频率信号 的滤波措施。 b)具有快速调节机械功率作用的大型汽轮发电机组,应 首先选用无反调作用的电力系统稳定器。 c)电力系统稳定器或其他附加控制单元的输出噪声应小 于±0.005p.u.。

基于matlab的同步发电机励磁系统仿真分析与调试毕业论文设计

基于MATLAB的同步发电机励磁系统仿真分析与调试 摘要 同步发电机为电力系统提供能量,其控制性能的好坏将直接决定电力系统的安全与稳定运行状况。通过掌握利用MATLAB对励磁控制进行分析和研究的技能,能灵活应用MATLAB的SIMULINK仿真软件,分析系统的性能。通过使用这一软件工具从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。 文章介绍了MATLAB/Simulink的主要特点、基本模块和功能,分析了同步发电机励磁调节系统的组成及其各个部分原理,建立了基于MATLAB的同步发电机及其励磁调节系统仿真模型,最后建立了以PID和PSS为励磁控制方式的同步发电机励磁调节系统数学模型,在Simulink环境下进行了仿真,收到了很好的效果。 关键词:MATLAB;同步发电机;励磁调节系统;建模;仿真;校正

ABSTRACT Synchronous generator is the energy of the power system provider, and its performance will directly determine the quality of power system security and stability in operation. Through mastering the use of MATLAB for analysis of the excitation control and research skills, flexibility SIMULINK of MATLAB simulation software to analyze performance of the system. Through the use of the software tools from the boring red tape out of the computational burden, and more reflection on the nature of the problem used to solve practical production and research issues. The article introduced the main features of the MATLAB/Simulink,the basic module and function,illustrated the composition of synchronous generator excitation system and its principle of every part,established the simulation model of generator from MATLAB and that of generator excitation system,established synchronous generator excitation system mathematical model that is controlled by the way of PID and PSS,simulate it in the environment of Simulink,get pretty good results. Key words: MATLAB;synchronous generator;excitation control system;modeling;simulation;Correction

励磁调节器软件功能说明

EXC9000用户手册 第3章 调节器软件功能说明

广州电器科学研究院 广州擎天电气控制实业有限公司

目录 1.调节功能 (5) 1.1 给定值调节与运行方式 (5) 1.2 自动电压调节器和励磁电流调节器 (5) 1.3 电力系统稳定器(PSS) (7) 1.4 调节器工作模式 (9) 1.4.1 发电模式 (9) 1.4.2 电制动模式 (10) 1.4.3 恒控制角模式 (11) 1.4.4 短路干燥模式 (12) 1.5 有功和无功功率补偿 (12) 1.6 调差 (12) 1.7 叠加的无功功率或功率因数控制 (13) 1.8 软起励控制 (13) 1.9 通道间的跟踪 (14) 2.限制功能 (15) 2.1 强励限制和过励限制 (15) 2.2 欠励限制 (16) 2.3 定子电流限制 (17)

2.5 低频 (19) 3. 故障检测及判断 (19) 3.1 同步故障 (19) 3.2 低励磁电流 (20) 3.3 励磁变副边CT故障 (20) 3.4 PT故障 (20) 3.5 调节器故障 (21) 4.防错功能 (21) 4.1 检测容错 (21) 4.2 控制容错 (22) 5. 其它功能 (22) 5.1 R631信号 (22) 5.2 R632信号 (22) 5.3 开机令输出 (22) 5.4 复位 (23) 5.5 通道跟踪 (23) 5.6 内部跟踪 (23)

5.8 恒Q控制 (24) 5.9 恒PF控制 (24) 5.10 人工操作增减磁 (24) 6. 调节器逻辑流程图 (26) 6.1 开机流程 (26) 6.2 停机流程 (27) 6.3 主CPU程序及中断服务流程 (28) 6.4 DSP采样程序及中断服务流程 (29) 6.5 通道切换流程 (29) 6.6 通道跟踪流程 (30) 6.7 系统电压跟踪流程 (30)

励磁系统设计导则

东北电力设计院技术标准 Q/DB 1-D011-2007 交流同步发电机励磁系统设计导则 2007-10-20发布2007-10-30实施中国电力工程顾问集团东北电力设计院发布

目次 前言...................................................................... III 1 范围 (1) 2 规范性文件 (1) 3 总则 (2) 4 同步发电机励磁系统的作用和性能要求 (2) 4.1 同步发电机励磁系统的主要作用 (2) 4.2 励磁系统应具有的性能 (3) 5 同步发电机的励磁种类和对励磁系统的基本要求 (3) 5.1 励磁系统的分类 (3) 5.2 对励磁系统的基本要求 (3) 6 同步发电机励磁调节系统对电流、电压采集的基本要求 (5) 6.1 对电流互感器的要求 (5) 6.2 对电压互感器的要求 (5) 7 目前大中型汽轮发电机的常用励磁方式 (5) 7.1 三机旋转励磁系统的特点 (5) 7.2 自并励静止励磁系统的特点 (7) 7.3 国内大中型汽轮发电机的常用励磁方式的应用情况 (9) 8 自并励方式的优势 (9) 8.1 励磁系统可靠性增强 (9) 8.2 电力系统的稳态、暂态稳定水平提高 (9) 9 大中型汽轮发电机自并励静止励磁系统设计 (10) 9.1 自并励系统的应用条件 (10) 9.2 励磁调节器的选择 (10) 9.3 发电机起励问题 (11) 9.4 可控硅励磁功率柜的选择 (11) 9.5 灭磁及过压保护装置的配置 (12) 9.6 励磁变压器及励磁回路继电保护 (12)

发电机励磁系统的数学模型教学文稿

发电机励磁系统的数 学模型

课程设计报告 课程名称电力系统自动装置原理设计题目发电机励磁系统数学建模 及PID控制仿真 设计时间2016-2017学年第一学期专业年级电气133班 姓名姚晓 学号 2012012154 提交时间 2016年12月30日 成绩 指导教师陈帝伊谭亲跃 水利与建筑工程学院

发电机励磁系统数学建模及PID控制仿真 摘要:本文主要进行了发电机励磁系统的数学建模和PID控制仿真。励磁系统在电力系统的规划与控制领域都有非常重要的作用,精确的模型结构与参数是选择有效控制手段和整个电力系统仿真准确性的基础。文中通过对励磁系统建模及仿真的研究,在整理系统稳定性判断理论发展的基础上,运用MATLAB 软件仿真,论证了PID励磁调节可有效地改进励磁控制品质,仿真试验是调整励磁系统参数的有效措施。 关键字:电力系统、励磁系统、根轨迹、PID、仿真

目录 第一章绪论 (5) 1.1本课题研究意义 (5) 1.2本文主要内容 (6) 第二章发电机励磁系统的数学模型 (8) 2.1励磁系统数学模型的发展 (8) 2.2发电机励磁系统原理与分类 (9) 2.3发电机励磁系统的数学模型 (11) 2.3.1励磁机的传递函数 (11) 2.3.2励磁调节器各单元的传递函数 (12) 2.3.3同步发电机的传递函数 (14) 2.3.4励磁稳定器 (14) 2.4励磁控制系统的传递函数 (15) 第三章励磁控制系统的稳定性 (16) 3.1传统方法绘制根轨迹 (16) 3.2用MATLAB绘制根轨迹 (19) 第四章 PID在发电机励磁系统中的应用 (21) 4.1同步发电机的励磁系统的动态指标 (21) 4.2无PID调节的励磁系统 (21) 4.2.1源程序 (22) 4.2.2数值计算结果 (24) 4.3有PID调节的励磁系统 (25) 4.3.1源程序 (26) 4.3.2数值计算结果 (28) 第五章总结与体会 (31) 参考文献 (32)

发电机的自动励磁调节装置及调节形式实习报告

发电机的自动励磁调节装置及调节形式 姓名: 摘要 Xxx年x月x日至x月x日,学校为我们组织了为期x天的电厂实习,地点是xxxxxxxxxxxx。在实习期间,我们参观了电厂的每个部分,就比如:xxxxxxxxxxxxx,在这段期间我通过参观和向带队师傅的学习,认识了很多的生产设备,零件和工具,更加懂得了电厂的生产流程。在那么多的学习中我选择了发电机的自动励磁调节装置及调节形式来写报告。 1自动励磁调节装置 发电机励磁的原理:利用导线切割磁力线感应出电势的电磁感应原理. 自动励磁调节装置的工作原理:自动励磁装置根据发电机电压,负荷电流的变化,相应改变可控硅整流回路的可控硅导通角,使整流桥送入的电流发生变化。为取得励磁调节的快速性主励磁机一般采用100---200Hz中频交流同步发电机,副励磁机采用400---500Hz中频发电机。副励的励磁可用永磁机或自励恒压式。自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。稳定单元是为了改善电力系统的稳定而引进的单元。励磁系统稳定单元用于改善励磁系统的稳定性。限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。 自动励磁调节装置的作用:(1)电力系统正常运行时,能自动调节励磁装置,维持发电机或系统某点(如高压母线)电压水平。大大提高电压调节质量以及减轻运行人员的劳动强度。自动励磁调节装置的作用。(2)当电力系统由多台发电机并列运行时,通过励磁系统的自动调节可以稳定、合理地分配机组间的无功功率。(3)提高电力系统运行的稳定性及输电线路的传输功率。(4)提高带时限继电保护动作的灵敏度:因为电力系统内部短路时,电流有时可能大,且随时间而衰减,这样带时限继电保护装置的灵敏度就很难满足要求。而自动励磁调节装置能在发生短路故障时,强行励磁,使短路电流大为增加,提高保护动作的灵敏性。(5)短路故障切除后,加速系统电压的恢复。改善电动机的自启

(12)Std 421.5-1992 IEEE推荐的电力系统稳定研究用励磁系统数学模型要点

NARI IEEE推荐的电力系统稳定研究用 励磁系统数学模型 IEEE Std 421.5-1992 IEEE电力工程学会 能源开发和发电委员会提出 IEEE标淮局1992,3,19批准 国电自动化研究院 电气控制技术研究所译 2003年7月

目录 1.范围 (3) 2.参考文献 (3) 3.同步电机励磁系统在型励磁系统模型研究中的表示法 (4) 4.同步电机端电压变送器和负荷补偿器模型 (5) 5.DC型直流励磁机 (6) 5.1DC1A型励磁系统模型 (6) 5.2DC2A型励磁系统模型 (7) 5.3DC3A型励磁系统模型 (8) 6.AC型交流励磁机-整流器励磁系统模型 (9) 6.1AC1A型励磁系统模型 (9) 6.2AC2A型励磁系统模型 (10) 6.3AC3A型励磁系统模型 (11) 6.4AC4A型励磁系统模型 (11) 6.5AC5A型励磁系统模型 (13) 6.6AC6A型励磁系统模型 (14) 7. ST型励磁系统模型 (15) 7.1 ST1A型励磁系统模型 (15) 7.2 ST2A 型励磁系统模型 (16) 7.3 ST3A型励磁系统模型 (17) 8. 电力系统稳定器 (18) 8.1 PSS1A型电力系统稳定器 (18) 8.2 PSS2A型电力系统稳定器 (19) 9. 断续作用励磁系统 (20) 9.1 DEC1A型断续作用励磁系统 (20) 9.2 DEC2A型断续作用励磁系统 (22) 9.3 DEC3A型断续作用励磁系统 (22) 10. 文献目录 (23) 附录A 符号表 (23) 附录B 相对(标么)单位制 (25) 附录C 励磁机饱和负荷效应 (26) 附录D 整流器调整率 (27) 附录E 限制的表示 (28) 附录F 用消除快反馈环避免计算问题 (30) 附录G 同步电机内感应反向磁场电流流通路径 (35) 附录H 励磁限制器 (36) 附录I 采样数据…………………………………………………37--- ..46

励磁系统题库

励磁系统题库 填空题:2选择题:5判断题:6问答题:8

填空题: 1、同步发电机励磁系统的基本任务是(维持发电机电压在给定水平)和(稳定 地分配机组间的无功功率)。 2、可控硅元件导通的条件是①(阳极与阴极之间须加正向电压),②(控制极 上加正向触发电压)。 3、发电机正常停机采用(逆变)方式灭磁,事故时采用(跳灭磁开关)方式灭 磁。调节器具有五种励磁限制:(反时限过励磁电流限制/强励限制)、(过无功限制)、(欠励限制)、(功率柜故障限制)、(伏赫限制/过磁通限制)。 4、在三相全控桥中,共阴极组在(正)半周导通;共阳极组在(负)半周导通。 5、PID调节方式就是(比例积分微分)调节方式。 6、在励磁调节器中,控制发电机电压的通道,称为(自动),控制励磁电流的 通道,称为(手动)。 7、励磁调节器发生 PT 断线,则运行中的通道(退出)运行,即切换,同时该 通道由(发电机电压/自动)调节方式转化为(励磁电流/手动)调节方式。 8、励磁调节器发生过励或低励,调节器就由(发电机电压)调节方式转化为 (无功)调节方式。 9、接触器铁芯上的(短路)环,可防止衔铁振动。 10、一般来说,交流发电机的励磁绕组是转子绕组,而直流发电机的励磁绕 组是(定子)绕组。 11、发电机在旋转的转子磁场中发电,把(机械)能转化为(电能),在发电 机并网前(空载),调节发电机的(励磁电流),作用于调节发电机的机端电压,发电机并网后,调节发电机的(励磁电流),作用于调节发电机的无功负荷(无功电流),有功不变,调节主汽门作用于有功功率(有功电流)的变化,与励磁电流的大小无关。 12、应用电磁理论,导体在磁场中(切割磁力线)产生电动势(电压):ξ=BLV (B:磁场强度,L:导体长度,V:切割速度)。简单的讲就是:导体在磁场中做切割(磁力线)运动,就产生感应电动势,当形成(闭合回路时),就会感生出电流。

自动励磁调节器要点

1 前言 彭城电厂1号机组发电机为上海电机厂引进美国西屋公司生产技术生产的改进优化型QFSN-300-2型水氢氢汽轮发电机,容量为300MW,采用高起始响应无刷励磁系统,励磁调节器为中国电力科学研究院生产的WKKL-1B型微机励磁调节器。根据《发电机运行规程》第47条要求,发电机能否进相运行应遵守制造厂的规定,制造厂无规定的应通过试验来确定。试验前中国电力科学研究院对试验的工况进行了静态稳定的估算,并经彭城电厂及江苏省电力调度中心认可,最后确定了进相试验工况。 试验由中国电力科学研究院负责,现场指挥操作由彭城电厂负责;进相试验于2002年3月9日-10日进行。 彭城电厂1号发电机主要参数如下: 型号:QFSN-300-2 额定容量:300MW 额定电压:20000V 额定电流:10189A 额定励磁电压:302V 额定励磁电流:2510A 额定功率因数:0.85 额定转速:3000rpm 额定氢压:0.31Mpa 额定冷氢温度:46℃ 励磁机额定励磁电压:16V 励磁机额定励磁电流:147A X d= 1.86 X’d= 0.223 X’’d= 0.16 T d o= 8.15S T’d= 0.91S T’’d=0.041S 2 试验目的 2.1 由于超高压、长距离输电线路的日益增多,线路充电功率给电网的安全、稳定运行带来一系列问题,在线路轻载时,母线及线路电压过高的问题尤为严重。采用发电机进相运行吸收过剩无功,降低母线电压是解决母线及线路电压过高问

题的一种方法。但由于发电机进相运行时对系统稳定和其端部发热等有不良影响,所以需要进行发电机进相试验,核定进相运行范围,并获取在进相运行时220KV 母线及厂用电压变化的经验数据。 2.2 通过进相试验,验证低励及继电保护的正确性。指出在保护、监测方面存在的问题。 3 发电机进相运行的限制因素 彭城电厂工程设计装机为2台300MW 机组,两条220KV 母线为双母带旁路接线方式。彭城电厂与系统联系紧密,机组在进相运行时,如果电网有大的扰动,进相机组不会对主网的暂态稳定构成威胁。发电机进相运行时主要受发电机端部结构件温升和静稳极限等的限制。 3.1 发电机静稳极限的限制 发电机在不同有功负荷下所能吸收的无功最大值,随发电机有功负荷的改变而改变,因此首先计算在某些特殊运行点的进相无功值,以及进相状态下最大功率角δ值,进而推广到其它情况。等值电路图如下: E q I U f U xt ○ ○ ○ ○ X d X b X 由等值电路图,其中E q 为发电机内电势,X d 为发电机同步电抗,U f 为发电机端电压,X b 为主变电抗,X 为线路电抗,U xt 为系统电压。由于彭城电厂母线出线较多,系统电压不易确定,且归算下来的线路电抗X 也比较小,所以本次计算可近似的将220KV 母线电压作为系统电压,主变电抗X b 做为系统电抗X xt 。通过一系列的计算可求出进相时功角的限制值: d f d d f f d f QX U PX arctg X U Q U X U P arctg +=+=2δ

相关文档
最新文档