复变函数第二章习题

复变函数第二章习题
复变函数第二章习题

第二章 复习题

一、单项选择题:

1.函数()w f z =在点0z 则称()f z 在点0z 解析。 A )连续 B )可导 C )可微 D )某一邻域内可微 2.函数()(,)(,)f z u x y iv x y =+在点(,)x y 的C R -条件指:

A )

,u v u v x y y x ????=-=-???? B ),u v u v

x y y x ????=-=

???? C )

,v u v u x y y x ????=-=???? D ),v u v u

x y y x

????==-????

3.函数3

w z =把Z 平面上单位圆在第二象限弧段变成W 平面上单位圆的 象限弧段. A )第一、二、三 B )第二、三、四 C )第三、四、一 D )第四、一、二 4.函数()(,)(,)f z u x y iv x y =+在区域D 内有定义,则(1)(,)u x y ,(,)v x y 在区域D 满足C R -条件.(2),,,x y x y u u v v 在D 连续,是()f z 在区域D 可微的 条件 A )必要非充分 B )充分非必要 C )充分必要 D )以上都不对 5.指数函数z

e ω=的基本周期为

A )2π

B )2i π

C )i π

D )π

6.设12,22

i

z i z ==

+,则1ln z 2z (ln z 表示主值) A )〈 B 〉= C ) 〉 D )无法比较大小

7.cos(2i A )≤1 B )=2 C )〈2 D 〉2 8.设z x iy =+,则2

z e =

A )2

z

e

B )22

x y e

- C )22

x y e

- D 22

x y e

-

9.2

()f z x iy =-,直线1

:2

L x =-

,则()f z 在 A )Z 平面上解析 B )L 上可微 C )L 上可析 D )Z 平面上可微 10.以0,1,∞为支点的函数有

A B C D

11.设()f z =

0C 为单位圆,则0arg ()C f z ?=

A )π

B )2π

C )

43π D )23

π 12.函数z

w e =把Z 平面上实轴变换成W 平面上 A )负实轴 B )正实轴 C )实轴 D )单位圆 13.一般幂函数i

w z =是 函数

A )单值

B )有限的多值

C )无限多值

D )以上都不对

14.若()(),,,u x y v x y 在点(),x y 满足C R -条件.则()f z u iv =+在点(),x y A )可微 B )不可微 C )不一定可微 D )解析 15.复数i

z i =,其幅角主值arg z = A )2

π

-

B )

2

π

C )π

D )0 二、多项选择题:

1. 函数()f z z -

=在Z 平面上处处 A )不连续 B )连续 C )不可微 D )可微 E )解析 2. 函数()()(),,f z u x y iv x y =+在点z 可微,则()f z '= A )

u v

i x x

??+?? B )u u i x y ??-?? C )u v i x y ??+?? D )v v i y x ??+?? E )v u i y y ??-??

3. 在Z 平面上任何一点不解析的函数有 A )2

()f z z

= B )()Re f z z = C )22

()f z xy ix y =+

D )2

2

x iy + E )3

3

23x iy + 4. 方程ln 2

i

z π=

的解为

A )z i =-

B )z i =

C )2

i z e

π-

=

D )2i

z e π= E )z e π

=

5. 复数3i

z i =的幅角Argz 可以是 A )0 B )2

π C )2π

- D )2π E )2π-

二、填空题:

1若()f z 在点0z 则称0z 为()f z 的奇点。 2.函数()()(),,f z u x y iv x y =+在区域D 内解析的充要条件是:(1)

(2) 3.对任意复数z ,若z w

z e e +=,则必有w =

4.根式函数w =

=

5具有这种性质的点:使当 则称此点为多值函数的支点。

6.根式函数w =

只以 及 为支点,以 为支割线,

且在 能分出n 个单值解析分支. 7.()34Ln i --= 8.对一般幂函数a

w z =,

(1)当 a

z 是z 的单值函数

(2)当 a

z 取 个不同的值 (3)当 a

z 是无限多值的

9.函数()w f z ==

,其中12m z z z 互不相同,且

12m a a a N +++=

(1)当且仅当 时,k z 是()f z 的支点 (2)当且仅当 时,∞是()f z 的支点

10.由已给单值解析分支的初值1()f z ,计算终值2()f z ,即2()f z = 其中

arg ()c f z ?为

四、计算题: 1.()()()cos sin cos sin x

x f z e

x y y y ie y y x y =-++是否在Z 平面上解析?

如果是,求其导函数。

2.设z x iy =+,试求1Re z e ?? ???

3.试求函数()cos 1i -之值

4.试证:在将Z 平面适当割开后,函数()f z =求出在点2z =取负值的那个分支在z i =的值 5. 方程:12tgz i =+

五、证明题 综合题:

1. 如果()f z 在区域D 内解析,试求()if z 在区域D 内也解析

2. 若函数()f z 与()f z 在区域D 内都解析,试证:()f z 在区域D 内必为常数

3. 设()21z

f z z =-,试证:()()Re 0f z z f z ??'>????

()1z <

4. 设()()(),,f z u r iv r θθ=+,i z re θ

=,若(),u r θ,(),v r θ在点(),r θ是可微的,且

满足极坐标的C R -条件:

()11,0u v v u r r r r r θθ

????==>????,则()f z 在点z 可微且()r u v f z i z r r ????

'=+ ?????

5. 设()

333322,0(),00x y i x y z f z x y

z ?-++≠?=?+=?

?

试证:()f z 在原点满足C R -条件,但却不可微 6. 试证:

()f z =

0Re 1≤≤的Z 平面上能分出两个单值解析分支,

并求出割线0Re 1≤≤上岸取正值的那一支在1z =-的值

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数经典例题

第一章例题 例1.1试问函数二-把」平面上的下列曲线分别变成 ].;平面上的何种曲线? (1) 以原点为心,2为半径,在第一象项里的圆弧; (2) 倾角 二的直线; (3) 双曲线''■='。 解 设Z = x + =r(cosfi + ι SiIl θ)7 = y + jv = Λ(cos

0 特别,取 - ,则由上面的不等式得 ∣∕(z)∣>l∕(z o )∣-^ = M>0 因此, f ② 在匚邻域 内就恒不为0。 例1.3 设 /⑵ 4C ri ) (3≠o) 试证一 在原点无极限,从而在原点不连续。

证令变点匚—…:弓仁门 1 F ,则 而沿第一象限的平分角线 故「匚在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1 北)= 匚在二平面上处处不可微 证易知该函数在二平面上处处连续。但 Δ/ _ z+?z -z _ ?z ?z ?z ?z 零时,其极限为一1。故匚处处不可微。 证因UaJ )二倆,呛J ) = C I 。故 但 /(?) - /(0) _ λj?j ?z ? + i?y 从而 (沿正实轴。一 H ) 当I: 「时,极限不存在。因 二取实数趋于O 时,起极限为1 ,二取纯虚数而趋于 例2.2 在了 — 1满足定理 2.1的条件,但在_ I.不可微。 M (ΔJ 7O)-?(O,O) = 0 = v∕0,0) (O f O) = Ii(Q i Ly)-Ii(Ofi) Ay

复变函数的积分习题二答案

复变函数的积分习题二答案 ----------------------- Page 1----------------------- 习题二解答1.利用导数定义推出: 1 1 n n?1 ?? 1)( )' ,( ) 2 ' z nz n是正整数;)??? 2 。 z z ?? n (z +?z)n ?zn n?1 2 n?2 n?1 n?1 证 1 )(z )' lim lim(nz +C z ?z +?z ) nz n z z ?→0 ?z ?→0

1 1 ? 1 1 1 ??z +?z z 2 )??' lim ?lim =? 2 z ?→z 0 ?z ?→z 0 z(z +?z) z ?? 2.下列函数何处可导?何处解析? 2 3 3 (1)f (z ) x ?i y (2 )f (z) 2x =+3y i () 2 2 (3)f z xy +ix y (4 )f (z) sin xchy +i cosxshy ?u ?u ?v ?v 解(1)由于2x, 0, 0, ?1 ?x ?y ?x ?y

1 ( ) 在z 平面上处处连续,且当且仅当x ? 时,u,v 才满足C-R 条件,故f z u +i v x ?i y 仅在 2 1 直线x ? 上可导,在z 平面上处处不解析。 2 ?u 2 ?u ?v ?v 2 (2 )由于6x ,0 ,0 , 9y ?x ?y ?x ?y 在z 平面上处处连续,且当且仅当2 2 2x 3y ,即2x ± 3y 0 时,u,v 才满足C-R 条件,故

3 3 f z u =+iv 2x =+3y i 仅在直线2x ±3y 0 上可导,在z 平面上处处不解析。 ( ) ?u 2 ?u ?v ?v 2 (3)由于y ,2xy ,2xy ,x ?x ?y ?x ?y 在z 平面上处处连续,且当且仅当z=0 时,u,v 才满足C-R 条件,故() 2 2 f z xy +i x y 仅在点z 0 处可导,在z 平面处处不解析。 ?u ?u ?v ?v (4 )由于cosxchy ,sin xshy , =?sin xshy ,cosxchy ?x ?y ?x

复变函数第二章标准答案

复变函数第二章答案

————————————————————————————————作者:————————————————————————————————日期:

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数课后习题答案全

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =?。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件 ()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。 (8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数习题集(1-4)

第一章 复数与复变函数 一、选择题: 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 32 1+ - (D )i 2 12 3+ - 3.复数z -3(cos -isin )5 5 π π =的三角表示式为( ) A .44-3(cos isin )5 5 ππ+ B . 443(cos isin )55ππ- C . 443(cos isin )5 5 ππ+ D .44-3(cos isin )5 5 ππ- 4.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 二、填空题 1.设) 2)(3()3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π=-=i z z ,则=z 4.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线. 5.=+++→)21(lim 4 2 1z z i z 三.求方程z 3+8=0的所有复根. 第二章 解析函数 一、选择题:

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 Θx>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案 第1章 复数与复变函数 一、单项选择题 1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C ) A (ac+bd, a ) B (ac-bd, b) C (ac-bd, ac+bd ) D (ac+bd, bc-ad) 2、若R>0,则N (∞,R )={ z :(D )} A |z|R 3、若z=x+iy, 则y=(D) A B C D 4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2 二、填空题 1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy ) 2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} ) 3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。 4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充 2z z +2z z -i z z 2+i z z 2-)1)(4() 1)(4(i i i i +--++∞ →n lim +∞ →n lim

分必要条件是 x n =x 0,且 y n =y 0。 三、计算题 1、求复数-1-i 的实部、虚部、模与主辐角。 解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|= 2、写出复数-i 的三角式。 解: 3、写出复数 的代数式。 解: 4、求根式 的值。 解: ππ4 5 |11| arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限Θπ π23 sin 23cos i i +=-i i i i i i i i i i i i i i i 2 12312 1 21)1()1)(1()1(11--=--+-=?-+ +-+= -+ -i i i i -+-113 27 -) 3 sin 3(cos 3327)27arg(3 273 03 π ππ π i e W z i +==-=∴=-=? 的三次根的值为Θ

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数D卷答案

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

相关文档
最新文档