立体几何垂直关系专题

立体几何垂直关系专题
立体几何垂直关系专题

立体几何垂直关系专题

高考中立体几何解答题中垂直关系的基本题型是:

证明空间线面垂直需注意以下几点:

①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面或辅助体)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

④三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑. 应用时常需先认清所观察的平面及它的垂线,从而明确斜线、射影、面内直线的位置,再根据定理由已知的两直线垂直得出新的两直线垂直.另外通过计算证明线线垂直也是常用的方

法之一。

垂直题目的解决方法须熟练掌握以下相互转化关系:

2 垂直转化:线线垂直线面垂直面面垂直;每一垂直判定就是从某一垂直开始转向另一垂直最终达到

目的。

例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。

2.“升降维”思想

直线是一维的,平面是二维的,立体空间是三维的。运用降维的方法把立体空间问题转化为平面或直线问题进行研究和解题,可以化难为易,化新为旧,化未知为已知,从而使问题得到解决。运用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以立易解难,温旧知新,从已知探索未知,是培养创新精神和能力,是“学会学习”的重要方法。平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程。注意:证明线面关系,严禁跳步作答

证明线面位置关系的基本思想是转化与化归,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,但分析问题时不能只局限在线上,要把相关的线归结到某个平面上,通过证明线面垂直达到证明线线垂直的目的,但证明线面垂直又要借助于线线垂直,在不断的相互转化中达到最终目的.

解决空间问题常添加的辅助线与辅助面

1. 遇到线面平行面面平行做辅助面引出平行线,遇到线面垂直做出过垂线的平面引出垂面

2.. 遇到面面垂直在一平面内做出两垂面交线的垂线引出线面垂直的条件添加辅助线的策略:

一、添加垂线策略。

因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,

正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。

、添加平行线策略。

其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。

三.向中心对称图形对称中心添加连线策略。

这主要是因为对称中心是整个图形的“交通” 枢纽,它可以与周围的点、线、面关联起来,常见的有对平行四边形连对角线,对圆的问题向圆心连线,对球体问题向球心连线。

四、名线策略。

即添加常用的、重要的线,如中位线、高、角平分线、面对角线和体对角线等。尽管这些线上面也有提到,但还是要在这里强化一下,这些线有着广泛的联系。尤其是添加三角形中位线或者梯形中位线,这主要是因为中位线占据了两个边的中点,并且中位线平行于底边,且是底边长的一半,它可以把底边与其他线面的角度关系平移,使已知和未知集中在一个三角形中。

典型例题精讲

空间垂直题型一线线垂直问题

1. 证明:体对角线与与侧面上无公用定点的对角线互相垂直,同一侧面上的两条对角线互相垂直,不在同一侧面上的两条对角线的交角为60 ,

1)含AC的对角面共有几个分别是哪几个?

答A案:共三个分别是平面AA1CC1、平面A1B1CD、平面A1BCD1

2. (06 江西卷)如图,在三棱锥A-BCD中,侧面ABD、ACD是全等

的直角三角形,AD是公共的斜边,且AD=3 ,BD=CD=1,另一个侧面是正三角形,求证:AD BC

3. 已知直三棱柱 ABC —A 1B 1C 1中,∠ ACB=900,∠BAC=300,BC=1,AA 1= 6,M 为 CC 1中点,求 证: AB 1⊥ A 1M 。

4. 已知矩形 ABCD ,过 A 作 SA ⊥平面 ABCD ,再过 A 作 AE ⊥SB 交 SB 于 E ,过 E 作 EF ⊥SC 交 SC 于F 。(1) 求证: AF ⊥SC ;(2) 若平面 AEF 交SD 于 G ,求证: AG ⊥SD

5. 如图,在正方体 ABCD - A 1B 1C 1D 1中, M 是棱 A 1A 的中

点, 求证: C 1M ⊥ MN

B

F

G E

C

A 1

B 1

6.正三棱柱 ABC —A 1B 1C 1的侧面三条对角线 AB 1、 BC 1、 CA 1中, AB 1⊥ BC 1. 求证: AB 1⊥CA 1.

7.2014 许 郑 平 1.19. 将棱长为 a 的正方体截去一半(如图甲所示)得到如图乙所示的几 何体,点 E,F 分别是 BC,DC 的中点.

8.2014郑一测 19在三棱柱 ABC- A 1B 1C 1中,侧面 ABB 1 A 1为矩形, AB = 1,AA 1 = 2,D 为 AA 1的中点, BD 与 AB 1交于点 O , CO 侧面 ABB 1 A 1 .

(I) 证明: BC AB 1;

(Ⅱ)若OC=OA ,求三棱锥 C 1 ABC 的体积.

D 1

C

D A 1

线面垂直问题

1.已知三棱锥P- ABC 中,E、F分别是 AC 、AB 的中点,△ ABC ,△ PEF 都是正三角形, PF ⊥AB .证明 PC ⊥平面 PAB

2. 在正方体 ABCD —A 1B 1C 1D 1,G 为 CC 1的中点, O 为底面 ABCD 的中心。求证: A 1O ⊥平面 GBD

3.(06 天津)如图,在五面体 ABCDEF 中,点 O 是矩形 ABCD 的对角线的交点,面 CDE 是等 边三角形,棱 EF ∥1BC .

2

(I )证明 FO ∥平面 CDE;

(II )设 BC 3CD ,证明 EO 平面 CDF . 空间垂直题型

A B

A O

D

B C

立体几何线面垂直的证明

立体几何证明 【知识梳理】 1 ?直线与平面平行 判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行?(?'线线平行三线面平行”) 性质定理:如果一条直线和一个五f平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行?(“线面平行=线线平行”) 2??直线与平面垂直 判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直三线面垂直”) 判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。 (线面垂直三线线垂直) 性质2:如果两条直线同垂直于一个平面,那么这两条直线平行. 三。平面与平面 空间两个平面的位置关系:相交、平行. 1.平面与平面平行 判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行亠面面平行”) 2两个平面垂直 判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直三面面垂直”) 忤质疋理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直=>线面垂直)

知识点一 【例题精讲】 1.在棱长为2的正方体ABCD-A/CD中,E、F分别为DD{. DB的中点。 (1)求证:EF//平面ABC}D{; (2)求证:平面BDG丄B】C EF丄§C; (3)求三棱锥B\—EFC的体积V. 2?如图所示,四棱锥P-ABCD底面是直角梯形, 84 丄AD, CD 丄AD, CD = 2 AB. P4 丄底面AB CD、E 为PC 的中点,PA=AD=AB=1. (1)证明:EB//平面PAD ; (2) 证明:BE丄平面PDC ■, (3) 求三棱锥B-PDC的体积K 3、如图所示,在四棱锥BCD中,PA丄底面 A BCD, AB丄AD, AC 丄CD,Z ABC=60。,PA=AB= B C , E 是PC 的中点,证明: (1) AE丄CD ( 2 ) PD丄平面ABE?

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

立体几何平行垂直问题专题复习

立体几何平行、垂直问题【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题

一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l 与平面α互相垂直. 2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面 3.直线与平面垂直的性质定理 文字语言图形语言符号语言性质定理 垂直于同一个平面 的两条直线平行 ①直线垂直于平面,则垂直于平面内任意直

线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 【典例探究】 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中, ,,AP PC AC BC ⊥⊥M 为AB

F D E C1 A1 C A 中点,D 为PB 中点,且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 例 2. 如图,已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,2AC BC ==,14AA =, 22AB =,M ,N 分别是棱1CC ,AB 中点. (Ⅰ)求证:CN ⊥平面11ABB A ; (Ⅱ)求证://CN 平面1AMB ; (Ⅲ)求三棱锥1B AMN -的体积. 【变式1】. 如图,三棱柱111C B A ABC -中,侧棱1AA ⊥平面ABC ,ABC ?为等腰直角 三角形, 90=∠BAC ,且1AA AB =,F E D ,,分别是BC CC A B ,,11的中点。 (1)求证://DE 平面ABC ; (2)求证:⊥F B 1平面AEF ; (3)设AB a =,求三棱锥D AEF -的体积。 二、线面平行与垂直的性质 例3、如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,225AB DC == A B C A 1 B 1 C 1 M N

(完整版)高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD (第2题图)

3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A C B P

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

立体几何线线垂直专题史上最全

立体几何垂直总结 1、线线垂直的判断: 线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 2、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 (3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 3、面面垂直的判断: 一个平面经过另一个平面的垂线,这两个平面互相垂直。 证明线线垂直的常用方法: 例1、(等腰三角形三线合一)如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。 证明:(1) BC AC CE AB AE BE =??⊥?=? 同理,AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点.(Ⅰ)求证:PC ∥平面BDE ;(Ⅱ)求证:平面PAC ⊥平面BDE . A E D B C

例3、(线线、线面垂直相互转化)已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 例4、(直径所对的圆周角为直角)如图2所示,已知PA 垂直于圆O 在平面,AB 是圆O 的直径,C 是圆O 的圆周上异于A 、B 的任意一点,且PA AC =,点E 是线段PC 的中点.求证: AE ⊥平面PBC . 证明:∵PA ⊥O e 所在平面,BC 是O e 的弦,∴BC PA ⊥. 又∵AB 是O e 的直径,ACB ∠是直径所对的圆周角,∴BC AC ⊥. ∵,PA AC A PA =?I 平面PAC ,AC ?平面PAC . ∴BC ⊥平面PAC ,AE ?平面PAC ,∴AE BC ⊥. ∵PA AC =,点E 是线段PC 的中点.∴AE PC ⊥. ∵PC BC C =I ,PC ?平面PBC ,BC ?平面PBC . ∴AE ⊥平面PBC . 例5、(证明所成角为直角)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,AE ⊥BD ,CB =CD =CF . 求证:BD ⊥平面AED ; 证明 因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°, 因此∠ADB =90°,即AD ⊥BD . 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ?平面AED , 所以BD ⊥平面AED . S D C B A A C B P E O g 图2

立体几何中垂直地证明

全方位教学辅导教案

5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且 PA AB =,点E 是PD 的中点。 ⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面; 6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA = AB =BC ,E 是PC 的中点. (1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE. 题型二、面面垂直的判定与性质 1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。 2、如图,棱柱 111 ABC A B C -的侧面 11 BCC B 是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC ; 3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且

1C ABD O AB 在平面上的射影恰好在上。 11(2). BDC ⊥⊥1 1()求证:AD BC 求证:面ADC 面 4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 5、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。 (1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥; 6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC. O B C 1 A D C

重点高中立体几何证明垂直的专题训练

重点高中立体几何证明垂直的专题训练

————————————————————————————————作者:————————————————————————————————日期: 2

3 P E D C B A 高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F ⊥平面PDC 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD E F B A C D P (第2

4 3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A C B P

立体几何空间中的垂直关系及答案

空间中的垂直关系 1.线线垂直 如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________. (2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α?b⊥α. (3)性质定理:垂直于同一个平面的两条直线__________. 3.直线和平面所成的角 平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角. 一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________. 4.二面角的有关概念 (1)二面角:从一条直线出发的______________________叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________. 5.平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的________,则这两个平面垂直. (3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直. 自查自纠: 1.直角 2.(1)直线l与平面α互相垂直l⊥α平面α的垂线 直线l的垂面垂足距离(2)两条相交直线(3)平行 3.锐角[0°,90°] 4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°] 5.(1)直二面角(2)垂线(3)交线 (2018·广东清远一中月考)已知直线l⊥平面α,直线m?平面β,给出下列命题:①α⊥β?l ∥m;②α∥β?l⊥m;③l⊥m?α∥β;④l∥m?α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④ . (2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD

历年高考数学真题精选31 立体几何中的垂直关系

历年高考数学真题精选(按考点分类) 专题31 垂直关系(学生版) 1.(2019?北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若60ABC ∠=?,求证:平面PAB ⊥平面PAE ; (Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由. 2.(2015?重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2 ABC π ∠= ,点D 、E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC . (Ⅰ)证明:AB ⊥平面PFE . (Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长. 3.(2015?福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直 于圆O 所在的平面,且1PO OB ==, (Ⅰ)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.

4.(2014?四川)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形 (Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ; (Ⅱ)设D 、E 分别是线段BC 、1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论. 5.(2014?福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ; (Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积. 6.(2014?广东)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==作如图2折叠;折痕//EF DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.

立体几何中垂直地证明

全方位教学辅导教案 线面垂直的判定及其性质 ●知识要点 1.线面垂直 (1)定义: 如果直线l 与平面α的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足. (2)判定定理:(线线垂直→线面垂直) 一条直线与一个平面的两条相交直线都垂直,则这条直线与该平面垂直. ☆ 符号语言:若l ⊥m ,l ⊥n ,m ∩n =B ,m α,n α,则l ⊥α. (3)性质定理:(线面垂直→线线平行) 垂直于同一个平面的两条直线平行. 2.二面角 (1)定义: 从一条直线出发的两个半平面所组成的图形叫二面角. 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --) (2)二面角的平面角: 在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 围:000180θ<<. 3.面面垂直 (1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥. (2)判定定理:(线面垂直→面面垂直) 一个平面过另一个平面的垂线,则这两个平面垂直. (3)性质定理:(面面垂直→线面垂直) 两个平面垂直,则一个平面垂直于交线的直线与另一个平面垂直. “垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。

6、如图,在四棱锥P-ABCD中, PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA= AB=BC,E是PC的中点. (1)求证:CD⊥AE;(2)求证:PD⊥面ABE. 题型二、面面垂直的判定与性质 1、如图AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC垂直平面PBC。 2、如图,棱柱111 ABC A B C - 的侧面11 BCC B 是菱形, 11 B C A B ⊥ 证明:平面 1 AB C⊥平面 11 A BC; 3、已知:如图,将矩形ABCD沿对角线BD将BCD折起,使点C移到点 1 C,且1 C AB D O AB 在平面上的射影恰好在上。 1 1 (2). BDC ⊥ ⊥ 1 1 ()求证:AD BC 求证:面ADC面

立体几何线线垂直专题(史上最全)

例2、(菱形的对角线互相垂直、等腰三角形三线合一)已知四棱锥 形.PB PD ,E 为PA 的中点.(I )求证:PC //平面BDE ;(n 立体几何垂直总结 1线线垂直的判断: 线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 2、线面垂直的判断: 如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2) 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 (3) 一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4) 如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面。 3、面面垂直的判断: 一个平面经过另一个平面的垂线,这两个平面互相垂直。 证明线线垂直的常用方法: 例1、(等腰三角形三线合一)如图,已知空间四边形ABCD 中,BC AC,AD BD ,E 是 AB 的中点。求证: (1)AB 平面 CDE;( 2)平面 CDE 平面 ABC 。 BC 证明:(1) C AE AC BE CE AB 同理,AD BD DE AB AE BE 又??? CE DE ??? AB 平面 CDE (2)由(1)有 AB 平面CDE 又??? AB 平面ABC , ???平面CDE 平面ABC C C P ABCD 的底面 是菱 )求证:平面PAC 平

例3、(线线、线面垂直相互转化)已知ABC中 ACB 90o,SA 面ABC,AD SC,求证:AD 证明:??? ACB 90 °BC AC 又SA 面ABC SA BC BC 面SAC BC AD 又S C AD,S C BC C AD 面SBC B 例4、(直径所对的圆周角为直角)如图2所示,已知PA垂直于圆0在平面,AB是圆0的直 径,C是圆0的圆周上异于A、B的任意一点,且PA AC ,点E是线段PC的中点.求证: AE 平面PBC . 证明:??? PA eO所在平面,BC是eO的弦,二BC PA. 又??? AB是eO的直径,ACB是直径所对的圆周角, BC AC. ??? PAI AC A, PA 平面PAC,AC 平面PAC . ??? BC 平面PAC,AE 平面PAC,二AE BC . ??? PA AC,点E是线段PC的中点.??? AE PC . ??? PCI BC C , PC 平面PBC,BC 平面PBC . ??? AE 平面PBC . 例5、(证明所成角为直角)在如图所示的几何体中, 四边形ABCD是等腰梯形,AB // CD, / DAB= 60°,AE丄BD,CB= CD = CF.求证: BD丄平面AED; 证明因为四边形ABCD是等腰梯形,AB//CD,/ DAB = 60°所以/ ADC =/BCD = 120°. 又CB = CD,所以/ CDB = 30°, 因此/ ADB = 90°,即AD 丄 BD. 又AE 丄BD,且AEG AD = A,AE,AD?平面AED, 所以BD丄平面AED.

立体几何垂直证明(基础)

立体几何垂直的证明 类型一:线线垂直证明(共面垂直、异面垂直) (1)共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 【例1】在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面 (2)异面垂直(利用线面垂直来证明) 【例2】在正四面体ABCD 中, 求证:AC BD ⊥ 【变式1】如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 ο60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

【变式2】如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点, 将△AED,△DCF分别沿, DE DF折起,使,A C两点重合于'A. 求证:'A D EF ⊥; 【变式3】如图,在三棱锥P ABC -中,⊿PAB是等边三角形,∠P AC=∠PBC=90 o。 证明:AB⊥PC 类型二:直线与平面垂直证明 方法○1利用线面垂直的判断定理 【例3】在正方体 1111 ABCD A B C D -中,,求证: 11 AC BDC ⊥平面 【变式1】如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90?.E为BB1的中点,D点在AB上且DE= 3 . 求证:CD⊥平面A1ABB1; B E ' A D F G

P C B A D E 【变式2】如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的 中点,2, 2.CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ; 【变式3】如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC = ()1求证:BD ⊥平面PAC ○ 2利用面面垂直的性质定理 【例4】在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。 【变式1】在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且 PAB ABCD ⊥面底面,求证:BC PAB ⊥面

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线线垂直方法 (1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点,且1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若11PH AD FC == =,, 求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. (第2题图)

4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为 PC 的中点, PA =AD 。 证明: BE PDC ⊥平面; 5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠= ,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC (3)利用勾股定理 7.如图,四棱锥P ABCD -的底面是边长为1 的正方形,,1,PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ; _ D _ C _ B _ A _ P A C B P

立体几何平行垂直问题专题复习

【基础知识点】 」、平行问题 1.直线与平面平行的判定与性质 2.面面平行的判定与性质 、垂直问题 、直线与平面垂直 1 .直线和平面垂直的定义: 直线I 与平面a 内的 ___________________ 都垂直,就说直线 I 与平面a 互相垂直. 2.直线与平面垂直的判定定理及推论 立 体 几 何 平 行 垂 直 问 题 平行问题的转化关系: 41*

面,那么另一条直线也 垂直这个平面 文字语言图形语言付号语言 性质定理垂直于冋一个平面的两条直线平行 ①直线垂直于平面,则垂直于平面内任意直线 ②垂直于同一个平面的两条直线平彳 _____ ③垂直于同一条直线的两平面平彳 ______ 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言图形语言付号语言 判定定理 一个平面过另一个平面的垂线,则这两个平 面垂直 2 文字语言图形语言付号语言 性质定理两个平面垂直,则一个平面内垂直于交线的 直线垂直于另一个平 面 【典例探究】类型一、平行与垂直 例1、如图,已知三棱锥 A BPC中,AP PC, AC BC, M为AB中点,D为

PB中点,且△ PMB为正三角形。(I)求证: DM // 平面APC ; (U)求证:平面ABC 平面APC ; (川)若BC 4,AB 20,求三棱锥 D 例2. 如图,已知三棱柱ABC ABC,中,

AC BC 2, AA 4 , AB 2.2 , M , N 分别是棱CC,, AB 中点? (I)求证:CN 平面ABB,A ; (U)求证:CN// 平面AMB,; (川)求三棱锥B, AMN的体积. 【变式11 .如图,三棱柱ABC A1B1C1中,侧棱AA i平面ABC,ABC为等腰直角三角形,BAC 90,且AB AA1 , D,E,F分别是 点。 (1)求证:DE//平面ABC ; (2)求证:B1F 平面AEF ; (3)设AB a,求三棱锥D AEF的体积。 二、线面平行与垂直的性质 例3、如图4,在四棱锥P ABCD中,平面PAD平面ABCD, AB 〃DC,△ PAD是等边三角形,已知BD 2AD 4, AB 2DC 2.5 . (1)求证:BD 平面PAD ;(2)求三棱锥A PCD的体 积. 例4、如图,四棱锥P—ABCD中, PD 平面ABCD底面ABCD为正方形,BC=PD=2 E为PC的中点,CG ^CB. (I )求证:PC BC ; (II )求三棱锥 3 C- DEG W 体积; (III ) AD边上是否存在一点M,使得PA//平面MEG若存在,求AM的长;否则,说明理由。 【变式2】直棱柱ABCDABCD底面ABCD是直角梯形,/ BAD^Z AD G90°,AB= 2AD= 2CD= 2. (I)求证:AC 平面BBCQ; ( II) A1B上是否存一点P,使得DP与平面BCB B1 B1A, CC1, BC

立体几何垂直证明

立体几何垂直证明方法技巧授课教师:吴福炬

类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面

(2) 异面垂直(利用线面垂直来证明) 例1 在正四面体ABCD 中, 求证:AC BD ⊥ 变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形, 已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD中,点E是AB的中 点,点F是BC的中点,将△AED,△DCF分别沿, DE DF折起, 使,A C两点重合于'A. 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB是等边三角形, ∠P AC=∠PBC=90 o证明:AB⊥PC 类型二:直线与平面垂直证明 B E ' A D F G

方法○1利用线面垂直的判断定理 例:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; 变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的

高一必修2立体几何--平行与垂直关系强化练习(含答案)

高一数学 必修二 空间中平行与垂直关系 强化练习 1.空间中,垂直于同一直线的两条直线 A. 平行 B .相交 C .异面 A.若 m//l, n//l ,则 m//n B .若 m 〃 ,n 〃 ,则 m//n C.若m ,m ,则 D .若m , ,则m 〃 或m 3. 下列说法正确的是() A. 如果一条直线与一个平面内的无数条直线平行,则这条直线与这个平面平行 B. 两个平面相交于唯一的公共点 C. 如果一条直线与一个平面有两个不同的公共点,则它们必有无数个公共点 D. 平面外的一条直线必与该平面内无数条直线平行 4. 如图,ABCD- A i BiGD 为正方体, A. BD// 平面 CBD B. AG 丄B i C C. AC 丄平面CBD D. 直线CC 与平面CBD 所成的角为45° 5. 如图,四棱锥 V ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面都是侧 棱长为.5的等腰三角形,则二面角 V AB C 的大小 ( ) A. 30 B . 45 C . 60 D . 120 6. 下列四个结论: ⑴两条直线都和同一个平面平行,则这两条直线平行。 ⑵两条直线没有公共点,则这两条直线平行。 ⑶两条直线都和第三条直线垂直,则这两条直线平行。 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。 其中正确的个数为( ) A. 0 B . 1 C . 2 D . 3 7.在四面体ABCD 中,已知棱AC 的长为.2,其余各棱长都为1,则二面角 A CD B 的 余弦值为( ) A. 1 B .1 C .-D 2 3 3 .3 2.已知互不相同的直线l,m,n 与平面 ,则下列叙述错误的是( () D .以上均有可能

相关文档
最新文档