临界与极值问题的处理方法

临界与极值问题的处理方法
临界与极值问题的处理方法

临界与极值问题的处理方法

课前预习案

应试指导

【考情分析】临界与极值问题是高考的热点,试题中经常考查到临界状态或极值问题,也有综合性试题将两类问题结合到一起考查.

临界问题:某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现"或“恰好不出现"某种现象的状态,解决这类问题一定要注意“恰好出现"或“恰好不出现"的条件.极值问题:是指研究平衡问题中某物理量变化时出现的最大值或最小值.中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制.若受附加条件限制,则为条件极值.

解决临界和极值问题的关键是:通过过程及状态分析,找出临界或极值状态下满足的条件或规律,把握条件,结合相应的物理规律,运用数学知识求解.

能力摸底

为了检测一轮复习效果,请同学们完成下面的训练,诊断一下自己的实力.

1.如图所示,质量M=4 kg的木板长L=1.4 m,静止在光滑水平

面上,其上面右端静止一质量m=1 kg的小滑块(可看做质点),滑

块与木板间的动摩擦因数u=0.4,先用水平恒力F=28 N向右拉木

板,要使滑块从木板上恰好滑下来,力F至少应作用多长时间(g

取l 0 m/s2)?

解答:题中木板在恒力F的作用下由静止开始向右加速运动,滑块受摩擦力作用相对地面也向右滑动,因为a m=f/m=ug=4m/S2,a M=(F-f)/M =6 m/s.即板的加速度大于滑块的加速度.所以在力F作用时间内的任意时刻木板的速度必大于滑块的速度,若力F作用停止后,当两者的速度恰好能够相等并且滑块到达滑下木板的临界状态,这时滑块相对于木板的位移为L,则力F作用在木板上的时间就是最短时间,设木板在力F作用期间的位移为S M,通过上述物理过程的分析可知,要使滑块滑下来,其临界条件是v M=v m=v,且滑块的相对位移s m=L,明确这些条件后,求极值就不难了,对由M和m组成的系统,

由动量定理得Ft=(M+m)v

由功能关系得FS M-umgL= 1/2(M+m )v2

对木板有s M= 1/2a M t2.

由①②③式,得t min=1 s.

【方法点评】对于临界条件不明显的物理极值问题,解题的关键在于通过对物理过程的分析,使隐蔽的临界条件暴露,从而找到解题的突破口,根据有关规律求出极值.

2.两个正点电荷Q1=Q和Q2=4Q分别固定于光滑绝缘水平面上的A、B两点,A、B两点相距L,且A、B两点正好位于水平光滑绝缘半圆细管的两个端点出口处,如图所示.(1)现将另一正点电荷置于A、B连线上靠近A处由静止释放,求

它在AB连线上运动过程中达到最大速度时的位置离A点的距离.

(2)若把该点电荷放于绝缘管内靠近A点处由静止释放,试确定它

在管内运动过程中速度为最大值时的位置P,即求出图中PA和AB

连线的夹角θ.

(3)Q1、Q2两点电荷在半圆弧上电势最低点的位置P’点是否和P

共点,请作出判断并说明理由.

解答:(1)正点电荷在A、B连线上速度最大时对应该点电荷所受合力为零,即

(2)点电荷在P点处如其所受库仑力的合力沿O P方向,则它在P点处速度最大,即此

时满足

(3)P’点即为P点.因为正点电荷从A点沿管道运动至P的过程中,电场力做正功,它的电势能减少,而从P运动至B过程中,克服电场力做功,它的电势能将增大,因此该正点电荷在P处电势能最小,相应P点处的电势最低.

【方法点评】第(1)问中求最大速度的位置就是一个临界状态,也是一个极值问题,通过过程分析法可知,速度最大处对应该电荷所受合力为零,或电场强度为零.第(2)问求点电荷沿管运动的最大速度,同样是一个临界状态,也是一个极值问题,通过过程分析法可知,此位置P的切向合外力为零,即切向加速度为零,从能量的角度看,也就是动能最大、电势能最小(也就是电势最低)的位置.

3.建筑工地上的黄沙,堆成圆锥形,而不管如何堆,其倾斜角度是不变的,若测出圆锥底的周长为12.5 m,高为1.5 m,如图所示,试求:

(1)黄沙之间的动摩擦因数;

(2)若将该黄沙靠墙堆放,占场地的面积至少为多少?

解答:(1)沙堆表面上的沙粒受到重力、弹力和摩擦力的作用而保持静止,则mg sinθ= umgcosθ,即u=tanθ=h/R,又因为l=2πR.故u=2hπ/l=0.75,θ=370.

(2)因为黄沙是靠墙堆放的,只能堆成半圆锥,由于体积不变,θ不变,要使占场地面积最小,则R x为最小,所以hx=μR x由圆锥体的体积公式:V= πr2h/3

因为只能堆成半个圆锥,所以πR x3/8=πR3/4 又因为R=L/2π=2m

所以R3x=16 m3,占地面积s = πR x2/2 =2 π41/3 m2

【点评】通过物理过程的分析找出黄沙堆成圆锥形的临界角是本题的关键,可以想象最表面的一粒沙子是在其他沙子形成的斜面上运动,其恰好平衡的条件是重力沿斜面方向的分力恰好与摩擦力平衡.

4.京津唐高速公路上行驶的两汽车之间留有200 m的距离,设两车正以100 km/h的速度匀速行驶时,后车司机突然发现前车出现事故,因此采取急刹车,若从司机发现事故到采取刹车措施使车轮停转的时间为0.1 s,汽车轮胎与路面间的动摩擦因数范围为0.4~0.6,问后方汽车的实际刹车距离有多大?由此你认为高速公路上保持200 m的行车距离,安全性如何?(g取10 m/s2)

解答:汽车开始刹车到安全停止所走的距离分两段,一段匀速,一段匀减速.

即汽车的刹车距离为67~100 m,小于200 m,是安全的.

【点评】由于汽车轮胎与路面间的动摩擦因数有一定的范围,则刹车距离也就有一定的范围.

课堂导学案

要点精讲1:静摩擦力的大小有一定的范围引出的双临界问题

【典题演示1】如图所示,倾角为?=600的斜面上,放一质量为1 kg的物体,用k=1 00 N/m的轻质弹簧平行于斜面吊着,物体放在PQ之间任何位置都能处于静止状态,而超过这一范围,物体都会沿斜面滑动,若AP=22 cm,AQ=8 cm,试求轻质弹簧原长及物体与斜面

间的最大静摩擦力的大小.(g取l0 m/s2)

解析:物体在临界位置Q点,弹簧被压缩,压缩量为x=L-AQ,受力图如图(a),物块有下滑趋势,最大静摩擦力Fm沿斜面向上;物体在临界位置P点,弹簧被拉长,伸长量为,物块有上滑趋势,最大静摩擦力FM 沿斜向下,受力如图所示

要点精讲2:端值推理法

【典题演示2】在如图所示的电路中,R1、R2、R3和R4皆为定值电

阻,R5为可变电阻,电源的电动势为E,内阻为设电流表A的读数

为I,电压表V的读数为U.当R5的滑动触点向图中a端移动时

( )

A.I变大,U变小

B.I变大,U变大

C.I变小,U变大

D.I变小,U变小

解析:由图易知R5的滑动触点向a端移动时R ,有效电阻单调变小,引起电路中各量的变化也是单调的.设滑动触点到达a点,则R5被短路,并联部分等效于一根导线,则外电阻变小,路端电压U变小,从而可排除选项B、C.于电流表所在支路被短路,则电流表读数减至零也是变小的,所以选项A错误,选项D正确.

答案:D

[方法点评]端值推理法是一种把问题推向极限、极端状态,使问题明朗化的推理方法.在解决某些物理问题时,运用极值推理法常常可以使问题简单化、直观化,达到事半功倍的效果.本题中设想R5的滑动触点滑到a端,电阻R5被短路,从而轻松解决问题,这就是典型的端值推理法.

要点精讲3:临界角速度

【典题演示3】如图所示为车站使用的水平传送带的模型,它的水平传送带的长度为L=8 m,传送带的皮带轮的半径均为R=0.2 m,传送带的上部距地面的高度为h=0.45 m,现有一个旅行包(视为质点)以v0=10 m/s的初速度水平地滑上水平传送带.已知旅行包与皮带之间的动摩仍为μ=0.6,本题中g=10m/s2,试讨论下列问题

(1)若传送带静止,旅行包滑到B端时,人若没有及时取下,旅行包将从B端滑落.则包的落地点距B端的水平距离为多少?

(2)设皮带轮顺时针匀速转动,并设水平传送带长度仍为8 m,旅行包滑上传送带的初速度恒为10 m/s.当皮带轮的角速度ω值在什么范围内,旅行包落地点距B端的水平距离始终为(1)中所求的水平距离?若皮带轮的角速度ω=40 rad/s,旅行包落地点距B端的水平距离又是多少?

(3)设皮带轮以不同的角速度顺时针匀速转动,画出旅行包落地点距B端的水平距离s 随皮带轮的角速度叫变化的图象.

[方法点评]本题的难点是第(3)问,要画出旅行包落地点距B端的水平距离s随皮带轮的角

速度ω变化的图象,关键时找出5与ω的函数关系,并确定在三段函数关系中间的两个临

界点.

要点精讲4:物体在竖着平面内做圆周运动的临界问题

【典题演示4】如图甲所示为一根竖直悬挂的不可伸长的轻绳,下端拴一小物块A,上端固定在C点且与一能测量绳的拉力的测力传感器相连.已知有一质量为m0的子弹B沿水平方向以速度v0射人A内(未穿透),接着两者一起

绕C点在竖直面内做圆周运动,在各种阻力都可

忽略的条件下测力传感器测得绳的拉力F随时间t的变化关系如图乙所示.已知子弹射人的时间极短,且图乙中t=0为A、B开始以相同速度运动的时刻,根据力学规律和题中(包括图)提供的信息,对反映悬挂系统本身性质的物理量(例如A的质量)及A、B一起运动过程中的守恒量,你能求得哪些定量的结果?

[点评]本题考查圆周运动绳约束模型,注意应用最高点和最低点的临界条件:刚好能过最高点,绳中拉力等于零,速度V=√gR;最低点与最高点绳中拉力差△F=6mg.充分应用这些临界条件就可以避免繁琐的数学运算,节省解题时间.同时,在具体的问题中,要分清绳(或沿圆环内侧运动)与杆(或管)的区别.即绳对球只能提供拉力且绳对球的拉力方向只能沿绳指向圆心.因此,在绳的约束下物体能在竖直面内做圆周运动的条件是最高点速度V≥√gR而杆对球即可能是拉力也可能是压力.在杆(或管)约束下能在竖直面内做圆周运动的条件是最高点速度V≥0.

【典题演示5】(2010·全国理综)图中左边有一对平行金属板,两板相距为d,电压为u;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为以的正三角形区域EFG(EF边与金属板垂直)在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为g的正离子沿平行金属板面、垂直于磁场的方向射人金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射人磁场区域.不计重力.

(1)已知这些离子中的离子甲到达磁场边界EG后,从边界

EF穿出磁场,求离子甲的质量.

(2)已知离子中的离子乙从EG边上I点(图中未画出)穿出

磁场,且GI长为3a/4,求离子乙的质量.

(3)若这些离子中的最轻离子的质量等于离子甲质量的

一半,而离子乙的质量是最大的,问磁场边界上什么区

域内可能有离子到达.

高一物理力学专题提升专题05平衡中的临界问题

专题05 平衡中的临界问题 【专题概述】 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 (3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【典例精讲】 典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A 与斜面间的动摩擦因数μ=0.5。现给A施加一水平力F,如图所示。设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G 的比值不可能是()

动力学中的临界与极值问题

考点二 动力学中的临界与极值问题 动力学中的临界问题一般有三种解法: 1.极限法 在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的. 2.假设法 有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法. 3.数学法 将物理过程转化为数学公式,根据数学表达式求解得出临界条件. 命题点1 接触与脱离的临界条件 3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2) 【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有 kx 1=(M +m )g ① kx 2-mg =ma ② x 1-x 2=12 at 2③ 由①式得x 1=(M +m )g k =0.15 m , 由②③式得a =6 m/s 2. F min =(M +m )a =72 N ,

F max =M (g +a )=168 N. 【答案】 F max =168 N F min =72 N 命题点2 相对滑动的临界条件 4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求: (1)小铅块相对木块滑动时小铅块的加速度大小; (2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小. 【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma 解得a =5 m/s 2. (2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg ) 解得n ≤3.33 即小铅块最多只能带动3个木块运动 设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12 M (v 2-v 20) 解得v =6 m/s. 【答案】 (1)5 m/s 2 (2)6 m/s 命题点3 数学方法求解极值问题 5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33 .重力加速度g 取10 m/s 2.求:

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m 时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? 【致远提示】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

板块模型的临界极值问题

板块模型的临界极值问题 1【经典模型】 如图甲所示,M 、m 两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F 作用在物块M 上. (1)F 至少为多大,可以使M 、m 之间产生相对滑动? (2)如图乙所示,假如恒力F 作用在m 上,则F 至少为多大,可以使M 、m 之间产生相对滑动? 练1、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。已知A 、B 间的动摩擦因数为0.4,水平向右的拉力F 作用在B 上,A 、B 一起相对静止开始做匀加速运动。加速度为 1.52/s m 。 (2/10s m g =)求: (1)力F 的大小。 (2)A 受到的摩擦力大小和方向。 (3)A 、B 之间的最大静摩擦力?A 能获得的最大加速度? (4)要想A 、B 一起加速(相对静止),力F 应满足什么条件? (5)要想A 、B 分离,力F 应满足什么条件? 练2、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg ,2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( ) A .当拉力F <12N 时,A 静止不动 B .当拉力F =16N 时,A 对B 的摩擦力等于4N C .当拉力F >16N 时,A 一定相对B 滑动 D .无论拉力F 多大,A 相对B 始终静止 2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( ) A .当拉力F <12 N 时,两物体均保持静止状态 B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动 C .两物体间从受力开始就有相对运动

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

圆周运动临界问题 极值问题

圆周运动临界问题 极值问题 相关知识复习: 一、由于受静摩擦力作用 二、绳 杆等恰好无作用力或者有承受最大力 三、两个典型模型 1、绳球模型(已知绳长L ,小球质量m ,线速度V ) 1)画出小球的受力示意图 2)写出小球过最高点的动力学方程 3)若小球刚好过最高点,F =拉 ,此时 V= 2、杆球模型 (已知杆长L ,小球质量m ,线速度V ) 1)若小球刚好过最高点,杆对球的作用力F = ,方向 此时 V= 2 )若v = F = 。 3 )若v >F = ,方向 。 4 )若0v

高中物理中的临界与极值问题

高中物理中的临界与极值问题 宝鸡文理学院附中何治博 一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。 高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等

词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。从以往试题的内容来看,对于物理临界问题的考查主要集中在力和运动的关系部分,对于极值问题的考查则主要集中在力学或电学等权重较大的部分。 二、常见临界状态及极值条件解答临界与极值问题的关键是寻找相关条件,为了提高解题速度,可以理解并记住一些常见的重要临界状态及极值条件: 1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角 为0 45 2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时 刻 3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰 好不再滑下)—μ=tgθ。 4.物体刚好滑动——静摩擦力达到最大值。

板块模型的临界极值问题

板块模型的临界极值问题 Prepared on 22 November 2020

板块模型的临界极值问题 1【经典模型】 如图甲所示,M 、m 两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F 作用在物块M 上. (1)F 至少为多大,可以使M 、m 之间产生相对滑动 (2)如图乙所示,假如恒力F 作用在m 上,则F 至少为多大,可以使M 、m 之间产生相对滑动 练1、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。已知A 、B 间的动摩擦因数为,水平向右的拉力F 作用在B 上,A 、B 一起相对静止开始做匀加速运动。加速度为2/s m 。 (2/10s m g =)求: (1)力F 的大小。 (2)A 受到的摩擦力大小和方向。 (3)A 、B 之间的最大静摩擦力A 能获得的最大加速度 (4)要想A 、B 一起加速(相对静止),力F 应满足什么条件 (5)要想A 、B 分离,力F 应满足什么条件 练2、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg ,2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( ) A .当拉力F <12N 时,A 静止不动 B .当拉力F =16N 时,A 对B 的摩擦力等于4N C .当拉力F >16N 时,A 一定相对B 滑动 D .无论拉力F 多大,A 相对B 始终静止 2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( ) A .当拉力F <12 N 时,两物体均保持静止状态 B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动 C .两物体间从受力开始就有相对运动

平衡中的临界极值问题

平衡中的临界和极值问题 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。 求解平衡的临界问题一般用极限法。极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。在平衡中最常见的临界问题有以下两类: 一、以弹力为情景 1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。 2. 绳子断与持续的临界条件是:作用力达到最大值; 绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。 例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。 解:作出A 受力图如图所示,由平衡条件有: F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0 要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为: N F N 3 3 403320≤≤ 变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断? (2)要使细线不被拉断,拉力F 不得超过多少? 变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承 受的最大拉力均为T ,则每根绳的长度不得短于__ ____. 例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。 解析 以球为研究对象,如图所示。有 R h Rh 2cos R h R sin F cos F G sin F 2 2N 1N 1N -= θ-= θ=θ=θ 再以整体为研究对象得F F 2N = 即 G ·h R )h R 2(h F --= 变式训练3:如图所示,平台重600N ,滑轮重不计,要使系统保持静止,人重不能小于( B ) A .150N B .200N C .300N D .600N 二、以最大静摩擦力为情景 靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。 例3:如图所示,跨过定滑轮的轻绳两端分别系着物体A 和B ,物体A 放在倾角为θ的斜面上。已知物体A 的质量为m ,物体A 与斜面间的动摩擦因数为μ(μ

在学习物理中有关临界极值问题的处理

在动力学中临界极值问题的处理 佛山市高明第一中学(528500)周兆富 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的 问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 ?例1?速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? ?灵犀一点?甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 ?解析?飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt求路程。 (1)设甲、乙相遇时间为t,则飞鸟的飞行时间也为t,甲、乙速度大小相等v甲= v乙=5m/s,同相遇的临界条件可得:s = (v甲+v乙)t 则: 2000 =200 10 s t s s v v == + 乙 甲

5 平衡中的临界问题

【专题概述】 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 页脚内容1

(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【典例精讲】 典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。现给A施加一水平力F,如图所示。设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是() 页脚内容2

动力学临界极值问题

专题二:动力学中的临界极值问题 1当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件?用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键. 2 ?临界或极值条件的标志 (1) 有些题目中有刚好” 恰好” 正好”等字眼,明显表明题述的过程存在着临界点; (2) 若题目中有取值范围”、多长时间”、多大距离”等词语,表明题述的过程存在着起止点”而这些起止点 往往就是临界状态; (3) 若题目中有最大”、最小”、至多”、至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界占; 八、、\ (4) 若题目要求最终加速度”、稳定加速度”等,即是要求收尾加速度或收尾速度. 3?动力学中的典型临界条件 (1) 接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N= 0. (2) 相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值. (3) 绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于 它所能承受的最大张力,绳子松驰的临界条件是:F T = 0. (4) 加速度变化时,速度达到最大的临界条件:当加速度变化为a= 0时. 【例1 □如图所示,质量为m= 1 kg的物块放在倾角为0= 37°的斜面体上,斜面体质量为M = 2 kg,斜面体与物块 间的动摩擦因数为尸0.2,地面光滑,现对斜面体施一水平推力F,要 使物块m相对斜面静止,试确定推力F的 取值范围.(sin 37 =0.6, cos 37 = 0.8, g= 10 m/s2) 【例2 如图所示,物体A叠放在物体B上,B置于光滑水平面上, 之间的动摩擦因数卩=0.2,开始时F = 10 N,此后逐渐增加,在增大到 A .当拉力F<12 N时,物体均保持静止状态 B ?两物体开始没有相对运动,当拉力超过12 N时,开始相对运动 45 N的过程中,贝U ( A、B 质量分别为m A = 6 kg , m B = 2 kg , A、B

专题二、 临界、极值问题(答案)

专题临界问题 一、临界问题 1.临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。临界状态是发生量变和质变的转折点。 2.关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。 二、例题分析 【例1】一个质量为0.1千克的小球,用细线吊在倾角θ为37°的斜面顶端,如图所示。系统静止时绳与斜面平行,不计一切摩擦。求下列情况下,绳子受到的拉力为多少? (1)系统以6米/秒2的加速度向左加速运动 (2)系统以l0米/秒2的加速度向右加速运动 (3)系统以15米/秒2的加速度向右加速运动(提示:怎样建立直角坐标系更好?) T=0.12N T=1.4N T=1.8N

练习:轻绳AB与竖直方向的夹角= ,绳BC水平,小球质量m=0.4 kg,问当小车分别以 2.5、

8的加速度向右做匀加速 运动时,绳AB的张力各是多少?(取g=10)3、(1)5N(2)5.12N 【例2】质量分别为m和M的两物体叠放在光滑水平地面上,两物体间的动摩擦因数为μ,水平拉力F的作用在M上,两物体相对静止一起向右运动。求:⑴物体m受的摩擦力f; ⑵若F增大,f如何变化⑶要保持两物体相对静止,求拉力F取值要求(4)现施水平力F拉m,为使m和M不发生相对滑动,水平力F不得超过多少?(最大静摩擦力等于滑动摩擦力) ⑴mF/(M+m) ⑵增大⑶F≤μ(M+m) g (4)F≤μmg(M+m) /M

4、力的平衡问题中的临界和极值问题

力的平衡问题中的临界和极值问题 例8:如图所示,绳子AO 的最大承受力为150N ,绳子BO 的最大承受力为 100N ,绳子OC 强度足够大.要使绳子不断,悬挂重物的重力最多为 ( ) A .100N B.150N C. D.200N 例9:物体的质量为2 kg,两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于 物体上,在物体上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图所示, θ=60°,若要使绳都能伸直,求拉力F 的大小范围。(g 取10 m/s 2) 课后针对性训练: 1、如右图所示,物体B 靠在竖直墙面上,在竖直轻弹簧的作用下,A 、B 保持静止,则物体A 、B 受力的个数分别为( ) A .3,3 B .4,3 C .4,4 D .4,5 2、如图所示,一个质量为m 的滑块静止置于倾角为30°的粗糙斜面上,一根轻 弹簧一端固定在竖直墙上的P 点,另一端系在滑块上,弹簧与竖直方向的夹角为 30°.则( ) A .滑块可能受到三个力作用 B .弹簧一定处于压缩状态 C .斜面对滑块的支持力大小可能为零 D .斜面对滑块的摩擦力大小可能等于mg 3、如图所示,在水平力F 的作用下,木块A 、B 保持静止。若木块A 与B 的接触 面是水平的,且F≠0。则关于木块B 的受力个数可能是( )。 A.3个或4个 B.3个或5个 C.4个或5个 D.4个或6个 4、如图1-3所示,一光滑的半圆形碗固定在水平面上,质量为m1的小球 用轻绳跨过光滑碗连接质量分别为m2和m3的物体,平衡时小球恰好与碗 之间没有弹力作用,两绳与水平方向夹角分别为60°、30°。则m1、m2、 m3的比值为 ( ) A .1:2:3 B .2::1 C .2:1:1 D .2:1: 5、两个相同的可视为质点的小球A 和B ,质量均为m ,用长度相同的两根细 线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、 B 两个小球,然后,用一水平方向的力F 作用在小球A 上,此时三根线均处 于伸直状态,且OB 细线恰好处于竖直方向如图所示.如果两小球均处于静止 状态,则力F 的大小为( ) A .0 B .mg C.3mg 3 D.3mg

临界与极值问题

热点综合专题四牛顿运动定律的综合应用 热点一超重和失重问题 超重、失重和完全失重的比较 【典例】(2018·福建福州期末)广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a -t图象如下图所示.则下列相关说法正确的是()

A.t=4.5 s时,电梯处于失重状态 B.5~55 s时间内,绳索拉力最小 C.t=59.5 s时,电梯处于超重状态 D.t=60 s时,电梯速度恰好为零 [审题指导](1)判断超重与失重,仅看加速度方向即可,与加速度大小如何变化无关. (2)a-t图线与t轴所围的“面积”代表速度的变化量. [解析]利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5 s时间内,电梯处于超重状态,拉力>重力,5~55 s时间内,电梯处于匀速上升过程,拉力=重力,55~60 s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确. [答案]D 判断超重和失重的方法

[针对训练] 1.(2018·吉林省白城市通榆一中考试)某运动员(可看成质点)参加跳台跳水比赛,t=0时,为其向上起跳离开跳台的瞬间,其速度与时间关系图象如图所示,不计空气阻力,则下列说法错误的是() A.可以求出水池的深度 B.可以求出跳台距离水面的高度

C.0~t2时间内,运动员处于失重状态 D.t2~t3时间内,运动员处于超重状态 [解析]跳水运动员在跳水过程中的v-t图象不能反映是否到达水底,所以不能求出水池的深度,故A错误;应用v-t图象中,图线与横轴围成的面积表示位移大小,可以求出跳台距离水面的高度,故B正确;t=0时刻是运动员向上起跳离开跳台的瞬间,速度是负值时表示速度方向向上,则知0~t1时间内运动员做匀减速运动,t1~t2时间内向下做匀加速直线运动,0~t2时间内,运动员一直在空中具有向下的加速度,处于失重状态,故C正确;由题图可知,t2~t3时间内,运动员向下做减速运动,则加速度的方向向上,处于超重状态,故D正确. [答案]A 2.(多选)飞船绕地球做匀速圆周运动,宇航员处于完全失重状态时,下列说法正确的是() A.宇航员不受任何力作用 B.宇航员处于平衡状态 C.地球对宇航员的引力全部用来提供向心力 D.正立和倒立时宇航员一样舒服 [解析]飞船绕地球做匀速圆周运动时,飞船以及里面的宇航员都受到地球的万有引力,选项A错误;宇航员随飞船绕地球做匀速圆周运动,宇航员受到地球的万有引力提供其做圆周运动的向心力,不是处于平衡状态,选项B错误,选项C正确;完全失重状态下,重力的作用效果完全消失,正立和倒立情况下,身体中的器官都是处于悬浮状态,没有差别,所以一样舒服,选项D正确. [答案]CD

牛顿第二定律临界问题与极值问题

牛顿第二定律专题(二)—临界问题与极值问题 1.临界问题和极值问题 涉及临界状态的问题叫临界问题。临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。 能处理力学中常见的三类临界问题的临界条件: (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零 (2)绳子松弛的临界条件是:绳中拉力为零 (3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 2.掌握临界问题的基本思路: ①仔细审题,认真分析研究对象所经历的物理过程,找到临界状态 ②找到重要物理量的变化规律,找出临界条件 ③根据临界条件列方程求解 例1:有一质量M=4kg的小车置于光滑水平桌面上,在小车上放一质量m=6kg的物块,动摩擦因素μ=0.2,现对物块施加F=25N的水平拉力,如图所示,求小车的加速度?(设车与物块之间的最大静摩擦力等于滑动摩擦力且g取10m/s2) 例1

例2.如图,光滑斜面质量为M=8 kg ,小球m=2kg ,用细绳悬挂相对静止在斜面上,求: (1)用多大的水平力F 推斜面时,绳中的张力为零? (2)用多大的水平力F 推斜面时,小球对斜面的压力为零? 例3:如图所示, m =4kg 的小球挂在小车后壁上,细线与竖直方向成37°角。求: (1)小车以a=g 向右加速; (2)小车以a=g 向右减速时,细线对小球的拉力F 1和后壁对小球的压力F 2各多大? 例4.托盘A 托着质量为m 的重物B ,B 挂在劲度系数为k 的弹簧下端,弹簧的上端悬挂于O 点,开始时弹簧竖直且为原长,今让托盘A 竖直向下做初速为零的匀加速运动,其加速度为a ,求经过多长时间,A 与B 开始分离(a g ). 例2题图 例4

动力学的临界和极值问题

动力学的临界和极值问题 教学目标: 教学重点、难点: 新课引入: 教学过程: 一、临界和极值 在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体 有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。 在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。 1、相互接触的物体,它们分离的临界条件是:它们之间的弹力0 N ,而且此时它们的速度相等,加速度相同。 【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是( ) A 、一直加速 B 、先减速,后加速 C 、先加速、后减速 D 、匀加速

【例】如图所示,劲度系数为k 的轻弹簧竖直固定在水平面上,上端固定一质量为0m 的托盘,托盘上有一个质量为m 的木块。用竖直向下的力将原长为0l 的弹簧压缩后突然撤去外力,则m 即将脱离0m 时的弹簧长度为( ) A 、0l B 、()k g m m l +- C 、k mg l -0 D 、k g m l 00-

【例】如图所示,一细线的一端固定于倾角为?45的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。当滑块至少以加速度______=a 向的 左运动时,小球对滑块的压力等于零。当滑块以g a 2=加速度向左运动时,线的拉力大小______=F 。

平衡中的临界和极值问题

临界问题是指:当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出 某种物理现象转化为另一种物理现象的转折状态称为临界状态。 ,至于是“出现”还 平衡问题的临界状态是指物体的所处的平衡状态将要被破坏而尚未被破坏的状态。这类问题称为临界问题。解临界问题的基本方法是 极值问题则是在满足一定的条件下,某物理量出现极大值或极小解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从 的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。现将长木板的一端缓慢抬起,要使物体始终保持静止,木板与水平地面间的夹角θ不能超过多少?设最大静摩擦力等 【分析】这是一个斜面问题。当θ增大时,重力沿斜面的分力增大。当此分力增大到等于最大静摩擦力时,物体处于动与不动的临界 μ时,重力 重力沿斜面向下的分 重力沿斜面向下的分力大于滑动摩擦 θ≤μ,则物体保持静止;如

②、将物体以一初速度置于斜面上,如tg<μ,则物体减速,最后 静止;如tg θ=μ,则物体保持匀速运动;如tg θ>μ,则物体做加速运动。 因此,这一临界条件是判断物体在斜面上会如何运动的一个条件。 练习:如图,质量为m 的三角形尖劈静止于斜面上,上表面水平。今在其上表面加一竖直向下的力F 则物体: A 、保持静止; B 、向下匀速运动; C 、向下加速运动; D 、三种情况都要可能。 【解答】A 。 【例2】如图所示,跨过定滑轮的轻绳两端, 分别系着物体A 和B ,物体A 放在倾角为α的斜 面上,已知物体A 的质量为m ,物体B 和斜面间 动摩擦因数为μ(μ

相关文档
最新文档