反证法在中学数学中的应用

反证法在中学数学中的应用
反证法在中学数学中的应用

1引言

有一个故事讲的是奸臣弹劾贤能的大臣,最后贤能的大臣被陷害要被皇上处死,可是皇上觉得这位大臣罪不该死,就把生死两个字分别写在两张纸条上,让这个大臣自己选择其中一张纸条,是生便生,是死便死。但是,奸臣却在纸条上做了手脚,让他抽出的任何一张纸条上面写的都是死字。这个阴谋被贤能之臣的好友发现了,并且告知了他,想要和他一起在皇上面前告发奸臣的诡计。但是这个快要被处死的大臣却没让好友这么做,而是很高兴的告诉好友:“不要有任何举动,当我拿到纸条以后,就快速吃进嘴里,那么监斩官就不得不看剩下的那张纸条了,这样监斩官可以推断出我吃进去的纸条上面写的是生字,那么我不就得救了[1]”。通过这个故事,我们能够看出这个即将走上死路的大臣是通过什么方法挽救了自己的生命,贤臣是利用了“生相对于死”的反证法,这样就轻松解决了自己被杀掉的危机。

哈代是一位非常优秀的英国数学家,他说出过这样的言论:“反证法对于数学家来说,就是最强有力的一件武器,比起象棋开局让子以取得优势的方法还要高明很多,象棋对弈最多牺牲一子,而数学家在运用反证法的时候索性全盘否定,拱手相让,最终却取得了胜利错误!未找到引用源。。

这些体现了反证法的神奇之处和不可动摇的地位。反证法是如此神奇,反证法即可以应用到生活当中去解决危机,又可以解决数学中的难题。本文就是具体分析反证法在数学中是如何应用的,希望能为大家学习和运用反证法提供帮助。

2反证法的介绍

2.1反证法的概念

要证明一个命题成立,有时候不容易直接证明,就可以考虑从反向思考证明。

那么先提出与求证的结论相反的假设,然后推导出和已知证明的定理或公理、定

义、原题设相矛盾的结果,这样就证明了跟求证的结论相反的假设是不能成立,

从而肯定了原来求证的结论是成立的,这种间接证明的方法叫反证法[3]。

2.2反证法的证明步骤

大概能够把运用反证法证明命题的方式分为以下三步:

(1)反设——假设命题的结论的反面是成立的。

(2)归谬——通过假设的结论去证明,从而推出一些相矛盾的结论。

(3)结论——说明要证明命题的结论的反面是不能成立的,那就证明了命题

的结论是成立的。

2.3反证法的逻辑依据

在逻辑思想学中有两个规律一个是“矛盾律”另一个就是“排中律”,这两个规律为反证法提供了思想理论依据[4]。

“矛盾律”就是在同样的一个思维方式情况下,两个相反的或者是有矛盾点的定义或者结论之间都是真的情况是不可能的,至少有一个是假的[5];“排中律” 就是结论与相反的结论,在这两个结论之间是不能够出现都是假的情况的,必定有一个是真的[6]。

运用反证法的时候,根据矛盾律在两个相反的结论当中,一定不能够出现这两个结论都是真的情况,在原来已经知道或者已经证明推导出的真的结论的基础上,那么假设的结论,也就是相反的结论,就必定是假的[7]。依照排中律中的规律,得

出其中的这两个结论都是假的情况也是不可能出现的,那么结论真假的情况就一定是一个真一个假,通过最终证明,最后的假设一定是假的,那么就可以推导出原有的结论就一定不能假,必定是真。所以,有了逻辑思维的理论基础作为反证法的依据,反证法就是可信的。

反证法就是通过矛盾律证明与命题相矛盾的命题是假的,即根据排中律确定

命题是真的证明方法,是一种间接证明方法。

其证明过程如下:要证明命题 p。

第一步:假设反命题非 p。第二步:证明“非p”虚假(依据矛盾律)。第三步:所以命题 p为真(依据排中律)。

2.4反证法的分类

目前根据我所了解到关于反证法的分类,主要是按照了反设方面出现的不同

类型可以分为两类,一类就是归谬反证法,另一类就是穷举反证法[8]。

2.4.1归谬反证法

如果结论的反面只有一种类型,则反设就只有一种,那么要做的就是证明这

个反设是错误的,从而可以证明出结论正确。这个证明方法就是反证法分类的第

一类归谬反证法[8]。

例 1 已知n是整数,同时n2为偶数,求证;n是偶数。

分析:如果想要直接就用什么方法进行证明,可能没有任何想法,虽然题中

给的条件很简单,很明了,我们也能够很清楚的读明白题意,但是正面解题没有

什么关键点,这时候就需要换个角度对此题进行证明,如果我们从反面进行思考,在题中给的条件中进行反面分析,偶数相对的就只有奇数这一种情况,这样就有

了比较清晰的思路,这道题反面分析,就是可以证明在n是奇数的情况下,而n2 不是偶数,这样达到了证明的目的。

证明:假设n是一个奇数。那么n+1和n-1也就是偶数,就可以得出(n+1)(n-1)=n2-1结果也是一个偶数,最后得出n2是一个奇数,结论和题目中n2是偶数产生了矛盾点。假设不成立,即n是偶数。

2.4.2穷举反证法

若是出现了结论的反面不只是一种,那么就要把反面的类型一一列举出来,分情况去证明它们都是错误的,这样就可以达到证明原来结论是正确的,这个证明方法就是反证法分类的第二类穷举反证法[8]。

穷举法就是要把可能的情况都列举出来,带入实际,一个个的去检验是否符合。计算机经常采用种穷举法进行工作,由于计算机的高速运转,工作过程耗时很短,所以得到结论的时间就很短,想要知道结论是真是假,就不用耗费那么长时间。穷举法能够看成是一个最简单的搜索:就是在一个集合中包含了所有的可能的状况元素,对这些元素都一一进行的排查,目的是查看其元素的可行性是不是存在。

例2 设a,b都是整数,且a2+b2能被3整除,求证:a和b都能被3整除错误! 未找到引用源。

分析:从题中可以看出结论是a和b都能被3整除,那么需要假设出它的反面,a和b不都能被3整除,那就不只是一种情况,而分多种情况,就需要把它

的反面都列举出来,分情况去证明。

证明:假设a和b不都能被3整除,那么a,b有三种情形:

(1)3|a,3| b;( 2)3| a,3|b;(3)3| a,3| b。

(1)如果3 | a ,3 | b。可设a=3a,b=3b1(a,b Z),则

a2+ b2= 9a2+ (3b1)2= 3(3a2+ 3b22b ) +1

所以3| (a2+b2),与已知条件a2+b2能被3整除相矛盾。

(2)如果3 | a,3|b。同理可证这个假设也是错误的。

(3)如果3 | a,3| b。则可设a = 3a11,b = 3b11(a1,b1Z) ,这样又有四种可能的情形:

①a =3a +1,b =3b +1;

②a =3a +1,b =3b -1;

③a =3a -1,b =3b +1;

④a =3a -1,b =3b -1。

对于情形①,有a2+b2=(3a +1)2+(3b +1)2= 3(3a2+2a +3b2+2b )+2 这就表明,3 | (a2+b2)与已知条件相矛盾。

同理可证,②③④三种情形也是不能成立的。

综上所述,假设a和b不都能被3整除是不成立的,由此原题得证。

3反证法的推理方法

3.1为什么使用反证法

证明题如果从正向思考证明可以得出结论,我们就不用反向考虑,但正向思

维比较难以得出结论时,我们就需要考虑用反证法去证明,会比较容易得出所需

的结论。

我们可以发现,反证法在数学证明题里运用是比较常见的,数学老师曾经教

过我们解答证明题时从正向思考比较困难的时候,可以反向思考,因为正难则反,字面上理解就是正着想的时候,无从下手的情况下,就要反着思考,使用反证法

进行证明,首先想要证明结论为真,就要先进行假设,得到矛盾结论,这样就能

够对原本结论进行真假的证明。反证法的本质就是根据假推导出真,那么反命题

和原命题的关系就必然相反,成对立关系,判断其中一个真假那么另一个命题的

真假自然就出现了。

使用反证法解题可以证明出从正向思考较难的命题,在反证法证明前都假设“若……成立,则……”,无形中给我们增加了一个条件,只要导出矛盾所在即可。并且使用反证法可以使复杂的题目很快变的容易起来,做题思路也就会更加

清晰。在现代数学中,反证法已经成为要解决的问题的最常见和有效的方法之一。反证法不仅能反够反应出证明的智慧,也体现了数学的神奇之处。当我们在应用

反证法的时候熟练掌握做题的要领,认真思考证明过程,会使难解决的问题变的

非常简单,也对学习数学增加了信心。

3.2如何正确的做出反设

若证明题从正面思考比较难以证明结论,我们则反其道去证明。如何能正确

是做出反设,也是反证法里面重要的步骤,运用反证法证明命题的第一步就是首

先要进行假设,在原有的命题的基础上,对命题的结论进行否定,然后从这个结

论的否定开始进行证明,证明其命题为假,但是首先要假设其成立才能进行后续

的证明。这个步骤十分关键,重点在于要正确的做出反设,只有这样后续的证明

才能进行下去,最后的结论才能够保证是正确的,如果一开始的反设就是错误的,那么后面进行的推理证明就会因为开始的错误而错,对证明命题没有一点作用。

如果想要正确的做出反设,就一定要注意下面几个方面:

(1)将题目中的已知和结论理解透彻,将结论与相反假设之间的关系弄明白。

(2)如果结论的反面不是一种类型,而是有很多种类型,那么将这些类型都要考虑全面,一个个分类去进行证明,不能遗漏一点问题。

总的来说,在将要对命题的结论做出否定之前,首要的任务就是理解结论,在结论的对立结论只有一种类型的时候,只需要假设这一种类型成立就行,很容易进行证明了。如果原本的结论的假设不只是一种类型,这种情况下,如果没有考虑到还有其它的情况,没有否定完全。想要进行证明就很难了。这时候认真理解题目,分析结论就十分关键,然后才能正确的做出反设。有以下几种常见的类型:

例如:第一,至少类型

结论:至少有一个……

错误假设:至少有两个或两个以上……

正确假设:没有一个……

第二,全部类型

结论:全部……都是……。

错误假设:全部的……都不是……。

正确假设:存在一个……不是……

第三,最多类型

结论:最多有一个……

错误假设:最少有一个……

正确假设:至少有两个……

还有某些常用词的否定形式:

3.3如何正确导出矛盾

反证法有一个明显常用的方法就是归谬,归谬不仅仅是反证法中的一个重点,也是一个难点。在刚刚接触反证法的时候,做出反设的时候,证明过程中要找到矛盾点时,我们会感觉到不是很容易,有时候可能都不懂矛盾点在哪里。

反证法的核心就是从证明结果的反面出发,运用争取的理论方法求得矛盾的结果,因此如何导出矛盾的结果就是反证法的关键所在。若是要顺利的找到结论和反设之间的矛盾,证明结论的正确性,首先要进行题目中逻辑关系的分析,弄清关系,这样就可以进行相关的证明。

在进行反证法证明过程中有两个方面值得关注:

第一点:导出矛盾,首先进行假设,从假设开始着手怎么去证明。

第二点:证明过程一定要严谨,要有条理有依据的证明。

从整体方面来说,归谬的情况可能会出现下面几个类型;

1)推导出与命题已知条件相矛盾的结果。

2)推导出与已经证明过的定理相矛盾的结果。

3)推导出与公理相矛盾的结果。

4)推导出与已知定义相矛盾的结果。

5)推导出与假设相矛盾的结果。

4反证法的应用

反证法在中学数学中的应用是比较常见,有些命题是适用于反证法的,只要掌握了它的特点,对于我们运用反证法是很好的帮助,根据命题的特点分类有以下几种适用于反证法的命题:

4.1唯一性命题

当命题的结论需要证明“唯一性”,“存在性”时,适用于反证法。

例 3 已知a,b是两条相交直线,求证a,b只有一个交点错误!未找到引用源。。

证明:假设直线a和b不只有一个交点,那么就是直线a和b至少有两个交点。设这两个交点为A, B两点,所以直线a通过A, B两点,直线b也通过A, B两点。从这我们可以得到,经过A,B两点会有两条直线a和b。这个结论和公理“经过两点有且只有一条直线”相矛盾。所以假设不成立,则a,b只有一个交点。

例 4 求证:方程5x =12 的解是唯一的错误!未找到引用源。。

证明:由对数的定义可以得到x1 = log5 12是这个方程的一个解。假设这个方程的解不是唯一的,它还有解x = x2(x1x2),则5x2=12。因为5x1=12,则5=1, 即5x2-x1=1 ①。由假设得x2-x10,即当x2-x10的时候,有:5x2-x1 1 ②。

当x 2 - x 1 0的时候,有5x 2-x 1 1 ③。很明显②③与①都矛盾,这说明假设不成 立,所以原方程的解是唯一的。

4.2 否定性命题

这种命题常出现以“不是……”,“不能……”,“没有……”这些否定性词语, 如果从正面考虑的话,就不容易进行证明,没有思路,这时就需要考虑反证法了。

例 5 求证:不存在7 条棱的多面体错误!未找到引用源。。

证明:假设存在7条棱的多面体。那么,组成这个多面体的每个面只能是三 角形。如果有四边形或者边数更多的多边形,除过这些边最多只有3条棱,根本 不可能与4个以上的顶点相连接。设每个面都是三角形的多面体有n 个面(n 为 即证明不存在7条棱的多面体。

例 6 如果a ,b ,c 是不全相等的实数,且a ,b ,c 成等差数列,求证: 1,1,1不 abc 成等差数列[14]。

证明:假设1 , 1 , 1能成等差数列,则可以得出2 = 1+1= a +c ,因为a ,b ,c abc b a c ac 成等差数列,即2b =a +c ①,那么2=a +c =2b ,即b 2 = ac ②,由①②可以得 b ac ac 出a =b =c ,与已知条件a ,b ,c 是不全相等的实数相矛盾。即假设错误,故原命 题正确。 4.3 “至多”“至少”型命题

命题结论中有“至多”、 “至少”的词语时,可以考虑用反证法。

例7 求证:在一个三角形中,至少有一个内角小于或等于 60o 。

证明:假设三角形的三个内角都大于 60o ,则三角形的内角和大于 60o + 60o + 60o ,即三角形的内角和大于180o ,与三角形内角和定理相矛盾,所以 假设不成立,即在一个三角形中,至少有一个内角小于或等于60o 。

例8若x , y 是正整数,且x + y 2 ,求证1+ x 2或1+ y 2中至少有一个成 yx

立[12]。

证明:假设1+ x 2与1+ y 2同时成立。又因为x , y 都大于0 ,所以1+x 2y yx

① , 1+y 2x ②,将①②两式相加得到x+y 2,这与已知条件x+y>2相矛盾, 因此假设不成立。所以1+ x 2或1+y

2中至少有一个成立。

yx

4.4 必然性命题 命题结论出现“总是”、“都”、“全是”等词语。

例 9 求证:任意凸多边形不可能有四个内角都是锐角错误 ! 未找到引用源。[3] 。

证明:假设存在一个凸多边形,其有四个内角小于90o ,即这四个内角所对 应的外角分别大于90o ,则其外角和大于360o .,这与任意凸多边形的外角和为

整数),由于每条棱都是两个面的边,所以3n =7,即n 14 3

与n 是整数相矛盾。

360o相矛盾。假设不成立,故任意凸多边形不可能有四个角都是锐角。

x2

例10已知函数f(x)= x ,如果数列a n满足a1= 4,a n+1= f (a n ),求证:

2x - 2

当n2时,恒有a n 3成立。

证明:假设a n 3(n 2),则由已知可以得出a n+1 =f(a n)=a n,所以当

n n

1 n2a n -2

+

n2时,a n+1= a n= 1(1+ 1 )1(1+1)= 31,(Q a -13-1) ,又易证

a n2a n -2 2 a n -1 2 2 4 n

a n 0,所以当n 2时,a n+1 a n,即当n 2时,a n a n+1 L a2;而当n=2时,

a2= a1= 16= 83,可以得出当n 2 ,a n 3。与假设矛盾,所以假设不

22a -2 8-2 3 n

成立,原命题成立。

4.5起始性命题

命题中已知的条件或者能够应用的定理,公式较少,直接证明比较困难,用

反证法比较容易证明。

例 11 用周期定义证明f (x) = sin(+)(0)的最小正周期是2[13]。

证明:因为f(x)=sin(+)=sin(x ++2)=sin[(x+ 2)+]= f(x+ 2),

对一切x R成立,所以2是f (x)的周期。要证明2是f (x)的最小正周期。设

2是f (x)的最小正周期。即还有0 T 2,对一切x R有f(x+T)=f(x)成

立,那么sin((x + T ) +) = sin(x +) ,即sin(x ++T) = sin(x +) (1),取x +=0,则sin T =0。因为0T 2,所以T =,T = ,于是(1)

式成为sin(x ++) = sin(x +) ,取x +=,则上式成为-1=1,矛盾。

因此2是最小正周期。

例12在同一平面设有四条直线a,b,c,d。若a与b相交,c⊥a,d⊥b,则c与d 也相交。

证明:假设c d。因为a⊥c ,所以a⊥d。又因为b⊥d,所以a

b。这与已知条件a与b相交矛盾。假设不成立,故c与d也相交。

4.6无限性命题

命题结论中包含各种“无限”的命题。

例 13 求证:素数有无数个。证明:假设素数是有限的,设最大的一个素数为p,作q=(235L p)+1,q表示的是被这2、3、L p中任意一个整除都会余1的数,即q只有1和q两个约数,所以q是个素数而且是比p大的数,但这与最大的一个素数是p相矛盾。即假设不成立,所以素数有无数个。

例 14 求证: 2 是无理数。

分析:看到题目会给人一种没有办法证明的感觉,毫无思路可言。而且无理数从小数的角度分析是属于无限不循环的,这样就更加没有思路了。如果用反证

法进行分析,把这个无理数假设成为一个有理数,那么就会简单许多。

证明:假设2是有理数,则存在a,b N.且a,b互质,使 2 = a a2=2b2 b 从而a为偶数,记作a=2c→a2=4c2→2c2= b2,则b也是偶数。即得出a , b都是偶数,与a,b互质相矛盾,假设不成立,所以证明 2 是无理数。

4.7不等式证明命题

命题结论中有“不等式”的命题,可以考虑用反证法。例15已知a b

0 ,m是大于等于2的整数,求证m a m b。

证明:假设m a m b。因为a b 0 ,所以m a 0,m a 0 ,则(m a )m (m b )m,即a b。与已知条件a b 0相矛盾,所以假设不成立,故m a m b 成立。

例16 在V ABC中,C B ,求证:AB AC[16]。分析:这个题也可以考虑用反证法进行证明,首先对AB AC的结论进行反设,所以就需要证明AB AC或AB = AC这两种结论不成立,就自然证明了原命题的结论是正确的。

证明:假设AB AC,所以有以下两种情况:

1) 当AB= AC,那么V ABC为等腰三角形,所以

C = B ,与已知条件C B相矛盾。

当AB AC ,在AB的延长线上取一点记为D

2)

点,让AD = AC , 连结DC。因为AD =

AC,所以V ADC 为等腰三角形,所以D =

ACD,又因为ABC为V BDC的一个外

角,所以

ABC D = ACD 。而ACD

ACB = C , 所以ABC C 即B C ,与已知条件

C B相矛盾。

综上所述,假设不成立,即原命题成立。

5反证法的教学价值及建议

反证法在中学数学里有广泛的应用,根据我自己在高中实习的经验,对于学生的学习能力和对知识的认识有一定的了解,对反证法的教学价值与建议,提出

自己的一点看法。关于反证法,要早点向学生灌输这种思想,让学生自己慢慢的

去认识反证法,只要学生能够明白、认可其中的原理即可。

5.1 反证法的教学价值

5.1.1 培养思维严密性

反证法在证明的过程中思维要十分的严密,思考周到。反证法和直接证法之间也有十分密切的联系,它们之间也相互作用。总体看来我们运用的是反证法,但是从部分看,在假设之后的推理过程中运用会运用直接证法。有时候在基本直接证法的推理中,又会运用一段反证法,用来确定某些所需的条件,假设的时候, 一定要

明白原题结论的反面是什么,详细的写出与原题结论相反的所有不同情况,再去

否定,不能遗忘任何情况。反证法可以培养学生思维严密性,增加学生的耐心,

也可以改掉他们粗心的缺点。

5.1.2培养数学思维的形成

数学思维是科学的思维方法和技巧,是数学的本质。现在上课的模式改为高效课堂,它强调自主,高效,创新。我们都知道中国小学数学教育比西方显著较好,但大学生的创新能力没有西方学生的强,我们的教育着重于教导数学解题训练,题海战术,很少去启发学生思考,理解题目,很少意识到的思维方式从而形成学生成绩两极分化,讨厌数学,甚至学习好的学生也是对数学有恐惧心理,觉得数学是一门特别难学的科目。反证法可以很好的锻炼学生思考问题的能力,通过练习反证法是培养数学思维方法的一种好方法。

5.1.3训练逆向思维

当我们看到一个数学问题时,都是会从正面思考怎么解答。就是根据已知条件,思考已经掌握了可以运用的数学知识,由已知的条件慢慢导出未知。如果从正面已知的条件开始思考觉得比较困难,那么就可以考虑从反面去思考问题,这种逆向思维往往能解决看起来无法解答的问题,反证法的教学可以训练学生的逆向思维,简化计算过程,明确解题思路,提高解决问题的速度,促进创新思维。

5.1.4了解数学史

早在古希腊,反证法是数学家用来证明许多重要的数学命题的一种广泛使用的方法,欧几里得的《几何原本》已经开始使用反证法,我国在五世纪时《张邱建算经》中也有应用反证法[2]。牛顿曾经说过;“反证法在许多方面有不可替代的作用,是“最精当的数学家武器之一”。著名的费马大定理,这个数学问题被克服,就是反证法的作用。欧几里得曾用它来证明有无穷多个素数。而且反证法对培养学生的辩证思维有很大的帮助,在学习反证法的同时也可以了解数学的历史,可以提高学生学习的兴趣。

5.2反证法的教学建议

要想让学生彻底明白反证法的应用要点,必需要先明白学生在反证法的应用中有什么困惑,一一对应去分析,才能对症下药,让学生学习到反证法证明过程中的精髓。

第一,学生可能在以前的学习中有接触过反证法,但是不太会独立的应用反证法去证明命题。所以学生在学习过程中有可能会在这两个方面出现问题:(1)在反设中怎样否定结论,不清楚结论的反面有哪些。有时候不太清楚怎样去否定,比如命题“自然数a,b,c,d中恰有一个偶数”的正确反设,学生可能就会假设为“自然数a,b,c,d都是奇数”,读到命题的时候学生应该想到的就是偶数的反面是奇数,就直接做出反设,其实还有“至少有两个偶数的时候”这种情况,学生因为做题经验不足,不能够考虑全面。这个命题正确的反设就是“自然数a,b,c,d 都是奇数或至少有两个偶数”。在对命题的否定应该加强对学生的训练。

(2)“导出矛盾”部分,有的时候是与某些定义、定理、公式或事实互相矛盾,有的时候是与已知条件互相矛盾,而有的时候又是与假设互相矛盾。因为可能矛盾的情况会有多种可能性,学生就会容易混淆,不太清楚矛盾点是属于哪种类型。所以也要向学生多讲解练习怎么样导出矛盾。

第二,反证法和直接证法是相对的,要学会灵活运用这两种方法。有可能一个证明题里,会交替运用用这两种证法。在一个直接证明中的过程中有可能会运用到反证法,要让学生在做题中灵活运用反证法,善于发现问题,解决问题,总结出更

多做题的规律。

第三,要清楚反证法的适用题型,了解了属于哪类题型就会很快找到证明的要点。重点是要明白反证法应用的逆向思维,推断出与命题中已知的条件或假设否定的结论或与定义、定理、事实等矛盾是反证法思考过程的特点。

反证法这种证明方法也很好的体现了数学领域的逻辑思维,对于培养学生的逻辑思维方式,是一个值得选择的方法。可以充分的利用这种方法对学生的逻辑思维进行培养。教学里的反证法应该以教思想教导为主的题目作为载体,应侧重于教学生学会去运用反证的意识,提高他们的逻辑思维能力。可以选取经典的例题,题目的难度和个数都不重要,要使学生能深刻的认识反证法,让学生有独立思考的能力,学生要从自己发现问题,解决问题。使学生认识到学习的主体作用,但也要意识到教育的本质,教会学生如何学习。总的来说,用反证法可以培养学生的数学思维,也可以提高学生对学习数学的积极性。

6总结

本文主要对反证法进行探究分析,可知反证法这种证明方法可以把直接证明

复杂的证明题变得简单。然而反证法并不是任何的题目、命题都可以进行证明的。比如本文主要列举了在中学数学中适用于反证法的一些命题有:“唯一性命题”、“否定性命题”、“至多至少型命题”、“必然性命题”、“起始性命题”、

“无限性命题”、“不等式证明命题”。而且反证法是一种比较重要的间接证明

方法,它在教学里也有很好的价值,可以用来培养学生的逻辑思维能力。

参考文献

[1] 屈秀环.谈数学教学中的新课引入[J].金色年华,2010(3):104-104.

[2]胡晓年.谈谈反证法[J].才智,2010(18):98-98.

[3]姚莉. 注重反证法的逻辑性培养学生创造性思维[J].现代教育教学杂志探

索.2015(1):25-26.

[4]吴静蓉.遗传病系谱分析中的反证法[J].陕西教育:高教版,2009(2):33-34.

[5] 刘唐军.反证法及其应用[J].中学理科(综合),2008,(8):43-44.

[6]李萌.从高考数学命题看存在性命题与全称性命题的解法[J].数理化学习(高中版),2013(2):28-29.

[7]肖承法.反证法在中学数学中的应用[J].新课程(教师) ,2010(12):65-66.

[8]马建珍,刘俊先.反证法在高等数学中的应用[J].邢台学院学报,2007,22 (2):90-91.

[9]王得燕.穷举法与粒子群算法的比较[J].无锡职业技术学院学报,2008, 7(1):44-45.

[10]章士藻.数学方法论简明教程[M].南京:南京大学出版社,2006:105-106.

[11]李丹丹.反证法在中学数学中的应用[J].哈尔滨职业技术学院学报,2013 (2):93-94.

[12]于健.反证法解题中的应用举例[J].语数外学习(数学教育),2012 (7):35-35.

[13]丁琳.反证法在数学解题中的应用[J].教学与管理,2006(4):78-79.

[14]张少冬.高中数学中反证法的具体应用[J].考试周刊,2011(25):70-71

[15] 袁梅,王成理.浅议反证法[J].乐山师范学院学报,2006, 21(5):28-30.

[16] 姜春晓, 张红青. 浅谈数学归纳法在中学数学中的应用[J].中国校外教育中

旬,2012,(5):34-34.

中学数学教学中的反证法-精选教育文档

中学数学教学中的反证法 在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法. 一、反证法的基本概念 1.反证法的定义 法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性. 2.反证法的基本思想 反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示: “否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定. 3.反证法的逻辑依据 通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是 A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为 A .a 、b 、c 都是奇数 B .a 、b 、c 或都是奇数或至少有两个偶数 C .a 、b 、c 都是偶数 D .a 、b 、c 中至少有两个偶数 3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° 4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中 A .都不大于-2 B .都不小于-2 C .至少有一个不大于-2 D .至少有一个不小于-2 5、若P 是两条异面直线l 、m 外的任意一点,则 A .过点P 有且仅有一条直线与l 、m 都平行 B .过点P 有且仅有一条直线与l 、m 都垂直 C .过点P 有且仅有一条直线与l 、m 都相交 D .过点P 有且仅有一条直线与l 、m 都异面 6、已知x 1>0,x 1≠1且x n +1=x n (x 2 n +3)3x 2n +1 (n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n x n +1”,当此题用反证法否定结论时,应为 A .对任意的正整数n ,都有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1 D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0 7、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,② ()()a b c da b c d ++<+,③()() a b c d a b c d +<+中至少有一个不正确

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

浅谈反证法

浅谈反证法 聂震 1310300235 摘要:反证法是数学中一种应用广泛的证明方法,在许多方面都有着不可替代的作用。从最基本的性质定理,到某些难度很大的世界难题都是用反证法来证明的。反证法不仅可以单独使用,也可以结合其他方法一同使用,还可以在论证同一命题时多次使用。本文主要从什么是反证法、反证法的依据、为什么使用反证法、反证法解题步骤、适用题型及举例、如何做出正确反设六个方面浅谈反证法。 关键词:反证法归谬法矛盾假设 引言:有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 反证法是一种应用广泛的数学证明方法,它的应用与发展历史悠久,早在古希腊,数学家就应用它证明了许多重要的数学命题,欧几里德的《几何原本》已经开始运用反证法。牛顿曾说过,反证法是“数学家最精当的武器之一”,它在许多方面都有着不可替代的作用。在现代数学中,反证法已经成为最常用最有效的解决问题的方法之一。 一.定义: 反证法(又称背理法)是一种论证方式,他首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。 二.反证法的依据: 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。 在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是

初中几何反证法专题(75[1]5K).

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反 证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命 题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一 种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探 索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从 而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件 矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中 的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相 互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。 (1) 证明:假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 ∴OM⊥AB(等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

浅谈中学数学中的反证法

浅谈中学数学中的反证法 摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。 关键词:反证法;中学数学;应用; On the Proof by Contradiction in Middle School Mathematics Abstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction. Keywords:proof by contradiction; Middle school mathematics; Application;

例谈反证法在数学证明中的应用

例谈反证法在数学证明中的应用 【摘要】反证法是解决数学问题时常用的数学方法之一,它在数学解题中广泛使用,特别是有些问题,用反证法更简捷明了。文章阐明反证法的定义、逻辑依据、证明的一般步骤,重点论述了反证法在中学数学证明中的应用。 【关键词】反证法证明假设矛盾结论 有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 一、对“反证法”的概述 (一)反证法的概念及其逻辑依据 1.反证法的概念 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾,从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 2.反证法的逻辑依据 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

矛盾律: 在同一论证过程中, 对同一对象的两个互相矛盾(对立)的判断, 其中至少 有一个是伪的。 排中律: 在同一论证过程中, 对同一对象的两个互相矛盾的判断, 不能为伪, 其中 必有一个是真的。 (二)反证法的证明步骤 设待证的命题为“若A 则B ”,其中A 是题设,B 是结论,A 、B 本身也都是数学判断,那 么用反证法证明命题一般有三个步骤: 1. 反设:假设所要证明的结论不成立,而设结论的反面成立; 2. 归谬:由“反设”出发,以通过正确的推理,导出矛盾——与已知条件﹑已知的公理 定理﹑定义﹑反设及明显的事实矛盾或自相矛盾; 3. 结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立, 从而肯定了结论成立。 二、反证法在数学证明中的应用 反证法在数学证明中的应用非常广泛,反证法虽然是在平面几何教材中出现的,但对数 学的其它各部分内容,如代数、三角、立体几何、解析几何中都可应用。那么,究竟什么样 的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便。 1.否定性命题 结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入 手,而用反证法就容易多了。 例1 求证:当 n 为自然数时 ,2(2 n + 1) 形式的数不能表示为两个整数的平方差。 证明:假设有整数 a , b ,使)(1n 22b a 22+=-, 即 (a + b)(a - b)=2(2n + 1) ① 当 a ,b 同奇、 同偶时 , a + b 、 a - b 皆为偶数 , (a + b)(a - b) 应是4的倍数 ,但2(2n+ 1) 除以4余2 ,矛盾。 ② 当a ,b 一奇一偶时 ,a + b 、a - b 皆为奇数 , (a + b)(a - b) 应是奇数 ,但2(2n + 1)为偶数 ,矛盾。 所以假设错误 ,即2(2n + 1) 形式的数不能表示为两个整数的平方差。

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用 摘要 反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。 关键词:反证法;归谬;矛盾;假设;结论 Abstract Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

浅谈中学数学中的反证法

浅谈中学数学中的反证法 数学与计算机科学学院数学与应用数学 105012011138 黄义瑜 【摘要】反证法一种间接的数学证明方法,也是一种重要的数学思想.他首先假设某命题不成立,然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证.证明的一般步骤为反设、归谬、结论.虽然在中学数学的课本中所占篇目较少,但应用广泛,能锻炼学生的逆向思维.论文中将阐述反证法的概念、证明步骤、思维方式以及适用题型.深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力. 【关键词】反证法命题中学数学高考高等数学 有个著名的“道旁苦李”的故事:传说,王戎从小就非常聪明.有一天,他和小伙伴们出去游玩,发现路边有几株李树,树上结满了李子,而且看上去一个个都熟透了.小伙伴们一哄而上,摘了尝了之后才发现李子是苦的.只有王戎没动,王戎说:“如果李子不苦的话,早就被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这个故事中王戎从反面论述了李子为什么不甜,不好吃.这种间接的证法就是我们下面所要讨论的反证法. 1 反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种.法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.反证法作为一种最重要的数学证明方法,在数学命题的证明中被广泛应用.欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法. 2 反证法的概念 反证法是一种反面的角度思考问题的证明方法,是数学中常用的间接证明方法之一,属于“间接证明”的一类.即肯定题设而否定结论,从而导出矛盾,推理而得. 法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”.具体来说就是,假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论矛盾或自相矛盾,从而断定命题结论的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法.

论反证法在中学数学中的应用

昆明学院2016届毕业论文(设计) 设计(论文)题目论反证法在中学数学中的应用 子课题题目 姓名郑粒红 学号 201215010158 所属系数学系 专业年级数学与应用数学2012级数学1班 指导教师雷晓强 2016 年 3 月

摘要 本文主要从五大板块对反证法在中学数学中的应用进行论述,第一板块通过对反证法的由来、定义、逻辑依据、种类、模式的说明对反证法进行概解。第二板块例举反证法的适用范围,并通过大量实例阐明在各个命题中反证法的证明的步骤。第三板块分析应用反证法应注意的问题。第四板块浅析反证法的教学价值及建议。最后第五板块进行分析总结。 关键词:反证法;证明;矛盾

Abstract This article mainly from the five plate on the reduction to absurdity in the middle school mathematics application is discussed, and the first plate by means of reduction to absurdity and types of the origin, definition and logical basis, the model of generalized solution of reduction to absurdity. Second plate presented the applicable scope of reduction to absurdity, and through a lot of examples to elucidate the reduction to absurdity in the proposition proof steps. Some problems that should be paid attention to the third sector analysis application of reduction to absurdity. The fourth section teaching value of reduction to absurdity is analysed and the suggestion. Finally the fifth plate were analyzed. Keywords:Reduction to absurdity; prove ;contradiction

中学数学中的反证法

浅谈中学数学中的反证法 摘要小结在解题过程中怎样由假设出发寻找矛盾,哪些类型的问题适用于反证法,以及在学习反证法的过程中应注意的两方面。 关键词反证法命题反设归谬结论 0引言 反证法是数学的一种极其重要的方法,特别是遇到的一些直接证明难于入手,甚至无法入手的问题,反证法可使证明变得轻而易举。它和分析法、综合法一样,有着悠久的历史,应用也相当广泛。 在中学数学中,反证法是一个难点。在学习反证法之前,学生在学习平行线、相交线、三角形等各章中,证题用的都是直接证法,突然学习反证法,与已有的证题习惯不同,所以学生初学反证法,会有排斥的心理。加之,现在课本要求不高,例题很少,学生与老师不重视,知识不巩固,使学生无法深刻理解反证法的作用。但是,中学生好奇心强,对新鲜事物兴趣浓,抓住这一特点,从浅显的、学生熟知的事实入手说明“反证法”,再引导其抽象概括,就能收到很好的教学效果。论文中通过几个例子表现反证法的思维方式,说明反证法在解题中的重要作用,并总结哪些类型的问题适用于反证法。深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力。 1反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种。法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”。反证法作为一种最重要的数学证明方法,在数学命题的证明中被广

泛应用。欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法。 2什么是反证法 反证法是从原命题结论的反面出发,通过正确的逻辑推理过程,导致矛盾的结果,从而肯定原命题结论正确的证明方法。它是反设后通过归谬使命题得到证明的方法,所以,反证法又称“归谬法”。英国数学家哈代对于这种证法给过一个很有意思的评论,在棋类比赛中,经常采用一种策略,叫“弃子取势”,即牺牲一些棋子以换取优势。哈代指出,归谬法是远比任何棋术更为高超的一种策略,棋手可以牺牲的是几个棋子,而数学家可以牺牲整盘棋。反证法就是作为一种可以想象的最了不起的策略而产生的。 3反证法的一般步骤 应用反证法证题,首先应分清命题的条件和结论,再按“反设→归谬→结论”三步进行: 3.1反设 作出与原命题结论相反的假设。反设是应用反证法的第一步,也是关键的一步。反设的结论将是下一步归谬的一个已知条件。反设是否正确、全面,直接影响下一步的证明。作为反设其含义是:假设所要证明的命题的结论不成立,而讨论的反面成立故应准确找到命题的结论,抓住关键的字句进行分析、引导、示范、训练,体会怎样对命题的结论进行正确、全面的否定。在训练时,主要做以下工作:(1)正确分清题设和结论。(2)对结论实施正确否定。一般而言,一种情形是直接在结论前加“不”或去掉“不”。例如:是→不是,有→没有,能→不

相关文档
最新文档