现代控制理论(第四章)

现代控制理论第一章答案1

习题解答 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ??-??????????=+???? ???? -???????????? (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ????===?? ?????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 11i 221211011010 x x L U L x x C RC x y x R ??-?????????? =+????????-? ??????????? ??? ?=????? ???

最优控制理论课程总结

《最优控制理论》 课程总结 姓名:肖凯文 班级:自动化1002班 学号:0909100902 任课老师:彭辉

摘要:最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。 关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract: The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects.During the 50 years, the rapid development of the scientific technology puts more stricter requires forward to mang controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases.To the control problem,it requests people to research ,analyse,and devise from the point of view of the Optimal Control Theory. There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value. Keywords: The Optimal Control Theroy, The Modern Control Theroy, The Time Domaint’s Model, The Frequency domain’s Model,The Control Law

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/d97740633.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

习题解答_现控理论_第6章

6-1 对线性系统 A B C D =+?? =+? x x u y x u 作状态反馈v x u +-=K ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型,则有 ()()()()A B K A BK B C D K C DK D =+-+=-+=+-+=-+x x x v x v y x x v x v 因此,闭环系统的状态空间模型和传递函数分别为 1()()()()()K A BK B C DK D G s C DK sI A BK B D -=-+?? =-+?=--++x x v y x v 6-2 对线性系统 A B C D =+?? =+? x x u y x u 作输出反馈u =-H y +v ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型的输出方程,则有 () C D H C DH D =+-+=-+y x y v x y v 即 ()I DH C D +=+y x v 因此,当()I DH +可逆时,闭环系统输出方程为 11()()I DH C I DH D --=+++y x v 将反馈律和上述输出方程代入状态方程,则有 11() [()][()]A B A B H A BH I DH C BH I DH D B --=+=+-+=-++++x x u x y v x v 当闭环系统的状态空间模型和传递函数分别为 1111 11111[()][()]()()()()[()][()]()H A BH I DH C BH I DH D B I DH C I DH D G s I DH C sI A BH I DH C BH I DH D B I DH D ---------?=-++++?=+++?=+-++++++x x v y x v

现代控制理论习题解答(第四章)

1 v(x) a 1x 12 b 1x 22 c 1 x 32 2x 1x 2 4x 3 x 2 2X 1X 3 a 1 x T 1 1 b 1 2 (1) v(x) x 12 4x 22 x 32 2x 1x 2 6x 3x 2 2x 1x 3 (2) v(x) x 12 10x 22 4x 32 6x 1 x 2 2x 3x 2 2 2 2 (3) v(x) 10x 1 4x 2 x 3 2x 1x 2 2x 3x 2 4x 1 x 3 【解】: (1) 二次型函数不定。 ⑵ 二次型函数为负定。 ⑶ 二次型函数正定。 3-4-2 试确定下列二次型为正定时,待定常数的取值范围。 【解】: 3-4-1 第四章 控制系统的稳定性 试确定下列二次型是否正定。 1 1 1 1 1 1 1 1 1 4 3 , 1 0, 3 0, 1 4 3 1 1 1 1 4 1 3 1 1 1 3 1 P 4 10 0, 3 10 0, 10 10 P 1 2 1 , 10 1 1 10 1 2 10 1 39 0 1 4 1 1 4 2 1 1 0, 17

a 1 0 a 1 b 1 1 a 1b 1 c 1 4 b 1 4a 1 c 1 【解】: (1) 设 2 2 v(x) 0.5x 1 0.5X 2 V (X ) X 1X 1 X 2X 2 X 1X 2 X 1X 2 X2 x/ ° " °)为半负定。 0 (x 0) 又因为v(x) 0时,有X 2 0, 则X 2 0,代入状态方程得: X 1 0. 所以系统在X 0时,v(x)不恒为零。 则系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (2) 设 2 2 v(x) 0.5X 1 0.5X 2 v(x) X 1X 1 X 2X 2 X 1 ( X 1 X 2) X 2(2X 1 3X 2) X 12 3X 22 3X 1X 2 T 1 1.5 1 1 1 1.5 X x 1 0, 1.5 3 1 1 1 1.5 3 T … X Px P 负定,系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (3) 0 1 1 1 (1) X X (2) x X ; 1 1 2 3 1 1 1 0 (3) x X (4) x X 1 1 0 1 3-4-3 满足正定的条件为: a i | of 1 1 b i a i 0, 1 1 1 1 b 1 2 0 2 C 1 试用李亚普诺夫第二法判断下列线性系统的稳定性。

现代控制理论第4章教学要求(第四章)

现代控制理论第4章教学要求 按章节,打*号的部分为本科不要求的内容,另外在一些未打*的部分有些内容也不要求,请按下面要求的内容组织本科教学。 第4 章动态系统的结构分析 4.1 引言 4.1.1 能控性与能观性物理现象——从例子谈起 从物理角度理解能控性与能观性的重要性。 4.1.2 能控性与能观性的数学描述 从数学角度理解能控性与能观性的状态方程特点。 4.2 连续线性系统能控性与能观性定义 4.2.1 能控性定义 理解能控性的定义包含的丰富内涵。 能利用定义解决与系统能控性相关的问题。 4.2.2 能观性定义 理解能观性的定义包含的丰富内涵。 能利用定义解决与系统能观性相关的问题。 4.3 连续线性系统能控性与能观性判据 4.3.1 定常系统的能控性判据与能控性指数 掌握定常系统的Gram矩阵能控性判据。 掌握Jordan标准型的能控性判据,并能依此进行相应计算。 掌握能控性矩阵秩判据,并能依此进行相应计算。 了解能控性PBH判据,包括PBH秩判据和PBH特征向量判据。 了解定常系统的能控性指数,并基此减小能控性矩阵的规模。 4.3.2 定常系统的能观性判据与能观性指数 掌握定常系统的Gram矩阵能观性判据。 掌握Jordan标准型的能观性判据,并能依此进行相应计算。。 掌握能观性矩阵秩判据,并能依此进行相应计算。 了解能观性PBH判据,包括PBH秩判据和PBH特征向量判据。。 了解定常系统的能观性指数,并基此减小能观性矩阵的规模。 4.3.3 时变系统的能控性判据 了解时变系统的 Gram矩阵能控性判据。 了解时变系统的能控性秩判据。 4.3.4 时变系统的能观性判据 了解时变系统的 Gram矩阵能观性判据。 了解时变系统的能观性秩判据。 4.3.5 时变系统的能控、能观性判据与其定常情况的关系 理解时变系统的能控、能观性判据与其定常情况的关系。 4.4 连续线性系统输出能控性和输出函数能控性及判据 4.4.1 输出能控性定义及其判定* 本科不要求此节内容。 4.4.2 输出函数能控性定义及其判定* 本科不要求此节内容。 4.5 连续线性系统的对偶关系 4.5.1 定常情况下的对偶关系 理解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.5.2 时变情况下的对偶关系 了解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.6 定常连续线性系统的能控型与能观型 4.6.1 SISO 系统的能控标准型与能观标准型 掌握SISO系统的能控标准型与能观标型以及变换方法,能计算标准型。 4.6.2 MIMO 类SISO 的能控标准型与能观标准型 了解MIMO 类SISO 的能控标准型与能观标准型。 4.6.3 MIMO 系统的Wonham 规范型与Luenberger 规范型* 本科不要求此节内容。 4.7 连续线性系统的结构分解

王金城现代控制理论第一章知识题目解析

王金城化工出版社第1章习题参考答案: 1-1(a )选123123,,,,,y y y v v v 为状态变量,根据牛顿定律, 对1M ,有()1 1112121 dv M g K y K y y M dt ---= 对2M ,有()()2 22123232dv M g K y y K y y M dt +---= 对3M ,有()3 3323433dv M g K y y K y M dt +--= 令312112233415263,,,,,dy dy dy x y x y x y x v x v x v dt dt dt ===== ====,整理得 ()()()122214253641 11 23342332 51262322233 ,,,, ,K K K x x x x x x x x x g M M K K K K K x K K x x x g x x x g M M M M M +====-++++= -++=-+ () ()() 122 11 23222 22 3433 3 000100000010000000100000 01100010000K K K M M x x g K K K K M M M K K K M M ? ????? ??????? ? ??+??-????=+??????+?? ??- ? ? ???? ??? ? +- ?? ??? ? 100000010000001000y x ?? ??=?? ???? (b )选12,12,,y y v v 为状态变量,根据牛顿定律, 对1M ,有()1 1121111 dv M g B v v K y M dt +--= 对2M ,有()2 2221212dv f M g B v B v v M dt +---= 令1211223142,,,dy dy x y x y x v x v dt dt === ===,整理得 11113243134111 ,,K B B x x x x x x x x g M M M ===--++, 112434222 B B B f x x x g M M M +=-++

现代控制理论试题与答案

现代控制理论 1、经典-现代控制区别: 经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接与输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具、可以应用于非线性,时变系统,多输入-多输出系统以及随机过程、2、实现-描述 由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题、实现就是非唯一的、 3、对偶原理 系统=∑1(A1,B1,C1)与=∑2(A2,B2,C2)就是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性、或者说,若∑1就是状态完全能控的(完全能观的),则∑2就是状态完全能观的(完全能控的)、对偶系统的传递函数矩阵互为转置 4、对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件就是的不能观子系统为渐近稳定 第一章控制系统的状态空间表达式 1、状态方程:由系统状态变量构成的一阶微分方程组 2、输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式 3、状态空间表达式:状态方程与输出方程总合,构成对一个系统完整动态描述 4、友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为0 5、非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du、T为任意非奇异阵(变换矩阵),空间表达式非唯一 6、同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量 第二章控制系统状态空间表达式的解 1、状态转移矩阵:eAt,记作Φ(t) 2、线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ 第三章线性控制系统的能控能观性 1、能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态就是能控的、若系统的所有状态都就是能控的,称系统就是状态完全能控 2、系统的能控性,取决于状态方程中系统矩阵A与控制矩阵b 3、一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0、(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的 4、在系统矩阵为约旦标准型的情况下,系统能观的充要条件就是C中对应每个约旦块开头的一列的元素不全为0 5、约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型 6、最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式就是最常用的、 第五章线性定常系统综合 1、状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入、K为r*n维状态反馈系数阵或状态反馈增益阵 2、输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵 3、从输出到状态矢量导数x的反馈:A+GC 4、线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都就是常矩阵 动态补偿器:引入一个动态子系统来改善系统性能 5、(1)状态反馈不改变受控系统的能控性 (2)输出反馈不改变受控系统的能控性与能观性 6、极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件就是∑0完全能控

现代控制理论的应用----王力2011117322

现代控制理论的应用----王力2011117322 现代控制理论的应用 2011117322 王力物联网工程现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论;广义的

是指60年代以来发展起来的所有新的控制理论与方法。 采用状态观测器对系统状态进行估计(或称重构)实际反馈控制主要优点是理论体系严谨完整;可获得理想的最优控制性能,设计过程较少依赖经验试凑;主要缺点是要求系统模型准确,否则实际控制性能并非最优,即控制系统鲁棒差;理论较抽象,缺乏直观性,不易理解,需要较多数学知识;性能指标函数中的加权Q和R选取无定量准则可循,也需凭经验选取,故设计结果也与设计人员有关。 自动控制系统是指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。其组成结构是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式;性能指标:定性的有稳(定性)、准(确性)、快(速性);控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 现代控制理论主要应用于航空类飞行器控制现代控制理论是基 于时域的系统分析方法,目前基本都是高端如火箭发射,导弹制导之类的复杂系统基于动态矩阵的预测控制等。比如在汽车中运用的自适应控制,汽车制动防抱死系统的控制,自适应估计等定速巡航系统的初衷是让车辆运行在最佳的发动机转速—油耗平衡点,汽车发动机的转速跟扭矩、油耗是有一定比例关系的,单位距离油耗最省的发动机转速所对应的速度就是巡航速度,这个定速巡航巡航系统就是个典型的现代控制系统,车辆快了,它帮你松油门,车辆慢了,它帮你踩。现代控制理论的应用于实际存在的很大的问题是系统模型是否准确

现代控制理论第4章答案

现代控制理论第四章习题答案 4-1判断下列二次型函数的符号性质: (1)222 123122313()31122Q x x x x x x x x x x =---+-- (2)222123122313()4262v x x x x x x x x x x =++--- 解:(1)由已知得 []1123 123 1232311 2 3231 1()3112 2111113211112x Q x x x x x x x x x x x x x x x x x x ?? ? ???=-+------???? ? ????? ? ? ??--??? ?????=--???????????? ---?? 110?=-<,211 2013 -?= =>-,31111711 3 024 1 1112 --?=--=-<-- - 因此()Q x 是负定的 (2)由已知得 [][]112312312323112323()433111143131x Q x x x x x x x x x x x x x x x x x x ????=---+---+?????? --???? ????=--???? ????--???? 110?=>,211 3014 -?= =>-,3111 143160131 --?=--=-<-- 因此()Q x 不是正定的 4-2已知二阶系统的状态方程:

11122122a a x x a a ??= ??? 试确定系统在平衡状态处大范围渐进稳定的条件。 解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A 的特征值均具有负实部。 即: 11 12 2122 2112211221221()0 a a I A a a a a a a a a λλλλλ---= --=-++-= 有解,且解具有负实部。 即:1122112212210a a a a a a +<>且 方法(2):系统的原点平衡状态0e x =为大范围渐近稳定,等价于T A P PA Q +=-。 取Q I =,令11 121222P P P P P ??=???? ,则带入T A P PA Q +=-,得到 11 2111121122 211212 2222220100 221a a P a a a a P a a P -???? ????????+=????????????-?????? 若 112112 1122 2111221122122112 22 220 4()()0022a a a a a a a a a a a a a a +=+-≠,则此方程组有唯一解。即 22 21221222211122 1222211111121122()1 ()2()A a a a a a a P a a a a A a a a a A ??++-+=-??-++++?? 其中11221221det A A a a a a ==- 要求P 正定,则要求 22 2122 111112202()A a a P a a A ++?== >-+ 22 1122122121122()()0 4() a a a a P a a ++-?==>-+

现代控制理论试题与答案

现代控制理论 1.经典-现代控制区别: 经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程. 2.实现-描述 由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的. 3.对偶原理 系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置 4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定 第一章控制系统的状态空间表达式 1.状态方程:由系统状态变量构成的一阶微分方程组 2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式 3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述 4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为0 5.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一 6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量 第二章控制系统状态空间表达式的解 1.状态转移矩阵:eAt,记作Φ(t) 2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ

《现代控制理论》第3版课后习题答案45682

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 222213********* 1x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有 相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++= s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- ++-=+++= 1-7 给定下列状态空间表达式

《现代控制理论》复习提纲2017

现代控制理论复习提纲 第一章: 绪论 (1)现代控制理论的基本内容 包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波 (2)现代控制理论与经典控制理论的区别 第二章:控制系统的状态空间描述 1.状态空间的基本概念; 系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程 2.状态变量图 概念、绘制步骤; 3.由系统微分方程建立状态空间表达式的建立; 1.2.1 第三章:线性控制系统的动态分析 1.状态转移矩阵的性质及其计算方法 (1)状态转移矩阵的基本定义; (2)几个特殊的矩阵指数; (3)状态转移矩阵的基本性质(以课本上的5个为主); (4)状态转移矩阵的计算方法 掌握: 2.2.2 方法一:定义法 方法二:拉普拉斯变换法例题2-2 第四章:线性系统的能控性和能观测性 (1)状态能控性的概念 状态能控、系统能控、系统不完全能控、状态能达 (2)线性定常连续系统的状态能控性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算

(3)状态能观测性的概念 状态能观测、系统能观测、系统不能观测 (4)线性定常连续系统的状态能观测性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算 (5)能控标准型和能观测标准型 只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II型的计算方法 第五章:控制系统的稳定性分析 (1)平衡状态 (2)李雅普诺夫稳定性定义: 李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析 例4-6 第六章线性系统的综合 (1)状态反馈与输出反馈 (2)反馈控制对能控性与观测性的影响

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下: u K x K x K x X K x K x x x x J K x J x J K x J K x x J K x x x p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ?? ?

令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ??????????????? ????????????? ??????????? ?-----=????????????????????????????? ?654321165432111111112654321000001000000 000000010010000000000010x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 U 图1-28 电路图 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为:

上海交大杜秀华老师《现代控制理论》第四章 线性系统的能控性和能观性4

4.4 时变系统的能控性和能观性 一、能控性判据 1、有关线性系统能控性的几点说明 1)允许控制u(t),其元在时间[t 0,t f ]上绝对平方可积。 2)能控状态和控制作用的关系式 τ ττττ τττττττd )(u )(B ),t (d )(u )(B ),t ()t ,t (X 0 d )(u )(B ),t (X )t ,t ()t (X f f f t t 0t t f 0f 1 0t t f 00f f ???-=-==+=-ΦΦΦΦΦ ) 8.3.4(d )(u )(B ),t (X f t t 00τ τττ?-=∴Φ 3)非奇异变换不改变系统的能控性 设系统在变换前是能控的,它必满足(4.3.8) 即 ττττd )(u )(B ),t (X f t t 00?-=Φ 若取变换矩阵P ,对X 进行线性变换 X P X = 则有 B P B AP P A 11 --== 即 B P B P A P A 1 ==- 将上述关系式代入(4.3.8)式,有

τ τττφ-=τ τττφ-=τ τττφ-=???-d )(u )(B ),t (X d )(u )(B P ),t (P X d )(u )(B P ),t (X P f f f t t 00t t 010t t 00 上式表明非奇异变换不改变系统的能控性 4)如果0X 是能控状态,则0X α也是能控状态,α是任意非零实数。 5)如果01X 和02X 是能控状态,则0201X X +也是能控状态。 6)由线性代数关于线性空间的定义可知,系统中所有的能控状态构成状态空间中的一个子空间,此子空间称为系统的能控子空间,记为c X 。 例:u 11x x 1001x x 2121??????+????????????=?????? 解:系统的能控状态为21x x =的状态,为两维状态空间中的一条450斜线。 2、线性连续时变系统的能控性判据 1)【定理】时变系统的状态方程为 )t (U )t (B )t (X )t (A )t (X += 系统在[t 0,t f ]上状态完全能控的充分必要条件是格拉姆矩阵 ?φφ=f t t 0T T 0f 0c dt )t ,t ()t (B )t (B )t ,t ()t ,t (W

现代控制理论

现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 学科内容现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代 表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论非线性系统的分析和综合理论尚不完善。研究领域主要还 限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,

最新现代控制理论知识点汇总

第一章 控制系统的状态空间表达式 1. 状态空间表达式 n 阶 Du Cx y Bu Ax x +=+=&1:?r u 1:?m y n n A ?: r n B ?: n m C ?:r m D ?: A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。 2. 状态空间描述的特点 ①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。 ②状态方程和输出方程都是运动方程。 ③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。 ④状态变量的选择不唯一。 ⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。 ⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。 ⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。 3. 模拟结构图(积分器 加法器 比例器) 已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。 4. 状态空间表达式的建立 ① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积 分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。 ② 由系统的机理出发建立状态空间表达式:如电路系统。通常选电容上的电压和电感上的电流作为状态变量。 利用KVL 和KCL 列微分方程,整理。 ③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。实现是非唯一的。 方法:微分方程→系统函数→模拟结构图→状态空间表达式 注意:a 如果系统函数分子幂次等于分母幂次,首先化成真分式形式,然后再继续其他工作。 b 模拟结构图的等效。如前馈点等效移到综合反馈点之前。p28 c 对多输入多输出微分方程的实现,也可以先画出模拟结构图。 5.状态矢量的线性变换。也说明了状态空间表达的非唯一性。不改变系统的特征值。特征多项式的系数也是系统的不变量。 特征矢量 i p 的求解:也就是求0)(=-x A I i λ的非零解。 状态空间表达式变换为约旦标准型(A为任意矩阵):主要是要先求出变换矩阵。a 互异根时,各特征矢量按列排。b 有重根时, 设3阶系统,1λ=2λ,3λ为单根,对特征矢量1p ,3p 求法与前面相同, 2p 称作1λ的广义特征矢量,应满足121)(p p A I -=-λ。 系统的并联实现:特征根互异;有重根。方法:系统函数→部分分式展开→模拟结构图→状态空间表达式。 6.由状态空间表达式求传递函数阵)(s W D B A sI C s W ++-=-1)()( r m ?的矩阵函数[ij W ] ij W 表示第j 个输入对第i 个输出的传递关系。 状态空间表达式不唯一,但系统的传递函数阵)(s W 是不变的。 子系统的并联、串联、反馈连接时,对应的状态空间表达及传递函数阵)(s W 。方法:画出系统结构图,理清关系,用分块矩阵表示。 第二章 控制系统状态空间表达式的解

相关文档
最新文档