低频正弦信号发生器(1)(1)课案

低频正弦信号发生器(1)(1)课案
低频正弦信号发生器(1)(1)课案

《电子技术》课程设计报告

题目低频正弦信号发生器

学院(部)电子与控制工程学院

专业建筑电气与智能化

班级2013320602

学生姓名吴会从

学号201332060225

6 月29 日至

7 月10 日共2 周

指导教师(签字)

前言

正弦交流信号是一种应用极为广泛的信号,它通常作为标准信号,用于电子电路的性能试验或参数测量。另外,在许多测试仪中也需要用标准的正弦信号检测一些物理量,正弦信号用作标准信号时,要求正弦信号必须有较高的精度,稳定度及低的失真率。

本次电子课程设计的低频正弦信号发生器的要求为:信号的频率范围为20HZ~20KHZ;输出电压幅度为 5V;输出信号频率数字显示;输出电压幅度显示。

针对以上设计要求,我们从图书馆收集,借阅了大量相关书籍,从网上下载了诸多相关资料,其次安装并学习使用了电路设计中所常使用的Multisim仿真软件。在设计的要求下,画出了整体电路的框图,将其分为正弦信号发生器,输出信号频率和其数字显示,输出电压和幅度数字显示三大部分。其中,正弦信号发生器部分主要由我负责,输出信号频率和其数字显示部分主要由刘琪负责,输出电压和幅度数字显示部分主要由李光辉负责。其次我们对每个单元电路进行设计分析,对其工作原理进行介绍,通过对电路分析,确定了元器件的参数,并利用Multisim 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。

完成电路的设计与分析后,对资料与设计电路进行整理,排版,完成课程设计报告。

目录

摘要 (4)

关键字 (4)

技术要求 (4)

第一章系统概述 (5)

第二章单元电路设计 (6)

第一节正弦信号产生和放大电路模块设计 (6)

第二节数字的频率显示 (10)

第三节数字电压表设计 (17)

第三章结束语 (23)

参考文献 (23)

鸣谢 (23)

元器件明细表 (24)

收获与体会,存在的问题 (24)

评语 (26)

低频正弦信号发生器

摘要

正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。本设计采用RC选频率网络构成的振荡电路产生所需正弦波。RC振荡电路适用于低频振荡,结构简单,经济方便,一般用于产生1Hz-1MHz的低频信号。本文用于输出正弦波工作状态,正弦波产生后通过同相比例放大电路对信号进行放大,从而满足设计要求;频率的数字显示主要由555定时器构成的放大整形电路,时基电路构成,最终由十进制加法器74LS160,锁存器74LS373,译码器74LS48使数码管显示频率;电压数字显示主要由芯片MC14433,MC1413,MC4511和MC1403构成。

关键词

信号发生器低频正弦信号放大电路电路仿真电压显示频率显示

技术要求

1.信号频率范围20HZ~20kHZ;

2.输出信号电压幅度 5;

3.输出信号频率数字显示;

4.输出电压幅度数字显示。

第一章 系统概述

根据任务书的要求,系统可分为三大部分,即正弦信号的产生;输出频率的范围和其显示;输出电压的幅度和显示,我们采用RC 选频率网络构成的振荡电路产生正弦信号,信号产生后再通过同相比例运算放大器来满足输出电压的幅度要求,然后通过555定时器组成的多谐振荡器,对其放大整形和控制,最终通过十进制加法器74LS160,锁存器74LS373,译码器74LS48使数码管显示频率,由于本学期刚学过555定时器,74LS160,74L48等芯片,设计过程中易于理解和操作,其次是电压的显示,我们采用集成电路MC14433,MC1413,MC4511和MC1403设计成数字电压表,实现对电压的显示。其中MC14433的作用是将输入的模拟信号转换成数字信号,MC1403为MC14433提供精密电压,供MC14433A/D 转换器作参考电压,MC4511的功能是将二-十进制转换成七段信号,MC1413的作用为驱动显示器的 a,b,c,d,e,f,g 七个发光段,驱动数码管进行显示,数码管只将译码器输出的七段信号进行数字显示,读出A/D 转换结果,该模块集成度高,外围电路简单,便于实现。

以下为电路的系统框图:

1.1

第二章单元电路设计

第一节:正弦信号产生和放大电路模块设计

1.正弦波发生器

正弦波发生器是本设计的核心部分,以下介绍四种方案:

方案一:采用传统的直接频率合成法直接合成。利用混频器,倍频器,分频器和带通滤波器完成对频率的算术运算。但由于采用大量的倍频,分频,混频和滤波环节,导致直接频率合成器的结构复杂,体积庞大,成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。

方案二:采用锁相环间接频率合成(PLL)。虽然具有工作频率高,宽带,频谱质量好的优点,但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。另外,由模拟方法合成的正弦波的参数(如幅度,频率和相位等)都很难控制,而且要实现大范围的频率变化相当困难,不易实现。

方案三:用函数产生芯片直接产生所需信号。采用MAX038函数产生芯片,通过设置管脚参数的输入,可设计组成产生幅频精度很高且易于调整的波形信号,该波失真度很小,而且可实现的频率范围很大,在电路参数要求苛刻的工作场所能够得到较好的应用,用该芯片设计组成的信号产生电路集成度高,而且简单,容易控制。

方案四:采用RC选频率网络构成的振荡电路产生所需正弦波。RC振荡电路适用于低频振荡,结构简单,经济方便,一般用于产生1Hz~1MHz的低频信号。

由以上分析可知,方案一和方案二不易实现,方案三虽然可行,但MAX038已经停产,所以我们选择第四种方案中的RC选频率网络构成的振荡电路来实现所需正弦波。

2.RC桥式振荡电路及工作原理

图2.1.1为RC串并联正弦波振荡电路,其放大电路为同相比例运算放大器,反馈网络和选频网络由RC串并联网络组成。

图2.1.1 RC 串并联正弦波振荡电路

由RC 串并联网络的选频特性可知,在。w w == 1/RC 或RC f f π。

2/1==时,RC 选频网络的相角为0,而同相比例运算放大电路的相位差为0,从而满足振荡的相位条件。由于RC 串并联网络的选频特性,使信号通过闭合环路AF 后,仅有错误!未找到引用源。的信号才满足相位条件,因此该电路振荡频率为。f ,从而保证了电路输出为单一频率的正弦波。

为了使电路能振荡,还应该满足起振条件,即要求|AF |错误!未找到引用源。1。由于。w w =时,

u F =1/3则要求311

>+

=R R A f u ,即12R R f >,输出波形就接近正弦波。

振荡电路起振后,如一只维持u A > 3 ,输出电压会继续增加,这样会因输出信号振幅的增长致使放大器件工作在非线性区域,波形会产生严重的非线性失真。为此必须设法使输出电压幅值在增大的同时,让|AF |适当减小,以维持输出电压的幅值。这一任务由稳幅环节完成。通常的方案有下列三种:一种方案是选择负温度系数的热敏电阻代替反馈电阻f R ,当输出电压。U 的幅值增加时,会使f R 的功耗增大,温度上升,则f R 阻值下降,负反馈加强,放大倍数下降,输出电压。U 也会随之下降。也可选择正温度系数的热敏电阻代替电阻f R ,同样可以实现稳幅。

第二种方案是利用二极管的非线性特性。如图2.1.2所示电路是在rf2两端并联两个二极管1D ,

2D ,用来稳定输出电压。U 的幅度。当。U 幅值很小时,二极管1D ,2D 接近于开路,如果二极管的

反向电阻是无穷大,则反馈电阻21R R R f +=,使u A >3,有利于起振;反之,当。U 幅值较大时,1

D

或2D 导通,二极管的正向电阻是会随着正向电流的增大而减小,反馈电阻'21f f f R R R +≈会减小,使u A 随之下降,。U 幅值趋于稳定。由稳定性和精确性以及简单易实现的原则我们最终采用利用二极管实现稳幅。电路如下。

图2.1.2 具有二极管稳幅环节的RC 串并联正弦波振荡电路

3.放大电路的设计

由于设计要求的电压幅度为5V ,上述图2.1.2所示信号产生电路不能满足要求,因此必须对产生的信号进行二级放大,本设计的放大电路主要由同相比例器来担任 。

图2.1.3

同相比例器

同相比例运算放大器的放大倍数1

u 1R R A f +

=。

4.正弦信号发生总电路

把上述各分电路根据要求改进后集中在一块电路板上,共用电源和接地后,整个信号发生器的结构变得紧凑美观,集成电路图如图2.1.4 所示。

图2.1.4

正弦信号发生总电路

调整电阻2R 和 错误!未找到引用源。(即改变了反馈错误!未找到引用源。),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大错误!未找到引用源。 ,如波形失真严重,则应适当减少错误!未找到引用源。 = )(235D R R R R +++。

改变选频网络的参数C 或R ,即可调节振荡频率。一般采用改变电容C 作频率量程切换(粗调),而调节R 作量程内的频率细调。本设计要求输出地正弦波的频率为20HZ ~20KHZ,因此由式f = 错误!未找到引用源。 取值满足以下关系:

当uF C 04.0=时,微调电阻R 可以得到HZ HZ 200~20的正弦波。 当uF 004.0=C 时,微调电阻R 可以得到HZ HZ 2000~200的正弦波。 当uF 0004.0=C 时,微调电阻R 可以得到HZ HZ 20000~2000的正弦波。

调节滑动变阻器2R 可以改变放大倍数,可帮助电路起振,调节滑动变阻器8R 可进一步改变输出波形幅度,可以实现幅值从V V 5~1之间的调节变化。通过Multisim 软件调试后可得仿真的结果如下图2.1.5所示。图中信号幅值较小的为初级放大后的输出信号,另一个为二级放大后的输出信号。

图2.1.5 放大电路仿真结果图

第二节:频率的数字显示

电路设计中要求输出的频率能够进行数字显示,本电路中频率显示电路利用555定时器构成控制电路,时基电路和延时电路,控制计数器对输入信号进行计数,延时和清零,将计数结果用锁存器锁存输出到数码管驱动器驱动数码管静态数位显示。

1. 总体框架图

图2.2.1 频率显示计总体框架图

2.基本原理

为了提高输出信号的频率的精确度和稳定度本装置设置了频率检测电路,该电路先使检测信号通过由555构成的整波电路将正弦信号转化成同频率的脉冲信号,做为计数器的时钟脉冲输入端。

时基电路由多谐振荡器构成,产生采样时间为1S,0.1S,0.01S的脉冲信号,通过改变多谐振荡器的电容可以产生三种不同档位的待测信号,档位通过拨码开关来选择。

第一档:,信号的采样时间为1S。

第二档:,信号的采样时间为0.1S。

第三档:信号的采样时间为 0.01S。

3.总体设计与原理

3.1 整波电路

具体电路图 2.2.3,并进行仿真,得到输入波形与输出波形如图 2.2.4。

图.2.2.3 整波电路

图2.2.4 整波电路仿真图

3.2时基电路

频率显示计的时基电路是采用555构成的多谐振荡器,控制计数器的输入脉冲。多谐振荡器不需要外加输入信号,只需要接通电源,就能自动产生矩形脉冲信号,矩形脉冲信号的频率是由电路参数R,C决定的,当标准时间信号(1S正脉冲)到来时计数器开始计时。拨码开关的三个输出端代表了频率的三个档位,具体电路见图2.2.5

图2.2.5 时基电路

3.3.1 锁存信号和清零信号的产生

频率显示器的控制电路是由555构成的多谐振荡器。在标准时间信号结束后产生的负跳变来产生锁存信号,同时锁存信号经过反相器又产生清零信号。将时基电路的的输出信号与控制电路的输

出信号在multisim中进行仿真,得到如图2.2.7。

图2.2.6 控制电路

图2.2.7 锁存信号(上)与清零信号(下)

3.4锁存器的使用

锁存器的作用是将计数器在1S结束时的计数值进行锁存,使显示器获得稳定的测量值。当时钟脉冲CP的正跳变到来时,锁存器的输出端等于输入,从而将计数器的输出值送到锁存器的输出端,正脉冲结束后,输出不再改变。我们采用74LS373,其管脚图如图2.2.9 。

图2.2.9 74LS175D管脚图

图2.2.10 74LS175D真值表

3.5 计数器及数码管的显示

由于频率显示的范围是20HZ----20KHZ,则计数器能计数的最大数不小于20000 ,将6片同步十进制计数器74LS160进行级联即可实现对100000个脉冲数以下的脉冲计数。6片计数器的清零端是由时基电路产生的,CP脉冲端是由待测信号经整波后产生的矩形波提供的。其级联电路图如图2.2.11 。从右到左依次是十进制的个位,十位,百位,千位。将计数器的输出值通过锁存器输送到共阳极译码管驱动芯片74LS48,驱动数码管显示。

图2.2.11 计数器级联

3.6数码管驱动

输出端(a-g)为低电平有效,可以直接驱动指示灯或者共阴极LED。

当要求输入0-15时,消隐输入(/RBI)应为高电平或者开路,对于输出0时还要求脉冲消隐输入(/RBI)为高电平或开路。

当BI为低电平不管其他输入状态如何a-g均为低电平。

当/RBI和地址端(A-D)均为低电平并且灯测试(/LT)为高电平时a-g均为低电平,消隐输出(/RBO)为低电平。

当DI为高电平开路时,/LT为低电平可使a-g为高电平。

引出段符号;

A,B,C,D 驿码地址输入端

/BI,/RBO 消隐输入(低电平有效)

/LT 灯测试输入端(低电平有效)

/RBI 脉冲消隐输入端(低电平有效)

a-g 段输出(低电平有效)

图2.2.12 74LS248D外引线排列

第三节:数字电压表设计

设计数字电压表,以A/D转换器MC14433为核心器件,它有多路调制BCD码输出端和超量程,采用动态扫描显示,便于实现自动控制。它连接着输入放大器、基准电源、译码器、逻辑控制器和显示器。其中,A/D转换器将输入的模拟量转换成数字量,逻辑控制电路产生控制信号,按规定的时序将A/D转换器中各组模拟开关接通或断开,保证A/D转换正常进行。A/D转换结果通过译码电路变换成笔段码,最后驱动显示器显示相应的数值。

由于MC14433只能测量直流电压幅值,所以通过全波整流电路将待测正弦交流信号转化为直流信号。

图2.3.1 频率倍数控制电路

图2.3.2 数字电压表电路图

备注:

1. 单刀双掷开关的电压输入端Uo接信号发生器的电压输出端,电压输出端Ui接数字电压表的输入电压端,即引脚3。

2. 单刀双掷开关接的电阻,当S接到左边的开关时,则将信号发生器输出的电压缩小了10倍,当数码管上显示电压时,对于读出的数字应该乘以10,此时的结果才是真正的电压值;而当开关S 打到右边时,则将信号发生器输出的电压缩小了5倍,当数码管上显示电压时,对于读出的数字应该乘以5,此时的结果才是真正的电压值。

各部分的功能如下:

3位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

基准电源(MC1403):提供精密电压,供A/D转换器作参考电压。

译码器(MC4511):将二——十进制(BCD)码转换成七段信号。

驱动器(MC1413):驱动显示器的a, b, c, d, e, f, g七个发光段,驱动发光数码管(LED)进行显示。

显示器:将译码器输出的七段信号进行数字显示,读出A/D转换的结果。

一个单刀双掷开关和三个定值电阻起到了对输入电压的缩小作用。

工作过程如下:

3位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果字方式实现四位数字的LED发光数码管动态扫描显示。DS1~DS4输出多路调制选通脉冲信号。DS选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q0~Q3端输出。

每个DS选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。DS和EOC的时序关系是在EOC脉冲结束后,紧接着是 DS1输出正脉冲。以下依次为 DS2,DS3和 DS4。其中 DS1对应最高位(MSD),DS4 则对应最低位(LSD)。在对应DS2,DS3和DS4 选通期间,Q0~Q3 输出 BCD 全位数据,即以 8421 码方式输出对应的数字0~9。小数点显示是由正电源通过限流电阻 RDP 供电燃亮小数点。若量程不同则选通对应的小数点。

过量程是当输入电压 UX超过量程范围时,输出过量程标志信号 OR 。

(1)当 OR = 0 时,|UX|>UR,则溢出。 | UX|> UR则 OR 输出低电平。

(2)当 OR = 1 时,表示| UX|< UR。平时 OR 输出为高电平,表示被测量在量程内。

(3) MCl4433 的 OR 端与 MC4511 的消隐端 BI 直接相连,当 UX超出量程范围时, OR 输出低电平,即 OR = 0 → BI = 0 ,MC4511 译码器输出全 0,使发光数码管显示数字熄灭,而负号

和小数点依然发亮。

器件简介:

3半位 A/D 转换器 MCl4433

(1)在数字仪表中,MC14433 电路是一个低功耗3位半双积分式 A/D 转换器。和其它典型的双积分 A/D 转换器类似,MC14433A/D 转换器由积分器、比较器、计数器和控制电路组成。如果必要设计应用者可参考相关参考书。

(2)使用 MC14433 时只要外接两个电阻(分别是片内 RC 振荡器外接电阻和积分电阻 RI)和两个电容(分别是积分电容 CI和自动调零补偿电容C0)就能执行 3位半的 A/D 转换。

MC14433的内部结构如下图:

MC14433引脚图

图2.3.3 MC14433的内部结构图图2.3.4 MC14433引脚图

MCl4433 采用 24 引线双列直插式封装,外引线排列,各主要引脚功能说明如下:

(1) 端:VAG,模拟地,是高阻输入端,作为输入被测电压 UX和基准电压 VREF的参考点地。

(2) 端:RREF,外接基准电压输入端。

(3) 端:UX,是被测电压输入端。

(4) 端:RI,外接积分电阻端。

(5) 端:RI/CI,外接积分元件电阻和电容的公共接点。

(6) 端,C1,外接积分电容端,积分波形由该端输出。

(7) 和 (8) 端:C01和 C02,外接失调补偿电容端。推荐外接失调补偿电容 C0取 0.1μF。

(9) 端:DU,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5 开始前,在 DU 端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。若该端通过一电阻和 EOC 短接,则每次转换的结果都将被输

出。

(10) 端:CPI (CLKI),时钟信号输入端。

(11) 端:CPO (CLKO),时钟信号输出端。

(12) 端:VEE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为 0.8mA,所有输出驱动电路的电流不流过该端,而是流向 VSS端。

(13) 端:VSS负电源端.

(14) 端:EOC,转换周期结束标志输出端,每一 A/D 转换周期结束,EOC 端输出一正脉冲,其脉冲宽度为时钟信号周期的 1/2。

(15) 端:OR,过量程标志输出端,当|UX|>VREF时,OR输出低电平,正常量程OR为高电平。 (16)~(19) 端:对应为 DS4~DS1,分别是多路调制选通脉冲信号个位、十位、百位和千位输出端,当 DS 端输出高电平时,表示此刻 Q。~Q3输出的 BCD 代码是该对应位上的数据。

(20)~(23)端:对应为 Q0一 Q3,分别是 A/D 转换结果数据输出 BCD 代码的最低位(LSB)、次低位、次高位和最高位输出端。

(24) 端:VDD,整个电路的正电源端。

七段锁存-译码-驱动器 MC4511

CD4511 是专用于将二-十进制代码(BCD)转换成七段显示信号的专用标准译码器,它由 4 位锁存器,7 段译码电路和驱动器三部分组成。

(1) 四位锁存器(LATCH):它的功能是将输入的 A,B,C 和 D 代码寄存起来,该电路有锁

存功能,在锁存允许端(LE 端,即 LATCHENABLE)控制下起锁存数据的作用。

(2)七段译码电路:将来自四位锁存器输出的 BCD 代码译成七段显示码输出。

(3)驱动器:利用内部设置的 NPN 管构成的射极输出器,加强驱动能力,使译码器输出驱动电流可达 20mA。

低频信号发生器设计开题报告

1 研究的目的及其意义 随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。 便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。平时常用信号源产生正弦波,方波,三角波等常见波形作为待测系统的输入,测试系统的性能。单在某些场合,我们需要特殊波形对系统进行测试,这是传统的模拟信号发生器和数字信号发生器很难胜任的。利用单片机,设计合适的人机交互界面,使用户能够通过手动的设定,设置所需波形。该设计课题的研究和制作全面说明对低频信号发生系统要有一个全面的了解、对低频信号的发生原理要理解掌握,以及低频信号发生器工作流程:波形的设定,D/A 转换,显示和各模块的连接通信等各个部分要熟练联接调试,能够正确的了解常规芯片的使用方法、掌握简单信号发生器应用系统软硬件的设计方法,进一步锻炼了我们在信号处理方面的实际工作能力。 2 国内外研究现状 在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信

低频正弦信号发生器

低频正弦信号发生器 摘要 正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。 目前,常用的信号发生器绝大部分是由模拟电路构成的,电路的组成主要包括选频网络,反馈网络,以及放大部分。所以,从结构上看,正弦信号发生器就是一个没有输入信号的带选频网络的正反馈放大电路。分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。很多应用中都要用到范围可调的LC 振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。电路必须提供足够的增益才能使低阻抗的LC 电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。 但是,在一般的情况下,RC选频电路用于输出中频信号,LC选频电路用于输出高频信号,当需要这种模拟信号发生器用于输出低频率信号往往需要的RC值很大(LC 输出高频,更难以满足要求),这样不但参数准确度难以保证,而且体积大和功耗都很大,低频性能难以满足要求。而由数字电路构成的低频信号发生器,多是由一些芯片组成,其低频性能比模拟信号发生器好得多,并且体积较小,输出的信号谐波较少,频率和振幅相对比较稳定。本文借助555定时器和74LS161产生方波经MF10滤波电路产生正弦信号,这种电路运算速度较高,系统集成度强,且实现更加简便。电压的数字显示主要由555定时器构成的放大整形电路,时基电路和控制电路构成,最终由十六进制加法器74LS160,锁存器74LS373,译码器74LS48使数码管显示电压。

正弦波-方波-三角波信号发生器设计要点

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

正弦信号发生器的设计

XXXX大学现代科技学院DSP硬件电路设计基础课程设计 设计名称正弦信号发生器的设计 专业班级 学号 姓名DENG 指导教师XXXX

课程设计任务书 注: 上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 日期:2014-12-10

专业班级 XXXXXXX 学号 姓名 DENG 成绩 设计题目 正弦波信号发生器 设计目的 学会使用CCS(Code Composer Studio)集成开发环境软件,在此集成开发环境下完成工程项目创建,程序编写,编译,链接,调试以及数据的分析。同时完成一个正弦波信号发生器的程序的编写,并在集成开发环境下进行模拟运行,观察结果。 设计内容 编写一个产生正弦波信号的程序,在CCS 软件下进行模拟运行,观察输出结果。 设计原理 正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。本次课程设计只要使用泰勒级数展开法来实现正弦波信号。 1. 产生正弦波的算法 在高等数学中,正弦函数和余弦函数可以展开成泰勒级数,其表达式为 若要计算一个角度x 的正弦和余弦值,可取泰勒级数的前5项进行近似计算。 ……………………………………装………………………………………订…………………………………………线………………………………………

由上述两个式子可以推导出递推公式,即 sin(nx)=2cos(x)sin[(n-1)x]-sin[(n-2)x] cos(nx)=2cos(x)sin[(n-1)x]-cos[(n-2)x] 由递推公式可以看出,在计算正弦和余弦值时,不仅需要已知cos(x),而且还需要sin[(n-1)x]、sin[(n-2)x]和cos[(n-2)x]。 2. 正弦波的实现 ⑴计算一个角度的正弦值 利用泰勒级数的展开式,可计算一个角度x的正弦值,并采用子程序的调用方式。在调用前先在数据存储器d_xs单元中存放x的弧度值,计算结果存放在d_sinx单元中。 ⑵计算一个角度的余弦值 利用余弦函数展开的泰勒级数的前五项计算一个角度的余弦值,可采用子程序的调用方式来实现。调用前先将x弧度值放在数据存储器d_xc单元中,计算结果存放在d_cosx单元中。 ⑶正弦波的实现 利用计算一个角度的正弦值和余弦值程序可实现正弦波。其实现步骤如下:第一步:利用sin_start和cos_start 子程序,计算 45°~0°(间隔为 0.5°)的正弦和余弦值; 第二步:利用sin(2x)=2sin(x)cos(x)公式,计算 90°~0°的正弦值(间隔为1°);第三步:通过复制,获得359°~0°的正弦值; 第四步:将359°~0°的正弦值重复从PA口输出,便可得到正弦波。 在实际应用中,正弦波是通过D/A口输出的。选择每个正弦周期中的样点数、改变每个样点之间的延迟,就能够产生不同频率的波形,也可以利用软件改变波形的幅度以及起始相位。 总体方案设计 1. 总体实现方案 我们知道一个角度为x的正弦和余弦函数,都可以展开为泰勒级数,且其前五项可以看为:

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

正弦信号发生器2

正弦信号发生器[2005年电子大赛一等奖] 文章来源:凌阳科技教育推广中心 作者:华中科技大学(华中科技大学曹震陈国英孟芳宇)发布时间:2006-4-21 17:33:13 本系统基于直接数字频率合成技术;以凌阳SPCE061A单片机为控制核心;采用宽带运放AD811和AGC技术使得50Ω负载上峰值达到6V±1V;由模拟乘法器AD835产生调幅信号;由数控电位器程控调制度;通过单片机改变频率字实现调频信号,最大频偏可控;通过模拟开关产生ASK、PSK信号。系统的频率范围在100Hz~12MHz,稳定度优于10-5,最小步进为10Hz。 一、方案论证 根据题目要求和本系统的设计思想,系统主要包括图1.1所示的模块。 图1.1 系统模块框图

1、单片机选型 方案一:采用现在比较通用的51系列单片机。51系列单片机的发展已经有比较长的时间,应用比较广泛,各种技术都比较成熟,但此系列单片机是8位机,处理速度不是很快,资源不够充足,而且其最小系统的外围电路都要自己设计和制作,使用起来不是很方便,故不采用。 方案二:选用凌阳公司的SPCE061A单片机。SPCE061A单片机是16位的处理器,主频可以达到49MHz,速度很快,再加上其方便的ADC接口,非常适合对高频信号进行数字调频,如果对音频信号进行A/D采样,经过数字调频并发射,完全可以达到调频广播的效果。 结合题目的要求及SPCE061A单片机的特点,本系统选用凌阳公司的此款单片机。 2、频率合成模块 方案一:锁相环频率合成。如图1.2,锁相环主要由压控LC振荡器,环路滤波器,鉴相器,可编程分频器,晶振构成。且频率稳定度与晶振的稳定度相同,达10-5,集成度高,稳定性好;但是锁相环锁定频率较慢,且有稳态相位误差,故不采用。 图1.2 锁相环的基本原理 方案二: 直接数字频率合成。直接数字频率合成DDFS(Direct Digital Frequency Synthesizer)基于Nyquist定理,将模拟信号采集,量化后存入存储器中,通过寻址查表输出波形数据,再经D/A转

低频信号发生器的使用说明

附录一低频信号发生器的使用说明 一.概述 AS1033型低频信号发生器采用了中央处理器控制面板的操作方式,具有良好的人机界面。输出正弦波信号频率从2Hz~2MHz连续可调,输出正弦波信号幅度从0.5mV~5V连续可调,并设有TTL输出方波功能,频率从2Hz~2MHz连续可调,占空比从20%~80%连续可调。 面板显示清晰明了,操作简单方便,输出频率调节可采用频率段调节(轻触开关粗调)和数码开关调节(段内细调)二种,其中数码开关调节又分快调和慢调两种,五位数码管直接显示频率,输出幅度调节采用轻触粗调(20dB、40dB、60dB)和电位器细调(20dB)以内,三位数码管直接显示输出电压有效值或衰减电平。 中央处理器控制整机各部分,并采用了数/模、模/数转换电路,应用数码开关作为频率调节输入。振荡电路采用压控振荡与稳幅放大相结合,具有良好的稳幅特性。电路中还加入输出保护、TTL输出、方波占空比可调电路等。 二.技术特性 1.频率范围:2Hz~2MHz,共分五个频段 第一频段:2Hz~30Hz 第二频段:30Hz~450Hz 第三频段:450Hz~7kHz 第四频段:7kHz~100kHz 第五频段:100kHz~2MHz 2.正弦波输出特性 (1)输出电压幅度(有效值):0.5mV~5V (2)幅频率特性:≤±0.3dB (3)失真度:2Hz~200kHz≤0.1%,200kHz~2MHz,谐波分量≤-46dB 3.方波输出特性 ⑴最大输出电压(空截,中心电平为0):14Vp-p ⑵占空比(连续可调):20%~80% ⑶逻辑电平输出:TTL电平,上升、下降沿≤25ns 4.输出电抗:600Ω 5.频率显示准确度:1×10-4±1个字 6.正常工作条件 ⑴环境温度:0~40℃ ⑵相对湿度:<90%(40℃) ⑶大气压:86~106kpa ⑷电源电压:220±22V,50±2.5Hz 7.消耗功率:<10W 三.面板及操作说明 1.整机电源开关(POWER) 按下此键,接通电源,同时面板上指示灯亮。 2.频段选择手动按钮

正弦信号发生器(2012)(DOC)

正弦信号发生器 摘要:本系统以MSP430和DDS为控制核心,由正弦信号发生模块、功率放大模块、频率调制(FM)、幅度调制(AM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生1kHz~10MHz正弦信号;经滤波、放大和功放模块达到正弦信号输出电压幅度 =6V±1V 并具有一定的驱动能力的功能;产生载波信号可设定的AM、FM信号;二进制基带序列码由CPLD产生,在100KHz固定载波频率下进行数字键控,产生ASK,PSK 信号且二进制基带序列码速率固定为10kbps,二进制基带序列信号可自行产生。 关键词:DDS;宽频放大;模拟调频;模拟调幅。 一、方案比较与论证 1.方案论证与选择 (1)正弦信号产生部分 方案一:使用集成函数发生器芯片ICL8038。 ICL8038能输出方波、三角波、正弦波和锯齿波四种不同的波形,将他作为正弦信号发生器。它是电压控制频率的集成芯片,失真度很低。可输入不同的外部电压来实现不同的频率输出。为了达到数控的目的,可用高精度DAC来输出电压以控制正弦波的频率。 方案二:锁相环频率合成器(PLL) 锁相环频率合成器(PLL)是常用的频率合成方法。锁相环由参考信号源、鉴相器、低通滤波器、压控振荡器几个部分组成。通过鉴相器获得输出的信号FO与输入信号Fi的相位差,经低通滤波器转换为相应的控制电压,控制VCO输出的信号频率,只有当输出信号与输入信号的频率于相位完全相等时,锁相环才达到稳定。如果在环路中加上分频系数可程控的分频器,即可获得频率程控的信号。由于输出信号的频率稳定度取决于参考振荡器信号fi ,参考信号fi 由晶振分频得到,晶振的稳定度相当高,因而该方案能获得频率稳定的信号。一般来说PLL的频率输出范围相当大,足以实现1kHz-10MHZ的正弦输出。如果fi=100Hz 只要分频系数足够精细(能够以1步进),频率100Hz步进就可以实现。 方案三:直接数字频率合成(DDS) DDS是一种纯数字化方法。它现将所需正弦波一个周期的离散样点的幅值数字量存入ROM中,然后按一定的地址间隔(相位增量)读出,并经DA转换器形成模拟正弦信号,再经低通滤波器得到质量较好的正弦信号,DDS原理图如图1所示:

低频信号发生器设计报告

低频信号发生器设计报告 一.设计要求 (一)设计题目要求 1.分析电路的功能并设计电路的单元电路 2.查找图中相应元件的参数,找出国外对应元件的型号 3.用EWB或Multisim软件进行电路仿真,打印仿真原理图和仿真结果 4.用A3图纸绘出系统电路原理图 (二)其他要求 1.必须独立完成设计课题 2.合理选用元器件 3.要求有目录、参考资料、结语 4.论文页数不少于20页 二.设计的作用、目的 (一)设计的作用 低频信号发生器是电子测量中不可缺少的设备之一。完成一个低频信号发生器的设计,可以达到对模拟电路知识较全面的运用和掌握。 (二)设计的目的 电子电路设计及制作课程设计是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的: 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力; 2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

三.设计的具体实现 (一)系统概述 根据课题任务,所要设计的低频信号发生器由三大部分组成: ⑴正弦信号发生部分 ⑵信号输出部分 ⑶稳幅部分 其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。 1.正弦信号发生部分可以有以下实现方案: ⑴以晶体管(晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。开关速度可以非常快) 为核心元件,加RC(文氏桥或移相式)或变压器反LC(馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。

数控高精度低频正弦信号发生器

高精度数控低频正弦信号发生器 任务书 一、任务 设计一款基于AT89C51单片机和锁相技术的高精度数控低频正弦信号发生器。 二、设计要求 1、基本要求 ⑴采用DDFS(直接数字频率合成)和锁相技术, 实现1Hz~1KHz 变化的正弦信号。 ⑵通过面板键盘控制输出频率,频率最小步进1Hz。 ⑶输出双极性。 ⑷用LED数码管实时显示波形的相关参数。 ⑸写出详细的设计报告,给出全部电路和源程序。 2、发挥部分 ⑴不改变硬件设计,将上限频率扩展到10KHz。 ⑵不改变硬件设计,扩展实现三角波和方波信号。 ⑶可通过PC机上的“虚拟键盘”,实现频率等参数的控制。 ⑷实现对幅度的控制。

高精度数控低频正弦信号发生器 函数信号发生器作为一种常用的信号源,广泛应用于电子电路、自动控制和科学研究等领域[7]。它是一种为电子测量和计量工作提供符合严格技术要求的电信号设备,因此是电子测试系统的重要部件,是决定电子测试系统性能的关键设备。它与示波器、电压表、频率计等仪器一样是最普通、最基本的,也是得到最广泛应用的电子仪器之一。 1总体方案论证与设计 数字式函数信号发生器的实现方案很多,主要有如下几种: 方案一:采用微处理器和数模转换器直接合成的数字式函数信号发生器。这种信号发生器具有价格低,在低频X围内可靠性好,体积小,功耗低,使用方便等特点,它输出的频率是由微处理器向数模转换输出数据的频率和信号在一个周期内的采样点数(N)来决定的,因此受单片机的时钟频率的限制很大,如果单片机的晶振取12MHz,则单片机的工作频率为1MHz,若在一个周期内输出360个数据,则输出信号的频率理论上最高只能达到2777Hz。实际上单片机完成一次数据访问并输出到D/A电路,至少要5个机器周期,因此实际输出信号的频率只有500Hz 左右。即使增大晶振频率,减小一个周期内输出数据个数,在稍高的频率下输出的波形频率误差也是很大的,而且计算烦琐,软件编程麻烦,控制不方便。 方案二:利用单片机与精密函数发生器构成的程控信号发生器。这种信号发生器能够克服常规信号发生器的缺陷,保证在某个信号的频带内正弦波的失真度小于0.5%。它的输出信号频率调整和幅值调整都由单片机完成。但是,由于数模转换器的非线性误差和函数发生器本身的非线性误差,这种信号发生器输出信号的频率与理论值会有一定的偏差。 方案三:利用DSP处理器,根据幅值,频率参数,计算产生高精度的信号所需数据表,经数模转换后输出,形成需要的信号波形。这种信号发生器可实现程控调幅,调频。但这种信号发生器输出频率不能连续可调,计算烦琐,控制也不便。 方案四:基于单片机,锁相环,可编程分频、相位累加、存储器波形存储以及D/A转换器等组成的数字式函数信号发生器。输出的频率的大小由锁相环和可编程计数器来控制,最终由地址发生器对存储器中的波形数据硬件扫描,单片机提供要输出的波形数据给存储器。这种方案电路简洁,不受单片机的时钟频率的限制,输出信号精度高,频率“连续”,稳定性好,可靠性高,功耗低,调频,调幅都很方便,而且可简化软件设计,实现模块化设计的要求。 综合考虑,方案四各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。其系统组成原理框图如图1所示。

低频正弦信号发生器

任务书 一、毕业设计(论文)题目:低频正弦信号发生器 二、毕业设计(论文)工作规定进行的日期:年月日起至年月日止 三、毕业设计(论文)进行地点: 11栋506 四、任务书的内容: 目的: 任务:低频正弦信号发生器 工作日程安排: 设计(论文)要求: 1、基本要求 (1)实现1Hz-1KHz变化的正弦信号。 (2)通过面板键盘控制输出频率,频率最小步进1Hz。 (3)输出双极性。 (4)用LED数码管实时显示波形的相关参数。 2、发挥部分 (1)不改变硬件设计,将上限频率扩展到10KHz。 (2)不改变硬件设计,扩展实现三角波和方波信号。 (3)可通过PC机上的“虚拟键盘”,实现频率等参数的控制。 (4)实现对幅度的控制。

主要参考文献: 1、周雪模拟电子技术(修订版)西安电子科技大学出版 2、杨志中数字电子技术(第二版)高等教育出版社 3、张澄高频电子电路人民邮电出版社 4、张志良单片机原理与控制技术(第二版)机械工业出版社 5、张大明单片微机控制应用技术西安电子科技大学出版社 学生开始执行任务书日期 200 年月日指导教师签名: 年月日学生送交毕业设计(论文)日期: 200 年月日教研室主任签名: 年月日 学生签名: 年月日

目录 1方案论证.................................................. 错误!未定义书签。 1.1信号发生.......................................................................................... 错误!未定义书签。 1.1.1方案一.......................................................................................... 错误!未定义书签。 1.1.2方案二.......................................................................................... 错误!未定义书签。 1.2模拟频率调制.................................................................................. 错误!未定义书签。 1.2.1方案一.......................................................................................... 错误!未定义书签。 1.2.2方案二.......................................................................................... 错误!未定义书签。2系统模块硬件电路分析. (4) 2.1 CPU控制模块 (4) 2.1.1 CPU选择 (4) 2.1.2简单的小系统控制板介绍 (5) 2.2 16*2字符型带背光液晶显示模块 (8) 2.3 驱动电路的模块............................................................................. 错误!未定义书签。 2.3.1行驱动管74HC4953..................................................................... 错误!未定义书签。 2.3.2译码器.......................................................................................... 错误!未定义书签。 2.3.3列驱动.......................................................................................... 错误!未定义书签。 2.3.4总线驱动器.................................................................................. 错误!未定义书签。3本系统LED显示屏信号的了解................................ 错误!未定义书签。 3.1 CLK时钟信号.................................................................................. 错误!未定义书签。 3.2 STB锁存信号.................................................................................. 错误!未定义书签。 3.3 EN使能信号.................................................................................... 错误!未定义书签。 3.4数据信号.......................................................................................... 错误!未定义书签。 3.5 ABCD行信号.................................................................................... 错误!未定义书签。4电路与程序设计............................................ 错误!未定义书签。 4.1硬件电路的设计.............................................................................. 错误!未定义书签。 4.1.1系统总体框图(图7)............................................................... 错误!未定义书签。 4.2程序设计思路框图(图8)........................................................... 错误!未定义书签。5调试过程 (13) 6 设计总结 (14) 附件1 电路图 (15) 附件1.1主控板:AT89S52单片机原理图(图9) (15) 附件1.2主控板:AT89S52单片机PCB图(图10) (15) 附件1.3点阵显示屏原理图................................................................. 错误!未定义书签。 附件1.4 4x4键盘原理图(图12) (15) 附件1.5 4x4键盘PCB图(图13) (17) 附件2 源程序............................................... 错误!未定义书签。 附件2.1主程序.......................................... 错误!未定义书签。 附件2.2点阵显示程序.................................... 错误!未定义书签。 附件2.3按钮扫描程序.................................... 错误!未定义书签。

基于单片机的低频信号发生器设计

龙源期刊网 https://www.360docs.net/doc/dd726939.html, 基于单片机的低频信号发生器设计 作者:任小青王晓娟田芳 来源:《现代电子技术》2014年第16期 摘要:主要介绍以AT89C51单片机为核心部件的低频信号发生器的设计方法及工作原理。系统采用单片机扩展外部存储器和DAC接口技术,简化了仪器硬件设计。通过波形选择电路读取波形信号经离散化处理之后的波代码,并通过D/ A 转换,还原成所需要的波形。通过改变存储器输出波代码的速度来调节输出信号的频率,改变放大器的放大倍数来调节输出信号的幅值。此外还讨论了波形离散化处理方法及数据采样点数与存储容量的关系,并给出了 系统结构图和软件框图。 关键词:低频信号;数据离散化;幅值;典型信号 中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)16?0014?04 Design on low?frequency signal generator based on SCM REN Xiao?qing1, WANG Xiao?juan1, TAN Fang2 (1. School of Mechanical Engineering, Qinghai University, Xining 810016, China; 2. Modern Education Technology Center, Qinghai University, Xining 810016, China) Abstract: The design approach and working principle of a low?frequency signal generator based on AT89C51 are introduced. The hardware design was simplified by using external memory extended with SCM and DAC interface technology. The wave code after discretization processing of waveform signal is read out though a waveform selection circuit, and reverted to the needed waveform by the D/A converter. The output signal frequency is adjusted by changing the wave code output speed of the memory. The amplitude is adjusted by changing the magnification of the amplifier. The waveform discretization processing method, and the relation between data sampling number and storage capacity are discussed. The system structure chart and software flow chart are given. Keywords: low?frequency signal; data discretization; amplitude; typical signal 0 引言 在工业测量控制系统的开发过程中,常需要采用信号发生器为控制系统提供输入信号来 模拟实际输入,并根据输出的频率响应特性来对系统进行调校。该系统不但能提供多种波形信号,而且信号的频率和幅值的大小也很容易控制。用它来模拟多种工况下的真实输入信号, 以达到降低开发成本、提高项目开发效率的目的。本文介绍了以AT89C51单片机为控制核心

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

基于DDS的基本原理设计的低频信号发生器

摘要 本课程设计是基于DDS的基本原理设计的低频信号发生器。以AT89C51单片机为核心。通过R-2R网络作为数模转换器件,将已经生成的数字信号进行数模转换,最终实现模拟信号的输出。本次课程设计使用了KILE软件对程序进行编译和PROTEUS软件对实验电路和结果进行仿真,波形的产生和相应的频率由软件编程来实现;波形类型选择和频率大小由按键来控制输出的信号经过滤波放大最后由输出终端输出。这个信号发生器最终可以产生正弦波、三角波、方波、锯齿波。 关键词:信号发生器;AT89C51;R-2R;DDS

目录 1引言 (3) 1.1设计目的 (3) 1.2设计要求 (3) 2 设计方案和原理 (3) 2.1设计原理 (3) 2.2主程序设计 (4) 2.3设计思想 (5) 3 硬件设计 (5) 3.1硬件原理框图 (5) 3.2资源分配 (6) 3.3振荡器特性 (6) 3.4芯片擦除 (6) 3.5 R-2R网络 (6) 3.6电路结构及原理 (7) 4 软件设计 (7) 4.1正弦波程序设计 (7) 4.2三角波程序设计 (8) 4.3方波程序设计 (8) 4.4锯齿波程序设计 (8) 5 仿真及调试 (9) 5.1 R-2R网络的仿真 (9) 5.2仿真结果 (9) 6 总结 (10) 7 参考文献 (11) 附录1 在PROTEUS下面的仿真图 (11) 附录2源程序 (11)

基于51单片机的函数信号发生器 1引言 1.1设计目的 波形发生器是信号源的一种,主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和试验测试处理中,它的应用非常广泛。它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 1.2设计要求 本文是做基于R-2R网络的低频信号发生器的设计,将采用编程的方法来实现三角波、锯齿波、矩形波、正弦波的发生。根据设计的要求,对各种波形的频率和幅度进行程序的编写,并将所写程序装入单片机的程序存储器中。在程序运行中,当接收到来自外界的命令,需要输出某种波形时再调用相应的中断服务子程序和波形发生程序,经电路的数/模转换器和运算放大器处理后,从信号发生器的输出端口输出。 制作低频信号发生器可以用八位的R-2R网络作为DA转换器来实现,将输出的模拟量通过低通滤波器,即可得到频率稳定、失真度小的波形。 2 设计方案和原理 2.1设计原理 数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置键盘及其接口、数模转换及波形输出等部分,即可构成所需的波形发生器,其信号发生器构成原理框图如图1。 图1 信号发生器原理框图 89C51是整个波形发生器的核心部分,通过程序的编写和执行,产生各种各样

低频信号发生器电路图制作以及调试

低频信号发生器电路图制作以及调试 1 画原理图 本设计中要求用Protel软件完成原理图以及PCB板。我用的是Protel2004 版本。电路原理图的设计是印制电路板设计中的第一步,也是非常重要的一步。电路原理图设计得好坏将直接影响到后面的工作。首先,原理图的正确性是最基本的要求,因为在一个错误的基础上所进行的工作是没有意义的;其次,原理图应该布局合理,这样不仅可以尽量避免出错,也便于读图、便于查找和纠正错误;最后,在满足正确性和布局合理的前提下应力求原理图的美观。 电路原理图的设计过程可分为以下几个步骤: 1、设置电路图纸参数及相关信息根据电路图的复杂程度设置图纸的格式、尺寸、方向等参数以及与设计有关的信息,为以后的设计工作建立一个合适的工作平面。 2、装入所需要的元件库将所需的元件库装入设计系统中,以便从中查找和选定所需的元器件。 3、设置元件将选定的元件放置到已建立好的工作平面上,并对元件在工作平面上的位置进行调整,对元件的序号、封装形式、显示状态等进行定义和设置,以便为下一步的布线工作打好基础。 4、电路图布线利用Protel 2004所提供的各种工具、命令进行画图工作,将事先放置好的元器件用具有电气意义的导线、网络标号等连接起来,布线结束后,一张完整的电路原理图基本完成。 5、调整、检查和修改利用Prote2004所提供的各种工具对前面所绘制的原理图做进一步的调整和修改。 6、补充完善对原理图做一些相应的说明、标注和修饰,增加可读性和可观性。 2 硬件单元电路调试 对于本波形法发生器,其硬件电路的调试最重要的地方在于板子制作的前期一

定要保证其质量,尽量减少因虚焊等因不细心造成的故障。将元件焊接完毕后,为了方便调试,采用分块调试的方法。电路由多个模块组成,D/A 转换 电路、显示电路、电源电路、按键电路、复位电路。因为这次在焊点的时候比较细心,所以焊得很结实,检验的时候,未发现有虚焊的问题。 5.2.1 焊电路 设计好电路图,开始焊电路板,刚开始觉得线路很简单,所以电路排版没花心思,真正开始焊的时候才发现相当麻烦,导线用去很多,看起来有点乱。由于元气件的管脚图并不跟原理图中一样,所以必须先查阅资料弄明白各个器件的封装,像LED先用万用表检测是共阴还是共阳,每个管脚对应哪一段也可以检测。还有四脚的按键也要测出哪两脚是相通的等等。 5.2.2 硬件电路的总体检查 电路板焊完之后,应该首先认真细致地检查一遍,确认无误后方能通电。通电前检查,主要检查以下内容: 第一,根据硬件电气原理图和装配图仔细检查线路的正确性,并检查元器件安装是否正确。尤其注意的是芯片、二极管和开关管的极性、电容器的耐压和极性、电阻的阻值和功率是否与设计图纸相符,重点检查系统总线间或总线与其它信号线间是否存在短路;第二,检查焊接点是否牢固,特别要仔细检查有无漏焊和错焊;对于靠得很近的相邻焊点,要注意检查金属毛刺和是否短路,必要时可用欧姆表进行测量;第三,在不加电的情况下,插上所有元器件,为联机调试作准备。确保电源和地无故障之后,再通电,然后检查各电源+5V、+12V 和-12V电压数值的正确性。排除可能出现的故障后,再进行各单元电路调试。 5.2.3 单元电路调试 1 、单片机最小系统调试 按照前面设计的单片机最小系统和电源,焊接并插上相应的元器件,连好线,检查正确无误后,接上电源,用示波器测试单片机的时钟波形。时钟波形和频率正确,进行下一步检查。 切断电源,空出单片机AT89S51的位置,并在此位置上插入仿真器的40芯

相关文档
最新文档