尖晶石

尖晶石
尖晶石

尖晶石是一类矿物的总称,具有通式XY2O4,为等轴晶系,氧原子为立方紧密堆积,X与Y占晶格中的部分八面体和四面体空隙反尖晶石与尖晶石结构类同,但A,B离子所处的位置和配位关系完全相反,故名。这类结构中O2-离子与尖晶石结构中情况相同,呈立方紧密堆积,A2+离子和半数B3+离子处于八面体空隙中,而余下的一半B3+离子处于四面体空隙中。整个结构可写作,式中IV和VI为配位数

尖晶石为八面体形态、硬度大、尖晶石律双晶为特征。相似矿物锆石密度较大,一轴晶;石榴子石硬度小于尖晶石,常产于镁质灰岩与花岗岩类的接触变质带,与镁橄榄石、透辉石等共生,镁尖晶石是镁质耐火材料的主要结合相,也是尖晶石质耐火材料的主要物相。透明无暇、色泽美观者可作宝石。

简介尖晶石尖晶石为八面体形态、硬度大、尖晶石律双晶为特征。相似矿物锆石密度较大,一轴晶;石榴子石硬度小于尖晶石,常产于镁质灰岩与花岗岩类的接触变质带,与镁橄榄石、透辉石等共生。基性岩、超基性岩中的尖晶石,由岩浆直接结晶形成,与辉石、橄榄石、磁铁矿、铬铁矿及铂族矿物等伴生。在富铝贫硅的泥质岩石的热变质

带亦可形成尖晶石,常与堇青石或斜方辉石共生。镁尖晶石是镁质耐火材料的主要结合相,也是尖晶石质耐火材料的主要物相。透明无暇、色泽美观者可作宝石。

基本概述镁铝尖晶石尖晶石是镁铝氧化物组成的矿物,因为含有镁、铁、锌、锰等等元素,它们可分为很多种,如铝尖晶石、铁尖晶石、锌尖晶石、锰尖晶石、铬尖晶石等。由于含有不同的元素,不同的尖晶石可以有不同的颜色,如镁尖晶石在红、蓝、绿、褐或无色之间;锌尖晶石则为暗绿色;铁尖晶石为黑色等等。尖晶石呈坚硬的玻璃状八面体或颗粒和块体。它们出现在火成岩、花岗伟晶岩和变质石灰岩中。有些透明且颜色漂亮的尖晶石可作为宝石,有些作为含铁的磁性材料。用人工的方法已经可以造出200多个尖晶石品种。

尖晶石是一族矿物,在自然界中形成于熔融的岩浆侵入到不纯的灰岩或白云岩中经接触变质作用形成的。有些出现在富铝的基性岩浆岩中。宝石级尖晶石则主要是指镁铝尖晶石,是一种镁铝氧化物。晶体形态为八面体及八面体与菱形十二面体的聚形。颜色丰富多彩,有无色、粉红色、红色、紫红色、浅紫色、蓝紫色、蓝色、黄色、褐色等。尖晶石的品种是依据颜色而划分的,有红、橘红、蓝紫、蓝色尖晶石等。玻璃光泽,透明。贝壳状断口。淡红色和红色尖晶石在长、短波紫外光下发红色荧光。

历史上尖晶石的著名产地主要是缅甸、斯里兰卡、柬埔寨、泰国及中国的河南、河北、福建、新疆等。原苏联、非洲也有发现。特别是斯兰卡。

结构组成尖晶石砖化化学成分为MgAl2O4、晶体属等轴晶系的氧化物矿物。尖晶石的晶体结构中,折光率:1.715-1.830,硬度:8,密度:3.58-4.62克/立方厘米。氧离子成立方紧密堆积,三价阳离子占据六次配位的八面体空隙,二价阳离子占据四次配位的四面体空隙。这种结构称为正常尖晶石型结构。如果二价阳离子和半数三价阳离子占据八面体空隙,另半数三价阳离子占据四面体空隙,则构成所谓反尖晶石型结构,或称倒置尖晶石型结构。磁铁矿(Fe2+FeO4)的结构即属此种类型。尖晶石化学成分中类质同象替代很普遍,常可含铁、锌、铬、锰等。八面体晶形很常见;还常以八面体面为双晶面和接合面构成双晶,称为尖晶石律双晶。无色,含色素离子时可呈红、蓝、绿、褐、黄等色,玻璃光泽。尖晶石由接触变质作用形成,或由岩浆结晶而产于基性、超基性火成岩中。透明而色泽艳丽的尖晶石是高档宝石材料。

等轴晶系,a0=0.8103nm(合成镁尖晶石);Z=8。基本结构是氧按ABC顺序在⊥(111)方向堆积。四面体与八面体层相间,四面体与八面体数之比为1:2。正尖晶石结构,结构通式XY2O4,X为二价阳离子,Y为三价阳离子。其中X占据四面体位置,Y占据八面体位置。若结构中所有的X阳离子和一半的Y阳离子占据八面体位置,另一半Y阳离子占据四面体位置,则称反尖晶石结构,结构通式Y[XY]O4。大多数天然尖晶石都具有介于这两种极端间的阳离子分布。六八面体晶类,Oh-m3m(3L44L36L29PC)。常呈八面体晶形,有时与菱形十二面体和立方体成聚形。常依(111)为双晶面和接合面构成尖晶石律双

晶。

尖晶石晶胞可以划分成8个小的立方单位,分别由4个A型和4个B型小单位拼在一起。

“尖晶石结构可看作氧离子形成立方最紧密堆积,再由X离子占据64个四面体空隙的1/8,即8个A位,Y离子占据32个八面体空隙的1/2,即16个B位。由此得出尖晶石单位晶胞的通式为X8Y16O32,简约后常写作XY2O4〔1~5〕。”

上面一段摘自百度百科。

“X离子占据64个四面体空隙的1/8”,哪来64个四面体空隙?1/8太笼统,到底是那些?“Y离子占据32个八面体空隙的1/2”,1/2是指那些?

如果能给出分数坐标和图片就太好了!

上面给出的图片是我从百度百科上找的,(b)挺好,可Li画到晶胞外去了?是图画错了,还是(b)只是晶胞的一部分?

天然镁铝尖晶石(MgAl2O4)所具有的一种独特的晶体结构被称为尖晶石型结构。该结构属立方晶系,面心立方点阵。尖晶石结构可看作氧离子形成立方最紧密堆积,再由X离子占据64个四面体空隙的1/8,即8个A位,Y离子占据32个八面体空隙的1/2,即16个B位。由此得出尖晶石单位晶胞的通式为X8Y16O32,简约后常写作XY2O4〔1~5〕。

大多数尖晶石结构化合物,A、B位离子化合价比为2:3。在现有百余种尖晶石结构化合物中,除2:3外电价比最常见的是4:2,其结构多为反尖晶石结构,如TiMg2O4,TiZn2O4,TiMn2O4。反型结构可看作8个A位离子与16个B位离子中的8个进行相互换位,即8个Y2+离子进入四面体间隙(A位),而剩下8个Y2+离子与8个X4+离子复合占据正常情况下B位的八面体间隙。除正反两种极端情况外,还可能有混合型中间状态分布。这样可用反分布率α定量表示X离子占八面体上的分数,从而将各种尖晶石结构通式扩充如下:

正型:(X)四面体〔Y2〕八面体O4,α=0;

反型:(Y)四面体〔X,Y〕八面体O4,α=1;

混合型:(Yα,X1-α)四面体〔Xα,Y2-α〕八面体O4,

0<α<1。

正与反型的属性及反位的程度对于化合物材料的性能有较大影响。对于常见的2∶3和4∶2电价比的尖晶石结构,似乎前者趋正型,后者趋反型。但纵观全部物种,不仅有相当数量趋于混合型,且范围程度不能确定,而且还有若干品种完全不遵从这一规律。影响这种分布的因素极其复杂,有离子键的静电能、离子半径、共价键的空间分布、晶体场等诸多方面。根据经验数据可将大部分二、三价离子的优先顺序排出:Zn2+,Cd2+,GA2+,In3+,Mn2+,FE3+,Mn3+,FE2+,Mg2+,Cu2+,CO2+,Ti3+,Ni2+,CR3+。越往前倾向于四面体填隙,反之倾向于八面体填隙。阳离子的分布对尖晶石型材料的性能也有重大影响〔1,4〕。

镍基高温合金材料研究进展汇总-共7页

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

尖晶石型的结构

尖晶石型(AB2O4)结构 AB2O4型化合物中最重要一种结构就是尖晶石,属于尖晶石结构的化合物有一百多种,一般A是二价金属离子Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Zn2+、Cd2+等,B是三价金属离子Al3+、Cr3+、Ga3+、Fe3+、Co3+等。正离子A、B总电价为8,氧离子作立方密堆,A、B则充填在氧离子间隙中。 以MA尖晶石(MgO·Al2O3)为例加以分析。 图1.37 尖晶石型(AB2O4)结构 1)鲍林规则 (1),0.414~0.732,CN+=6,,0.414~0.732,CN+应该为6,但由于正离子的相互影响,CN+=4,整个结构才稳定。即Al-O→[AlO6]八面体,Al3+填充在O2-形成的八面体中。Mg-O→[MgO4]由面体,Mg2+填充在O2-形成的四面体中。 (2), 即:一个O2-同时与三个Al3+和一个Mg2+相连,或三个[AlO6]八面体与一个[MgO4]由面体共顶相连。 (3)八面体间可共棱共面,实际每二个[AlO6]八面体间共棱相 连,四面体间不共顶。 (4)低配位数的[MgO4]之间排后斥力较大,尽可能互不结合,而高配位的[AlO6]可以互相连接,在尖晶石结构中,每一个O2-共用于一个[MgO4]和三个[AlO6]之间, (5)理想的尖晶石晶体中,除Mg2+、Al3+外,不再含其它正离子,Mg-O总是形成[MgO4]四面体,Al-O总是形成[AlO6]八面体,每一个O2-周围总是一个

Mg2+和Al3+。 2)结构特点 一个晶胞可分成8个小立方体,共面的小立方体是不同类型的,(即质点排列情况不一样),而共棱的小立方体是相同类型(质点排列情况一样),换句话说尖晶石的晶胞是由8个小块拼合而成,分两种情况,A块,B块,A块主要显示Mg2+占据四面体空隙,B块主要显示Al3+占据八面体空隙。 A块离子排列情况: 4个O2-位于顶角和面心处,即O2-作面心立方堆积,3/2个Al3+位于6条边中心,即处于O2-堆积体的八面体空隙中,2个Mg2+在一条对角线方向,与三个面心处和一个顶角的O2-相连,即处于O2-堆积体的四面体空隙中。 B块离子堆积情况: 4个O2-位于面心和顶角处与A块一样,5/2个Al3+位于体心和六条边中心,在O2-八面体空隙中B块中没有Mg2+。 在一个尖晶石晶胞中,共有32个O2-,16个Al3+,8个Mg2+,含有8个分子MA。 32个O2-作立方密堆时,可形成64个四面体空隙,32个八面体空隙,8个Mg2+填充1/8四面体空隙,,6个Al3+填充1/2八面体空隙,结构中存在较多空位。 如果16个Al3+中有8个Al3+占据8个四面体空隙,另8个Al3+与8个Mg2+占据16个八面体空隙,形成的结构称反尖晶石结构,通式B(AB)O4。 如镁铁尖晶石Fe3+(Mg2+Fe3+)O4—MgO·Fe2O3 磁铁矿Fe3+( Fe 2+Fe3+)O4—FeO Fe2O3,Fe3O4 3)、尖晶石特点: Al-O、Mg-O均形成较强离子键,结构牢固,硬度大(8),熔点高(2135℃),比重大(3.55),化学性质稳定,无解理,是重要的耐火材料。 (七)、氧化物结构的一般规律 各种氧化物结构最显著的特点是与O2-的密堆有密切关系,大多数简单的氧化物结构,可以在O2-近乎密堆的基础上形成,而正离子处于合适的间隙位置上,抓住这个基本点,不同结构的相似性就明显了,弄清立方密堆和六方密及其形成的四面体,八面体空隙分布,分析方法:

尖晶石

尖晶石材料在催化氧化方面的应用 简介:尖晶石是镁铝氧化物组成的矿物,因为含有镁、铁、锌、锰等等元素,它们可分为很多种。尖晶石呈坚硬的玻璃状八面体或颗粒和块体。它们出现在火成岩、花岗伟晶岩和变质石灰岩中。尖晶石类催化剂在高级氧化中有着较为广泛的应用,尖晶石型催化剂在臭氧体系或者过硫酸盐体系中与臭氧或者过硫酸盐发生协同作用,提高体系的氧化性,对绝大部分有机物进行去除讲解,得到良好的效果。 关键词:尖晶石spinel催化cataly*氧化oxide 正文:Mg-Fe尖晶石复合氧化物对苯乙烯选择氧化反应的催化性能,反应以H2O2为氧化剂时Mg-Fe尖晶石复合氧化物催化剂对苯乙烯选择氧化制苯甲醛反应的催化性能结果表明, 非化学计量比的Mg-Fe 尖晶石复合氧化物催化剂的活性优于纯 MgFe2O4 尖晶石相,苯甲醛产率达到 20%左右.在非化学计量比的Mg-Fe 尖晶石复合氧化物中掺入适量的Al3+后,可进一步提高催化活性, 苯甲醛最高产率达到 33.4%.催化剂表征数据揭示,非化学计量比的Mg-Fe和Mg-Fe-Al复合氧化物催化剂是由纳米尺度的铁酸盐尖晶石和α-Fe2O3微晶相构成的.除了非化学计量比尖晶石具有较多的缺陷结构外α-Fe2O3微晶相的存在也可能是造成非化学计量比催化剂活性高的原因之一。早在 70 年代文献已报道, Mg-Fe 尖晶石复合氧化物对烷烃和烯烃的氧化脱氢反应有良好的催化效果。后来又相继发现该类催化剂对醇脱氢和脱水、苯酚羟基化等反应有较好的催化性能。Mg-Fe 尖晶石复合氧化物对以过氧化氢为氧化剂的苯乙烯液相氧化反应具有催化活性,并且与 TS-1 沸石不同,其主要产物不是苯乙醛和环氧化物 ,而是苯甲醛,其苯乙烯转化率还Fe-MCM-41催化剂.苯甲醛是医药、农药和香料等工业中的重要中间体,以苯乙烯为原料生产无氯苯甲醛是一种绿色工艺 ,值得深入研究 Mg-Fe 尖晶石复合氧化物的组成、结构、掺 Al3+等与催化性能。 尖晶石的制备方法为檬酸溶胶凝胶法:将计量的Fe(NO3)3·9H2O , Al(NO3)3·9H2O 和Mg(NO3)2·6H2O 溶解于 50mL 水中 .在30 ℃水浴中,边搅拌边将混合盐溶液滴加到50mL柠檬酸水溶液中.溶液中柠檬酸摩尔数等于加入的 Mg2+摩尔数 .滴加完毕后继续搅拌 30 min , 然后浓缩溶液至胶状, 再移至120 ℃烘箱内干燥 12 h , 得疏松的固体 .在干燥气氛中研磨后,于设定温度下焙烧2 h ,得到催化剂样品. 实验中由于不同化学组成的复合氧化物转变为尖晶石的温度不同,所以要先进行预实验得到MgFe2O4和MgAl2O4复合氧化物经不同温度焙烧后的XRD图谱。通过图谱可以看到400 ℃时已开始出现微弱的MgFe2O4 尖晶石相衍射峰,继续升高温度, 代表尖晶石相的衍射峰强度不断增加,晶相转变渐趋完善.650 ℃时 才开始出现微弱的MgAl2O4 尖晶石相衍射峰,晶相转变温度明显地比MgFe 2O 4 推 迟。所以本实验Mg-Fe 和Mg-Fe-Al 复合氧化物的焙烧温度分别选为 600 ℃和700。 实验中加入Al3+的影响MgAl 2O 4 尖晶石本身对苯乙烯氧化反应的活性不如 MgFe 2O 4 , 但选择性很高 , 反应产物中只有苯甲醛 , 在非化学计量比的

尖晶石型催化剂的结构、制备与应用

***********学院 尖晶石型催化剂的结构、制备与应用 学号: 专业: 学生姓名: 任课教师: 2013年12月

尖晶石型催化剂的结构、制备与应用 ******** ******学院 摘要:尖晶石类催化剂近些年来发展迅速,作为环境保护末端治理方面的新秀,有很多值得大家去深入探究的地方。尖晶石型催化剂在高级氧化中有着较为广泛的应用,尖晶石型催化剂在臭氧体系或者过硫酸盐体系中与臭氧或者过硫酸盐发生协同作用,提高体系的氧化性,对绝大部分有机物进行去除降解,得到良好的效果。尖晶石结构类似于钙钛矿,但仍有较大区别,本文对尖晶石结构进行了介绍,并给出了几种比较常用的尖晶石制法。 关键词:尖晶石;高级氧化;催化;结构;制备 1、尖晶石的结构 人们对多元复合氧化物材料的结构和组成的设计和制备的研究,不断发现了复合金属氧化物材料具有磁性、气敏性、电导性和催化活性等特性,并将他们广泛应用在能源、信息、冶金、电子、化工、生物和医学等领域复合金属氧化物的种类繁多,主要有尖晶石型、钙钛矿型、白钨矿和铜铁矿等类型,由于组成和结构的变化引起材料的多功能性,使得尖晶石型和钙钛矿型复合金属氧化物成为最常见和应用最广的光催化材料,在本文中,主要讨论尖晶石结构复合型金属氧化物[1]。 尖晶石的化学分子式可以用XY2O4表示,以天然矿石MgAl2O4尖晶石为例,其晶体结构属于立方晶系,每个单胞中包含56个离子,其中包括2价金属离子8个,3价金属离子16个,32个氧离子,其中的Mg2+和A13+离子可以被其它的二价(Ni2+、Co2+、Cu2+、Zn2+、Mn2+等)或者三价(Fe3+、Co3+、Ga3+等)离子替代,图1.1为尖晶石结构复合金属氧化物的晶体结构示意图,在尖晶石的晶胞中,氧离子间隙之中镶嵌了金属离子,其中四个氧离子包围了间隙较小的四面体座,这四个氧离子的中心联线构成四面体;而六个氧离子包围了间隙较大的八面体座,这六个氧离子的中心联线构成八面体(图1.1),尖晶石结构的单位晶胞含有8个分子,其中包含32个八面体座和64个四面体座,金属离子分别占据其中的8个四面体座(A位)和16个八面体座(B位),占据A位置的亚晶胞按四面体排列,占据B位置的亚晶胞按互补的四面体排列[2]。 图1.1尖晶石复合金属氧化物的晶体结构

黄振飞课程方案(镁铝尖晶石合成)

天然原料合成镁铝尖晶石 摘要:本文重在概述以天然原料合成镁铝尖晶石的工艺路线、合成方法,合成镁铝尖晶石的天然原料一般采用以高铝矾土生料(或特级铝土矿>与轻烧氧化镁(或菱镁矿>粉,合成方法主要分为二步煅烧法,湿化学法,高能球磨法(HEM>,自蔓延高温合成法(SHS>等等。此外还介绍了添加剂、气氛、成型方法成型压力、原料活性对工艺的可能影响,从而从中找出合适的实验方案,得出一个合理的实验设计。 关键词:镁铝尖晶石天然原料工艺路线合成方法实验设计

目录 摘要1 引言1 第一章文献综述1 1.1镁铝尖晶石的定义1 1.2材料结构与基本性能1 1.3合成原料2 1.4 镁铝尖晶石的合成方法3 1.4.1二步煅烧法3 1.4.2湿化学法3 1.4.3高能球磨法(HEM>4 1.4.4自蔓延高温合成法(SHS>4 1.4.5固相法5 1.4.6 电熔法5 1.4.7凝胶固相反应法6 1.4.8均匀沉淀法6 1.4.9 共沉淀法7 1.4.10 超临界法7 1.4.11 冷冻一干燥醇盐法7 1.4.12 水热合成法8 1.4.13 蒸发分解法9 1.4.14 燃烧合成法9 1.5影响合成镁铝尖晶石原料烧结性的因素9 1.5.1添加剂9 1.5.2气氛10 1.5.3成型方法和成型压力10 1.5.4原料的活性10 1.6镁铝尖晶石材料的性能11 1.6.1 力学性能11 1.6.2热震稳定性11 1.6.3抗渣性11 1.7 本课题的目的、意义与主要内容12 1.7.1 目的和意义12

1.7.2 本课题的研究内容12第二章实验方案13 2.1 实验原料13 2.1.1原料组成13 2.1.2原料处理方法13 2.2实验仪器、设备13 2.3实验步骤13 2.4检测工程14 2.5数据参考指标14

尖晶石型的结构

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 尖晶石型(AB2O4)结构 AB2O4型化合物中最重要一种结构就是尖晶石,属于尖晶石结构的化合物有一百多种,一般A是二价金属离子Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Zn2+、Cd2+等,B是三价金属离子Al3+、Cr3+、Ga3+、Fe3+、Co3+等。正离子A、B总电价为8,氧离子作立方密堆,A、B则充填在氧离子间隙中。 以MA尖晶石(MgO·Al2O3)为例加以分析。 图1.37 尖晶石型(AB2O4)结构 1)鲍林规则 (1),0.414~0.732,CN+=6,,0.414~0.732,CN+应该为6,但由于正离子的相互影响,CN+=4,整个结构才稳定。即Al-O→[AlO6]八面体,Al3+填充在O2-形成的八面体中。Mg-O→[MgO4]由面体,Mg2+填充在O2-形成的四面体中。 (2), 即:一个O2-同时与三个Al3+和一个Mg2+相连,或三个[AlO6]八面体与

一个[MgO4]由面体共顶相连。 (3)八面体间可共棱共面,实际每二个[AlO6]八面体间共棱相 连,四面体间不共顶。 (4)低配位数的[MgO4]之间排后斥力较大,尽可能互不结合,而高配位的[AlO6]可以互相连接,在尖晶石结构中,每一个O2-共用于一个[MgO4]和三个[AlO6]之间, (5)理想的尖晶石晶体中,除Mg2+、Al3+外,不再含其它正离子,Mg-O 总是形成[MgO4]四面体,Al-O总是形成[AlO6]八面体,每一个O2-周围总是一个Mg2+和Al3+。 2)结构特点 一个晶胞可分成8个小立方体,共面的小立方体是不同类型的,(即质点排列情况不一样),而共棱的小立方体是相同类型(质点排列情况一样),换句话说尖晶石的晶胞是由8个小块拼合而成,分两种情况,A块,B块,A块主要显示Mg2+占据四面体空隙,B块主要显示Al3+占据八面体空隙。 A块离子排列情况: 4个O2-位于顶角和面心处,即O2-作面心立方堆积,3/2个Al3+位于6条边中心,即处于O2-堆积体的八面体空隙中,2个Mg2+在一条对角线方向,与三个面心处和一个顶角的O2-相连,即处于O2-堆积体的四面体空隙中。 B块离子堆积情况: 4个O2-位于面心和顶角处与A块一样,5/2个Al3+位于体心和六条边中心,在O2-八面体空隙中B块中没有Mg2+。 在一个尖晶石晶胞中,共有32个O2-,16个Al3+,8个Mg2+,含有8个分子MA。 32个O2-作立方密堆时,可形成64个四面体空隙,32个八面体空隙,8个Mg2+填充1/8四面体空隙,,6个Al3+填充1/2八面体空隙,结构中存在较多空位。 如果16个Al3+中有8个Al3+占据8个四面体空隙,另8个Al3+与8个Mg2+占据16个八面体空隙,形成的结构称反尖晶石结构,通式B(AB)O4。 如镁铁尖晶石Fe3+(Mg2+Fe3+)O4—MgO·Fe2O3

铬_铝_硅对铁基高温合金抗氧化性能的影响

铬、铝、硅对铁基高温合金抗氧化性能的影响 Effect s of Chro mium,Aluminium and Silicon on Oxidation Resistance of Fe2base Superalloy 王海涛,张国玲,于化顺,王少卿,闵光辉(山东大学材料学院材料液态结构及其遗传性教育部重点实验室,济南250061) WAN G Hai2tao,ZHAN G Guo2ling,YU Hua2shun,WAN G Shao2qing,M IN Guang2hui (Key Laboratory for Liquid St ruct ure and Heredity of Material of Education Minist ry, School of Material Science and Engineering,Shandong U niversity,Jinan250061,China) 摘要:采用正交设计的实验方法探讨了铬、铝、硅元素含量对铁基高温合金抗氧化性的影响规律。为获得稳定的抗氧化能力,上述各元素的含量应分别高于17%Cr,4%Al,115%Si。结果表明:当三元素同原子比时对铁基高温合金抗氧化性的影响次序为Si最大,Al次之,Cr最小。结构平坦、组织致密、颗粒细小均匀的氧化膜抗氧化性较好,反之较差。当氧化膜由Cr2O3,Al2O3,SiO2,Fe(Ni)Cr2O4多种氧化物组成复合氧化膜时于1250℃表现为强抗氧化性,当缺少Al2O3或SiO2时表现为弱抗氧化性。 关键词:耐热钢;铁基高温合金;氧化膜;抗氧化性 中图分类号:T G142173 文献标识码:A 文章编号:100124381(2008)1220073205 Abstract:The effect s of chromium,aluminium and silico n on t he o xidation resistance were st udied by ort hogonal experiment met hod.The result s show t hat t he content of Cr,Al,Si in test alloys for stable oxidation resistance should be added more t han17%Cr,4%Al and115%Si respectively.The most af2 fecting element for oxidation resistance is Si among stoichiomet ric Cr,Al and Si,t he following one is Al,and t he last one is Cr.The flat and compact st ruct ure,fine and even grains endow it wit h good ox2 idation resistance,ot herwise t he scales are bad in o xidation resistance.High2temperat ure oxidation re2 sistance depends on t he compo sition of t he scales on test alloys.The compounded scales of Cr2O3, Al2O3,SiO2and Fe(Ni)Cr2O4possess st rong oxidation resistance at1250℃,but it become poor wit h2 out Al2O3or SiO2. K ey w ords:heat resistant steel;Fe2base superalloy;oxide scale;oxidation resistance property 铁基高温合金应在650℃以上能承受一定的应力并且具有抗氧化性和抗腐蚀性能。相对于镍基和钴基高温合金而言,铁基高温合金价格低廉,生产工艺简单,是一种普遍应用于国防 能源 航空以及核工业等领域的高温结构材料。高温抗氧化性是铁基高温合金的一项重要指标。早期研制的Fe2Cr系、Fe2Cr2Ni 系、Fe2Cr2Ni2N系高温合金主要依靠Cr元素提高其高温抗氧化性,该系列合金突出表现在高温强度方面,耐热温度随Cr元素含量的提高可以达到900~1200℃[1-3]。其后研制的Fe2Cr2Si系,Fe2Cr2Ni2Si 系,Fe2Cr2Mn2Si系高温合金中,Si元素被氧化形成SiO2氧化膜,其热稳定性高,不但增加了Cr2O3氧化膜的致密度,而且提高了氧化膜与基体的附着力,减少了剥落倾向[4-6]。Fe2Cr2Al系、Fe2Cr2Ni2Al系高温合金在欧美国家研究较多,虽然在高温力学性能方面不够理想,但具有良好的高温抗氧化性,高温下Al元素形成的Al2O3氧化膜致密坚固,不具有挥发性,与Cr2O3氧化膜紧密结合大大增加了铁基高温合金的高温抗氧化性[7-11]。对于铁基高温合金中同时加入Cr,Al,Si 元素形成复合氧化膜以提高其高温抗氧化性,迄今国内外研究较少。本工作采用正交设计方法,在实验的基础上探讨Cr,Al,Si三元素对铁基高温合金高温抗氧化性的影响规律,通过Cr,Al,Si氧化膜的复合作用在保证一定高温力学性能的基础上进一步提高合金的耐热温度,为研制新型高温合金提供必要的理论依据。 1 实验方法 本实验采用正交设计方法设计合金成分,正交设

尖晶石型的结构

尖晶石型(AB2O4)结构 AB2O4型化合物中最重要一种结构就是尖晶石,届丁尖晶石结构的化合物有一白多种,一般 A 是二价金届离子Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Zn2+、Cd2+ 等,B是三价金届离子Al3+、Cr3+、Ga3+、Fe3+、Co3+等。正离子A、B总电价为8,氧离子作立方密堆,A、B则充填在氧离子间隙中。 以MA尖晶石(MgO - Al2O3)为例加以分析。 图1.37尖晶石型(AB2O4)结构 1) 鲍林规则 - = 0.43 通1 二0 59 (1) %卜,0.414~0.732 , CN+=6,勺" ,0.414~0.732 , CN + 应该为6,但由丁正离子的相互影响,CN+=4,整个结构才稳定。即A1-O T[AlO6]八面体,Al3+填充在O2-形成的八面体中。Mg-O t[MgO4]由面体,Mg2+填充在O2-形成的四面体中。 3 1 2 1 1 1 ="临*二孑E+以* ■声=3妃*杭1 (2) b 」耳』,乙土 即:一个O2-同时与三个Al3+和一个Mg2+相连,或三个[A1O6]八面体与一个[MgO4 ]由面体共顶相连。 (3) 八面体问可共棱共面,实际每二个[A1O6]八面体问共棱相连,四面体问不共顶。 (4) 低配位数的[MgO4]之间排后斥力较大,尽可能互不结合,而高配位的[A1O6]可以互相连接,在尖晶石结构中,每一个O2-共用丁一个[MgO4]和三个[A1O6]之间, (5) 理想的尖晶石晶体中,除Mg2+、Al3+外,不再含其它正离子,Mg-。总是形成[MgO4]四面体,Al-O总是形成[A1O6]八面体,每一个O2-周围总是一个

镁铝尖晶石微粉的合成方法

纳米MgAl2O4的制备方法 传统的制备MgAl2O4 颗粒粉体的方法是利用A12O3 和MgO 的固相反应:A12O3+MgO= MgAl2O4 (1.1) 这种固相反应需要1450℃的高温[4]在如此高的温度下,颗粒会发生长大,并产生严重的团聚。而且,这种方法消耗能源巨大。近年来,人们开发出许多制备MgAl2O4 纳米颗粒粉体的技术[5]。主要制备纳米MgAl2O4 粉体的方法如下。 1) 金属醇盐法 金属醇盐法是将金属作为起始原料,分别和一定的醇反应生成金属醇盐,然后将金属醇盐经减压蒸馏、提纯、分馏即可得到纳米尺寸的粉末。黄存新、彭载学等人用这种方法制备了纳米MgAl2O4 粉末,再采用热压烧结的方法得到了MgAl2O4 透明陶瓷。他们将金属镁、铝分别和乙醇(C2H5OH)、异丙醇((CH3)2CHOH)反应生成Mg(OC2H5)2 和Al(OC3H7)3,然后将两种金属醇盐振荡混合,在这个过程中二者反应生成MgAl2(OC2H5)2(OC3H7)6,继续振荡并加入蒸馏水和乙醇(C2H5OH)直至成为溶胶状态,然后在室温下放置一段时间使溶胶形成了凝胶,再在100℃左右的温度下进行真空干燥,最后在800℃-1100℃温度范围内煅烧即可得纳米MgAl2O4 粉末[6]。这种方法制备的MgAl2O4 粉末,晶粒尺寸在50-1500nm 之间,颗粒分布比较均匀。但是该方法工艺比较复杂,且容易引入杂质离子,如Na+、Si、C。而透明陶瓷材料对纳米MgAl2O4 粉末的纯度要求很高,能够吸收可见光的杂质的引入将增加透明陶瓷的光吸收因素Sim,会降低了材料的综合性能。 2)化学共沉淀法 在含有多种金属阳离子的溶液中加入沉淀剂后,可使所有阳离子完全沉淀,再煅烧沉淀物可得到氧化物粉体,这种方法称为化学共沉淀法。利用此种方法,研究者们制备了MgAl2O4 纳米颗粒粉体。加入沉淀剂,调节溶液的pH 值,使得溶液中的Mg2+和A13+同时沉淀成为Mg(OH)2 和Al(OH)3,然后再煅烧沉淀物,可以在相对低的温度下得到MgAl2O4 纳米颗粒粉体[7]。马亚鲁等[8]以A1C136·H2O、MgCl26·H2O 为原料,NH3H·2O 作沉淀剂,在快速搅拌下向溶液中缓慢滴入氨水溶液,调节pH 值至11 到12,650℃下反应30min 得到白色絮状沉淀,经水洗、离心分离后在850℃下干燥,在900℃下煅烧l h,得到MgAl2O4 纳米颗粒粉体。所得粉体的颗粒尺寸在40 nm 左右,颗粒近球形,无硬团聚,比表面积达到100m2/g。这种方法的优势在于制备的粉体比表面积很大,粉体的催化效率比较高。这是因为采用真空冷冻干燥法使物料中的水分直接升华了,但是水分子空间还存在,因此物料的比表面积大,孔容率高。但是这种方法中的pH 值比较难以控制,pH 值控制不当会导致溶液发生分步沉淀,造成产物的配比偏离化学计量比。3)溶液燃烧合成法 将湿化学和传统的自蔓延燃烧法技术(Self-Propagation High-Temperature Synthesis,简称SHS)结合起来形成了一种新的制备超细纳米金属氧化物的一种工艺即低温燃烧合成法。这种工艺方法是基于氧化-还原反应的原理,以有机燃料为还原剂,以金属硝酸盐为氧化剂,形成的溶液在较低的温度(200-600℃)发生自动燃烧,最终合成所需的超细氧化物粉末。吕海亮、杜吉勇等人以乙酸镁((CH3COO)2Mg)、硝酸铝(Al(NO3)3·9H2O)、尿素(CO(NH2)2)和硝酸铵(NH4NO3)为原料,采用低温燃烧法LCS,在600℃成功制备了晶粒尺寸小于60nm 的MgAl2O4 粉体[9] 。Tahmasebi 和Paydar 以Al(NO3)3·9H2O ,ZrO(NO3)2·6H2O 为氧化剂,CO(NH2)2 为还原剂,制备了晶粒尺寸小于20nm 的Al2O3-ZrO2 粉体。低温燃烧合成法工艺简单,耗时很短,效率高,并且能够制备高纯度,晶粒尺寸小的粉体。但是由于传统加热方法是由外到内的传导方式,并且存在温度梯度,这就造成了团聚以及部分无定形相结晶不全的问题。

尖晶石综述

研究现状: MgAl2O4尖晶石作为上地幔的重要组成部分,因此它在地球物理学的研究中占有重要的地位,也是许多理论和实验研究的热点题目. 1915年Bragg [1]指出尖晶石MgAl2O4的群结构为Fd3m,1969年Reid和Ringwood [2]预测MgAl2O4的后尖晶石相结构应该类似于CaFe2O4- 或者CaMn2O4-. Grimes [3, 4]在1971年和1973年通过实验验证认为MgAl2O4的群结构应该为F4-3m. Liu[5]在1975年利用利用金刚石压腔通过持续加热观测到MgAl2O4在18GPa,温度为1000~1400 ℃分解为MgO和Al2O3. Rouse et al [6]在1976年利用中子衍射验证MgAl2O4的群结构为Fd3m. 而在1977年Mishra和Thomas [7] 指出一种新的低温低对称性的晶体相F4-3m-MgAl2O4在450 ℃左右转变为Fd3m- MgAl2O4. Liu [8]又在1978年利用金刚石压腔通过持续加热到1000 ℃,压腔达到25 GPa时观测到MgAl2O4转变成另一种密度更大的ε相尖晶石. Schafer et al [9]在1983年.通过电子发射显微镜(TEM)观测MgAl2O4在25.5 GPa和50 GPa下的冲击回收实验的样品,得出回收产物很可能不是ε相尖晶石. Irifune et al [10]在1991年通过实验得出在25 GPa下MgAl2O4转变成一种新的密度更大的高压相(钙铁型结构). Catti et al [11]在1994年利用DFT-LDA方法计算得出在0 K条件下尖晶石加压为11 GPa分解为MgO和Al2O3. 1994年Irifune et al [12]和Kesson et al [13]以及2001年Ono et al [14] 指出CaFe2O4-MgAl2O4是较深层地幔的重要组成部分.1997年Kruger et al [15] 利用静态X射线衍射观测金刚石腔中的尖晶石样品发现在0~65 GPa下尖晶石结构并没有发生变化.1998年Funamori et al [16]利用X衍射和电子发射显微镜观测金刚石腔中的尖晶石样品得出尖晶石首先分解分解为MgO和Al2O3,再转变为CaFe2O4-MgAl2O4,最后在转变为CaTi2O4- MgAl2O4. 1999年Akaogi et al [17]通过高温高下下的实验得出MgAl2O4在15~16 GPa,温度为1200 ℃分解为MgO 和Al2O3, 在温度为1600 ℃压强为26.5 GPa时混合物又转变成CaFe2O4-MgAl2O4,而且得出了MgAl2O4分解的临界线方程P (GPa)=12.3+0.0023T (°C). 2001年Catti [18] 通过DFT-LDA和DFT-B3LYP两种方法预测出Cmcm-MgAl2O4即CaTi2O4- MgAl2O4的形成分别在39 GPa和57 GPa. 2002年Irifune et al [19] 利用同步衍射和金刚石对砧方法研究了在温度高达1600 ℃,压强在22-38 GPa条件下MgAl2O4的相变,得出在25 GPa时MgAl2O4分解为MgO

尖晶石

尖晶石 目录[隐藏] 概述 具体特征 传奇 评价与选购 “铁木尔红宝石” 晶体化学 结构与形态 物理性质 概述 具体特征 传奇 评价与选购 “铁木尔红宝石” 晶体化学 结构与形态 物理性质 ?产状与组合 ?鉴定特征 ?工业应用 ?地下城与勇士

尖晶石 [编辑本段] 概述 尖晶石(Spinel) 化学分子式为MgAl2O4 晶系:属等轴晶系 结晶习性:常呈八面体晶形,有时八面体与菱形十二面体、立方体成聚形。 光泽:玻璃光泽至亚金刚光泽 透明度:透明至不透明 折光率:1.718,因含微量元素不同而改变最高可至2.000.无双折射 无多色性 特殊光学效应:星光效应(四射或六射),变色效应。比较稀少 硬度:8

密度:3.60(+0.10,-0.03)克/立方厘米 产地:缅甸、斯里兰卡、柬埔寨、泰国及中国的河南、河北、福建、新疆、云南 [编辑本段] 具体特征 尖晶石是镁铝氧化物组成的矿物,因为含有镁、铁、锌、锰等等元素,它们可分为很多种,如铝尖晶石、铁尖晶石、锌尖晶石、锰尖晶石、铬尖晶石等。由于含有不同的元素,不同的尖晶石可以有不同的颜色,如镁尖晶石在红、蓝、绿、褐或无色之间;锌尖晶石则为暗绿色;铁尖晶石为黑色等等。尖晶石呈坚硬的玻璃状八面体或颗粒和块体。它们出现在火成岩、花岗伟晶岩和变质石灰岩中。有些透明且颜色漂亮的尖晶石可作为宝石,有些作为含铁的磁性材料。用人工的方法已经可以造出200多个尖晶石品种。尖晶石是一族矿物,在自然界中形成于熔融的岩浆侵入到不纯的灰岩或白云岩中经接触变质作用形成的。有些出现在富铝的基性岩浆岩中。宝石级尖晶石则主要是指镁铝尖晶石,是一种镁铝氧化物。晶体形态为八面体及八面体与菱形十二面体的聚形。颜色丰富多彩,有无色、粉红色、红色、紫红色、浅紫色、蓝紫色、蓝色、黄色、褐色等。尖晶石的品种是依据颜色而划分的,有红、橘红、蓝紫、蓝色尖晶石等。玻璃光泽,透明。贝壳状断口。淡红色和红色尖晶石在长、短波紫外光下发红色荧光。特征

尖晶石型锰酸锂前驱体

2009年8月 吉林师范大学学报(自然科学版)№.3第3期Journal of Jilin N ormal University (Natural Science Edition )Aug.2009 收稿日期:2008205228 基金项目:吉林省科技厅项目(20060423) 第一作者简介:王 昕(19642),女,吉林省四平市人,现为吉林农业工程职业技术学院副教授.研究方向:无机化学. 尖晶石型锰酸锂前驱体的制备与表征 王 昕1,张伟娜2 (1.吉林农业工程职业技术学院,吉林四平136000;2.吉林师范大学化学学院,吉林四平136000)摘 要:二次锂电池由于比能量高和使用寿命长,已经成为便携式电子产品的主要电源.本实验以LiNO 3和Mn (NO 3)2为原料,应用溶胶-凝胶法制备出了LiMn 2O 4粉体,通过XRD 方法测试了不同温度下灼烧的晶型,随着温度的升高,样品颗粒经历了由疏松到团聚,再到均匀分布的过程,其中700℃时制备的材料具有最佳晶型.还研究了产品的充放电循环性能,经过50次循环后容量降只有4.21%,说明制备的LiMn 2O 4粉体具有优良的充放电循环可逆性能,这对材料更好地发挥其电化学性能起到很好的促进作用. 关键词:锂离子电池;尖晶石型LiMn 2O 4;溶胶-凝胶法 中图分类号:T M911 文献标识码:A 文章编号:1674238732(2009)0320113202 锂离子电池是继镍镉电池、镍氢电池之后的第三代可充电绿色电池.锂离子电池因其比能量大、电压高、放电性能稳定等优点被广泛应用于手提电话、笔记本电脑、摄录一体机等电子设备.目前,用于锂离子电池的正极材料主要是LiC O 3,LiNiO 2和LiMn 2O 4[126].但锰具有资源丰富、价格低廉、安全、无污染等诸多优点,是极有发展前景的锂离子电池正极材料.而且尖晶石型LiMn 2O 4具有独特的三维隧道结构,有利于Li +的嵌入或脱出,因此受到普遍关注LiMn 2O 4.赵铭姝等[7]采用高温固相分段法在氧气气氛下制备的锰酸锂材料具有较高的初始比容量(>140mAh/g ),但循4次后降为100mAh/g ;李智敏等[8]在空气气氛下,用固相分段焙烧法合成的LiMn 2O 4初始放电量达122mAh/g ,20次循环后容量损失4.4%;唐新村等[9]采用低温固相分段烧结方法制备的锰酸锂循环50次后容量衰减了14.5%.K ang H K 等[10]用共晶自混合方法制备的尖晶石型LiMn 2O 4正极材料20次循环后容量保持率为98.2%得到了比较满意的结果.但固相反应所需温度较高,反应条件苛刻.本文采用温和的溶胶2凝胶法制备LiMn 2O 4前躯体,并对其结构和充放电循环性能进行测试. 1 实验部分 (1)试剂和仪器:实验所用试剂柠檬酸、硝酸锂、硝酸锰、氨水(0.1m ol/L )均为分析纯;水(H 2O )为超纯二次蒸馏水.T B 23型电子控温磁力搅拌器(上海富华仪器有限公司),DT 2200型电子天平(北京天平仪器厂),D82ADDS 型X 射线衍射仪(美国)等仪器. (2)实验步骤:将0.5m ol/L 的LiNO 3和Mn (NO 3)2溶液按1.1∶1摩尔比混匀,水浴加热反应,用NaH 2C O 3溶液调节混合液的pH 值为一定值,65℃陈化6.0h 后的胶体经过滤、水洗、恒温干燥后得到锰酸锂前驱体粉末,然后研磨预烧后得到尖晶石型锰酸锂前驱体粉末. 2 结果与讨论 2.1 结构特征分析 在空气中,制备的反应前驱体(pH =7.5条件),分别于300、400、500、600、700、800℃恒温氧化灼烧24h 制备产物.从前驱体和不同温度下制备的产物的XRD 图谱可以看出,前驱体己经具备尖晶石LiMn 2O 4晶格,但是峰强度较弱,峰型不完整,见图1.500℃以下灼烧制备的试样衍射峰弱,半峰宽较大,这可能是反? 311?

正反尖晶石

尖晶石结构式ABCX4,其中两种金属离子为+3,另一种金属离子为+2,X 可以为O2-,S2-,Se2-等。阴离子(如O2-)作面心立方堆积,形成8个四面体空隙,4个八面体空隙。 当+3的金属离子全部占据八面体空隙位置,+2的金属离子全部占据四面体空隙位置时,为正尖晶石; 当半数的+2的金属离子占据四面体空隙,+3的金属离子和另外半数的+2的金属离子占据八面体空隙位置时,就成了反尖晶石。 如果用()表示四面体位置,有[ ]表示八面体位置,则正反尖晶石结构式可以表示为:(A)[B2]O4——正尖晶石,(B)[AB]O4——反尖晶石。 在实际尖晶石中,有的是介于正、反尖晶石之间,即:既有正尖晶石,又有反尖晶石,此尖晶石称为混合尖晶石,结构式表示为:(A1-x B x)[A x B2-x]O4,其中(0

的关系,而是晶体场中的择位能来决定的。 首先强调,晶体场中,O2-为弱场配体。FeAl2O4中,Fe为+2价,d6组态,位置优先能小,正常进入四面体位置,当然Al3+全部进入八面体位置,形成正尖晶石。MgFe2O4中,Mg为+2价,d0组态,位置优先能大,优先进入八面体位置;Fe 为+3价,d5组态,位置优先能较大,进入部分八面体位置;另一部分Fe3+进入四面体场,形成反尖晶石。 过渡金属离子的半径变化与d电子的排布方式有关,高自旋状态的离子比低自旋状态的离子半径大,当d电子数为4-7时,同一个离子有两个半径。MgAl2O4中,Al为+3价,d0组态,位置优先能大,优先全部进入八面体场;相比之下,位置优先能较弱的d0 Mg2+,则只能选择进入四面体位置了,最终形成正尖晶石。ZnAl2O4,同上。离子半径:Zn2+>Mg2+>Al3+

第三章晶体结构习题与解答

第三章 晶体结构习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。 解:参见2-9题。 3-4 Li2O 晶体,Li+的半径为0.074nm ,O2-的半径为0.140nm ,其密度为1.646g/cm3,求晶胞常数a0;晶

正尖晶石和反尖晶石型结构

一、比较下列名词的含义 比较下列名词的含义(每小题4分,共20分) 1. 正尖晶石和反尖晶石型结构 在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石;② 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。② 2. 均匀成核和非均匀成核 均匀成核:从均匀的单相熔体中产生晶核的过程,其成核几率处处相同。② 非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置而形成晶核的过程。② 3. 稳定扩散和不稳定扩散 若扩散物质在扩散层dx内浓度不随时间变化,即dc/dt=0为稳定扩散;② dc/dt≠0为不稳定扩散。② 4. 重建型转变和位移型转变 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。② 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。② 5. 一致熔融化合物和不一致熔融化合物 一致熔融化合物:有固定的熔点,熔化时所产生的液相与化学物组成相同。②不一致熔融化合物:没有固定的熔点,这种化合物加热到某一温度便发生分解,分解产物为一种液相和一种晶相,二者组成与化合物组成均不同。② 二、简答题 简答题(每小题4分,共20分) 1. 比较叶腊石和蒙脱石的结构区别,说明产生的原因。 叶腊石和蒙脱石均为2:1型层状结构,为两层硅氧四面体夹一层铝氧八面体; ②在蒙脱石中,层间可吸附大量的水,主要因为蒙脱石结构中的铝离子和硅离子部分被低价阳离子取代,引起电荷的不平衡,为平衡电荷,常在层间吸附水合阳离子。叶腊石中基本不存在离子置换的现象,也即层间不吸附水。②

相关文档
最新文档