断裂力学论文

断裂力学论文
断裂力学论文

一基本概念

1任何一门科学都是应一定的需要而产生的,断裂力学也是如此。

一提到断裂,人们自然而然地就会联想到各种工程断裂事故。在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。于是人们认识到了传统的设计思想

是有缺欠的,并且开始寻求更合理的设计途径。人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。因此实际材料的强度大大低于理论模型的强度。断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。

因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学2组成

由于研究的观点和出发点不同,断裂力学分为

微观断裂力学

断裂力学{线弹性断裂力学

宏观断裂力学{

弹塑性断裂力学

微观断裂力学

研究原子位错等等比晶粒尺寸还小的微观结构的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。

宏观断裂力学

在不涉及材料内部的断裂机理的条件下,通过连续介质力学分析和试件的实验做出断裂强度的估算与控制。其中,线弹性断裂力学研究的对象是线弹性裂纹固体,认为裂纹体内各点的应力和应变的关系都是线性的,遵守Hook定律(σ∝ε)。适用于塑性区的尺寸远小于裂纹的尺寸的情况。弹塑性断裂力学则采用弹塑性力学的分析方法来分析裂纹固体,适用于裂纹尖端塑性区的寸接近或大于裂纹尺寸的情况。

裂纹的概念

实际构件中的缺陷是多种多样的,主要包括

缺陷:处焊接中的气泡、未焊透槽加工中产生的刀痕、刻孔冶炼中产生的夹渣、气裂纹~统称为裂纹

影响断裂力学的两大因素

a.荷载大小b.裂纹长度

考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

脆性断裂与韧性断裂

韧度(toughness):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。脆性(brittle)和韧性(ductile):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。

高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。

脆性断裂:一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。

韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。

二基本理论

1传统强度理论

在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力

,бys是设计应力;n是安全系数,其值大于1;б是屈服应力,在等截面物体即б≤бys

n

受到单向拉伸时,即为单向拉伸的屈服强度。

2Griffith 能量释放观点

Griffith是本世纪二十年代英国著名的科学家,他在断裂物理方面有相当大的贡献,其中最大的贡献要算提出了能量释放(energy release)的观点,以及根据这个观点而建立的断裂判据。以下要介绍根据Griffith观点而发展起来的弹性能释放理论,此理论在现代断裂力学中仍占有相当重要的地位。

若只考虑脆性断裂,而裂端区的塑性变形可以忽略不计。则在准静态的情形下,裂纹扩展时,裂端区所释放出来的能量全部用来形成新的裂纹面积。换句话说,根据能量守恒定律,裂纹发生扩展的必要条件是裂端区要释放的能量等于形成裂纹面积所需的能量。设每个裂端裂纹扩展量为Δa,则由能量守恒定律有:

G=2γs.

这就是著名的Griffith断裂判据。

Griffith假定为一材料常数,剩下的问题就是如何计算带裂纹物体裂端的能量释放率G。

若此G值大于或等于2γs,就会发生断裂;若小于2γs,则不发生断裂,此时G值仅代表裂纹是否会发生扩展的一种能力,裂端并没有真的释放出能量。

Griffith裂纹

бб

бб

Griffith裂纹问题(即无限大平板带有穿透板厚的中心裂纹,

且受到无穷远处的单向均匀拉伸的裂纹问题),以及图的矩形平板带有单边裂纹(single edge crack)的问题。设两平板的厚度均为B,Griffith裂纹长度为2a,单边裂纹的长度为a。

Griffith 能量释放观点

现在只考虑Griffith裂纹右端点。在拉伸应力的作用下,此裂纹端点向正前方扩展。根据Griffith能量释放观点,在裂纹扩展的过程中,能量在裂端区释放出来,此释放出来的能量将用来形成新的裂纹面。

能量释放率:是指裂纹由某一端点向前扩展一个单位长度时,平板每单位厚度所释放出来的能量。

表面自由能定义为:材料每形成单位裂纹面积所需的能量,其量纲与能量释放率相同。

3能量平衡理论

在Griffith弹性能释放理论的基础上,Irwin 和Orowan从热力学的观点重新考虑了断裂问题,提出了能量平衡理论。按照热力学的能量守恒定律,在单位时间内,外界对于系统所做功的改变量,应等于系统储存应变能的改变量,加上动能的改变量,再加上不可恢复消耗能的改变量。

假设W为外界对系统所做的功,U为系统储存的应变能,T为动能,D为不可恢复的消耗能,则Irwin—Orowan能量平衡理论可用公式表达如下∶

假定裂纹处于准静态,例如裂纹是静止的或是以稳定速度扩展,则动能不变化,即dT/dt=0。若所有不可恢复的消耗能都是用来制造裂纹新面积,则:

A t为裂纹总面积,γ p为表面能。

由上得Irwin --Orowan断裂判据为:

d(W?U)

-γp=0

dA

此式包括塑性变形的带裂纹物体断裂判据。

综上所述Irwin-Orowan断裂判据和Griffith断裂判据在本质上等价的,因为Wd代表外界对系统做功的变化量,dU代表系统弹性能的变化量,所以

?就是

d()WU为在裂纹尖端释放而使裂纹扩展的能量。因此d(W?U)dA

Griffith能量释放率。

4应力强度因子

基本分类:第一种称为张开型(opening mode)或拉伸型(tension mode),简称I型。其裂纹面的位移方向是在使裂纹张开的裂纹面法线方向(y方向)。它通常发生在载荷和几何形状对称于裂纹平面的情形,例如Griffith裂纹是I型裂纹,其裂纹的扩展方向是正前方(x 方向)。若物体是均匀厚度的平板,裂纹贯穿板厚,则问题是二维的(平面问题);若物体不是平板或者裂纹没有贯穿板厚,则是三维问题。许多工程上常见的断裂都是I型裂纹的断裂,这也是最危险的裂纹类型。

第二种裂纹型称为同平面剪切型(in—plane shear mode)或者滑移型(sliding mode),简称II型。裂纹上下表面的位移方向刚好相反,一个向正x方向,另一个向负x方向。

在板厚均匀和裂纹贯穿板厚的情况下,此裂纹问题也是二维的,属弹性力学平面问题

第三种裂纹型称为反平面剪切型(anti—plane shear mode),简称III型。裂纹面上下表面的位移方向也是刚好相反,但一个向正z方向,另一个向负z方向。这里的z方向是板厚方向,属弹性力学空间问题。

我们发现三种基本裂纹型的裂端区应力场给出的裂端区应力场有一个共同的特点,即r→0时,即在裂纹端点,应力分量均趋于无限大。这种特性称为应力奇异性。在工程实践中,应

力总是有界的不可能达到无限大。受力物体中的应力达到一定的大小,材料就会屈服,再增大就会断裂。由于应力的奇异性这一明显的矛盾,使我们不能运用裂纹尖端处的应力数值来判断材料是否具有足够的强度。

对于处于不稳定的扩展阶段,我们从上面二维I 型裂纹裂端区应力场和应变场公式可得,其强度完全由K I 值的大小来决定,因此我们定义K I 为I 型裂纹的应力强度因子。同样我们也可以得到II 型和III 型裂纹的应力强度因子K II 和K III 。由于有这一特点,应力强度因子可以作为表征裂端应力应变场强度的参量。

利用应力强度因子提出的断裂判据

实验表明当应力强度因子K 达到一个临界值时,裂纹就会失稳扩展,而后就 会导致物体的断裂。这个临界值我们称之为断裂韧度,用符号K C 表示。

在材料力学中我们可以用产生的应力小于许用应力б≤[б]来判断物体受力 是否安全,而在断裂力学中则利用:

K= K C

这就是线弹性断裂力学的断裂判据,也就是带裂纹体失稳扩展的临界条件。

当 k> K C 时 裂纹即失稳扩展;

当K< K C 时 裂纹不会扩展;

当K= K C 时 裂纹处于临界状态。

对于I 型裂纹,断裂判据可以写成:

K I =K IC

通过实验可知是K IC 和 K C 中的最低值,故一般都测出材料的K IC 数值。K IC 被称为

材料的平面应变断裂韧度。目前,材料的ICK 已经成为破损安全、裂纹体断裂控制和发展选用新型材料的重要参数,在工程实践中得到广泛的应用。

5J 积分

Griffith 断裂判据、能量释放率判据、应力强度因子判据,这些都是建立在线弹性力学的本构关系和脆性断裂基础上的理论,不允许裂端有较大的塑性变形。由于弹性应力场在裂纹前端的奇异性使弹性体裂纹前端不可避免的出现塑形区,当塑形区较小只属于小范围屈服时线弹性断裂力学公式一般能使用(或经过修正能适用)。但实际工程中往往应用的材料是塑形或者韧性材料,属于“大范围屈服”甚至是“全面屈服“,性弹性断裂力学不再适用。 J 积分简介

要想得到裂纹端点区的弹塑性应力场的封闭解是相当困难的。Rice 避开了直接求解裂端塑性应力场的困难,而提出综合度量裂端应力应变场强度的J 积分概念,是对断裂力学的重大贡献。J 积分定义如下

这里C 是由裂纹下表面某点到裂纹上表面某点的简单的积分线路。W1是弹性应变能密度,Ti 和ui 分别为线路上作用于ds 积分单元上i 方向的面力分量和位移分量

J 积分的物理意义

当材料处于不同的受力状态时(弹性、弹塑性),J 积分的物理意义有所不同。

a .线弹性材料J 积分的物理意义 无论是线弹性体或是非线弹性体都可以在一定的条件下证明J 积分的数值 就等于能量释?

???? ????-=c i i ds x u T dy W J 1

放率G。J积分的断裂判据不但存在,而且与k=K IC,G I=G IC这些断裂判据等效。

b.弹塑性材料J积分的物理意义

对于弹塑性材料,当裂纹扩展时,必然造成卸载,因而存储在材料中的应变能不会全部释放,这就是J积分的物理意义不同于弹性材料。经分析可知,对于一般弹塑性材料,J 积分代表两个相同尺寸的裂纹体,具有相同的边界约束和相同的边界载荷,但裂纹长度相差△a,当△a→0时的单位厚度势能的差率。可用下式表示:

J=-1

B ?π?a

式中,B:试件厚度;

π:总势能;

a:裂纹长度

三复合型裂纹断裂准则研究

引言

实际结构中由于荷载、结构、裂缝方位及材料各向异性等因素往往使裂缝不是单一的受力类型,因此复合型裂纹的分析有着重要的工程意义。许多学者、研究工作人员从不同的角度对宏观断裂机理进行了解释,建立了相应的复合型断裂准则。复合型裂纹的断裂准则基本上都是围绕以下两个问题展开的。1.裂纹沿什么方向扩展;2.裂纹在什么条件下扩展。即确定裂纹初始扩展的方位角O,和裂纹扩展的临界荷载。从宏观连续介质力学的观点研究复合型裂纹扩展断裂的问题,可以有多种方法。其中比较常用的是两种方法:一是应力参数型,如最大周向应力准则。二是能量型,如应变能密度因子准则,能量释放率准则。近年来,又有学者对复合弹塑性裂缝提出了J积分断裂准则。J积分断裂准则在预测起裂荷载时与试验符合得较好,而在起裂角的预测上则有些偏差。另外,还有学者将偏斜应力张量的第二不变量2J作为判定依据,提出了最小2J准则。金属材料中的裂纹扩展的真实动力来源于形状改变比能,为此,建立了形状改变比能密度因子准则和复合型裂纹扩展的形状改变比能准则,简称最小dS准则和dU。这些准则在复合型断裂的理论研究和实际工程应用上都有重要的意义。

最大周向应力理论

国外学者Erdogan和Sih G C首先提出了最大周向应力理论(又称为最大拉应力理论)。文中假定: (1)裂纹沿最大周向应力max的方向开裂。(2)裂纹扩展是由于最大周向应力达到了某一临界值而产生。对于 I—II 复合型裂纹问题,裂纹尖端附近的极坐标应力分量表达式为

上述裂纹尖端的极坐标应力分量公式,在极半径r 远远小于裂纹半长度a 时适用。根据最大拉应力理论的假定

裂纹扩展方向由下式确定

上式可以确定开裂角θ方向

建立起相应的断裂判据

(бθ)max=(бθ)c

(бθ)c为最大周向应力的临界值,可以由I 型裂纹的断裂韧度K Ic来确定由于I型裂纹总是沿着原裂纹面的方向扩展,因此,开裂角θ0=0。将θ0=0代入得式

这就是最大周向应力理论建立起来的I—II 复合型裂纹的断裂判据

复合型裂纹扩展的形状改变比能准则

以裂纹尖端附近塑性屈服区内的总形状改变比能为依据,建立了复合型裂纹扩展的形状改变比能准则。该准则考察的是裂纹尖端塑性区域内总形状改变比能的变化对裂纹扩展的作用,这样比用裂纹尖端附近某一点处的一个力学参量的变化来描述裂纹扩展更符合实际情况。建立的复合型裂纹扩展的形状改变比能准则(以下简称为U d准则)成功地预测了复合型裂纹的扩展角和临界荷载。将其结果与实验数据和S 准则相比较,结果表明,U d准则在预测裂纹扩展角方面优于S准则。

在偏斜应力状态下的形状改变比能密度为:

复合荷载作用下,裂纹尖端附近的应力场方程代入上式,得到形状改变比能密度的表达式为:

系数为

建立的复合型裂纹扩展的形状改变比能准则(简称U d准则)对裂纹扩展作如下假设:

(1) 裂纹初始扩展的方向θ是裂纹尖端至弹塑性边界最小距离的方向。

(2) 当弹塑性边界内的总形状改变比能U d达到I 型断裂形状改变比能的临界

值U d时,则裂纹开始失稳扩展。

裂纹尖端附近的弹塑性边界线可由塑性理论中的Von Mises屈服准则确定。我们根据可得开裂角方程:

复合裂纹断裂包络面方程

上式为复合型裂纹扩展的形状改变比能准则的基本方程

结论

本文对于几种相关的复合型裂纹的脆性断裂准则进行了整理和简单的归纳,给出相应的计算方程。到目前为止,关于复合型裂纹准则的研究还不成熟,没有一个统一的判定标准。探讨各类结构和材料中复合型裂纹扩展的真实原因和动力一直是广大学者研究的热门领域。事实上,没有一个准则能包罗万象,解释清楚所有情况的裂纹扩展。应根据不同类型结构和材料以及裂缝发展的不同阶段应用不同的断裂准则

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

关于损伤力学的建议与看法 在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下 原文如下: 1.3 材料疲劳分析的损伤力学方法 目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。而对裂纹萌生的宏观位置往往根据经验进行人为的假定。 事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。也是断裂力学无法解决的。目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。 近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。 1.3.1 损伤力学发展概况 损伤力学的发端被公认为是1958年Kachanov 在研究金属蠕变时所做的工作,他在当时提出了连续性因子与有效应力的概念,并利用后者给出了前者的演化方程。1963年Rabotnov又定义了损伤因子的概念。在其后的一二十年当中,以Lemaitre,Chaboche,Hult,Lechie,Krajcinovic,Rousselier等为代表的一批学者,针对损伤力学的基本概念、方法等做了大量开创性的工作,这不仅使其框架渐渐明晰充实,而且还把它的适用领域从最初的蠕变分析,推广到对于弹性、塑性、粘塑性、脆性及疲劳等损伤现象的分析[29,30,31];而其所描述的材料,也从金属扩展到复合材料、陶瓷、混凝土等非(纯)金属材料。由于损伤力学已表现出可观的理论价值与应用前景,这使其逐步上升为固体力学的一个新兴分支,并已成为目前国内外力学界所关注的一个十分活跃的研究领域。 然而,从损伤力学发展的现状来看,其相当一部分工作是关于基本理论的,而关于损伤力学算法的研究则显得相对薄弱。目前,关于构件损伤分析的算例,一部分是针对简单受力情形的(如控制应力或控制应变的一维拉伸或纯剪),而对于复杂的问题则采用的是损伤耦合的有限元法。对含裂纹体的损伤力学分析也是该领域中特别引人注目的一个专题。已有的一些工作表明:无论是对于蠕变、塑性、脆性,还是对于疲劳,计及损伤的裂纹性质都显著有别于经典断裂力学中的理想情形。 这些工作虽然已将损伤力学从理论研究向实际应用朝前推进了一大步,但已有的进展还显得不够充分,尚有待于人们进一步的努力。 1.3.2损伤力学研究方法 用损伤力学方法对材料的力学特性进行研究,首先要对材料变形过程进行宏观和微观的实验观察,根据材料损伤演变的微观现象及其宏观表现,采用唯象方法,选择适当的损伤参数,作为本构关系中的内变量建立方程。如何建立能够正确反映材料的损伤本质的损伤演化方程,是未来工作的核心。 ----------------------------------------------------------------------------------- 请问损伤力学如何学习? 前面有热力学的东西,头都大了! 张量也很令人费解! 有没有大侠指一条明路,谢谢!

断裂力学读书报告 1、读论文有感 我所读的论文是《灰色模型在不确定性疲劳寿命预测中的研究》。之所以选择这样一篇论文来读,主要有两个方面在吸引着我,一个是灰色模型,另一个则是不确定性疲劳寿命。 对于不确定性系统的研究主要有三张方法,即概率统计、模糊数学和灰色模型。首先,需要来讲一下文章中主要提到的灰色模型。 灰色模型是由华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的。控制论中,信息多少常以颜色深浅来表示。信息充足、确定(已知)的为白色,信息缺乏、不确定(未知)的为黑色,部分确定与部分不确定的为灰色。那些既有已知参数又有未知参数的系统,如:人体就是既有白色参数(已知的外型参数)又有黑色参数(未知的人体穴位功能)的灰色系统。白色系统是全开放性的、黑色系统是全封闭性的。灰色系统则介于两者之间,是半开放半封闭性的。如果一个系统具有层次、结构关系的模糊性,动态变化的随机性,指标数据的不完备或不确定性,则称这些特性为灰色性。具有灰色性的系统称为灰色系统。 从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。 其次就是不确定性。不确定性指的是测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。而疲劳寿命问题就是一个发展变化的受众多因素影响的复杂过程。

断裂力学结课论文 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。本课程中主要介绍了断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J 积分以及断裂问题的有限元方法等内容。 一、 断裂的基本概念 1. 断裂力学的产生和发展 断裂是构件破坏的重要形式之一,影响材料断裂的因素很多,如构件的形状及尺寸,载荷的特征与分布,构件材料本身的状态及应用的环境如温度、腐蚀介质等,当然更重要的还有材料本身的强度水平。为了防止构件的断裂或变形失效,传统的安全设计思想主要立足于外加载荷与使用材料的强度级别的选用,根据常规的强度理论,只要构件服役应力与材料的强度满足 1max 2 b s n n σσ σ???=???? (6- 1) 则认为使用是安全的。其中σmax 为构建所承受的最大应力;σb ,σs 分别为材料的强度极限和屈服强度,1n 1与2n 分别为按强度极限与按屈服强度取用的安全系数。安全系数是一个大于1的数,其含义为扣除了材料中对强度有影响的诸因素对强度可能造成的损 害作用,应当说这种考虑问题的出发点是合理的,也应当是行之有效的,因而多年来这种设计思想在工程设计中发挥了重要作用,而且还会继续发挥其重要作用。 断裂力学的理论最早由Griffith 与20年代提出。Griffith 在断裂物理方面有相当大的贡献,其中最大的贡献要算提出了能量释放(energy release)的观点,以及根据这个观点而建立的断裂判据。根据Griffith 观点而发展起来的弹性能释放理论在现代断裂力学中仍占有相当重要的地位 。 根据Griffith 能量释放观点,在裂纹扩展的过程中,能量在裂端区释放出来,此释放出来的能量将用来形成新的裂纹面积。定义裂纹尖端的能量释放率(energy release rate)如下∶能量释放率是指裂纹由某一端点向前扩展一个单位长度时,平板每单位厚度所释放出来的能量。用字母G 来代表能量释放率。由定义可知,G 具有能量的概念。其国际制单位(SI 单位制)一般用“百万牛顿/米”(MN/m)。材料本身是具有抵抗裂纹扩展的能力的,因此只有当拉伸应力足够大时,裂纹才有可能扩展。此抵抗裂纹扩展的能力可以用表面自由能(surface free energy)来度量。一般用γs 表示。表面自由能定义为:材料每形成单位裂纹面积所需的能量,其量纲与能量释放率相同。 若只考虑脆性断裂,而裂端区的塑性变形可以忽略不计。则在准静态的情形下,裂纹扩展时,裂端区所释放出来的能量全部用来形成新的裂纹面积。换句话说,根据能量守恒定律,裂纹发生扩展的必要条件是裂端区要释放的能量等于形成裂纹面积所需的能量。设每个裂端裂纹扩展量为a ?,则由能量守恒定律有:()(2)s G B a B a γ?=?

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂 纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及 (裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数 值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板, 具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上, 0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。

可以验证,完全满足该问题的全部边界条件的解 析函数为 22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: )2() ()(I a a Z ++=ζζζσζ 于是有: a a a a a K πσζζσπζζζσπζζζ=++?=++?= →→)2()(2lim )2() (2lim 00Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应 力强度因子ⅡK 的表达式。

【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,ττσσ===xy y x ,0; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。 可以验证,完全满足该问题的全部边界条件的解 析函数为 2 2Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: ) 2()()(Ⅱa a Z ++=ζζζτζ 于是有: a a a a a K πτζζτπζζζτπζζζ=++?=++?=→→) 2()(2lim )2()(2lim 00Ⅱ 6.对图示“无限大”平板Ⅲ型裂纹问题,求应 力强度因子ⅢK 的表达式。

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

ABAQUS中的断裂力学及裂纹分析总结(转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 (2) 另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数. 裂尖及奇异性定义: 在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。 这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况. 网格划分: 裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及(裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板,具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。 可以验证,完全满足该问题的全部边界条件的解析函数为 2 2Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ或ζ= z -a , 代入(1),可得: ) 2() ()(I a a Z ++=ζζζσζ 于是有:

a a a a a K π σ ζ ζ σ π ζ ζ ζ σ πζ ζ ζ = + + ? = + + ? = → → ) 2 ( ) ( 2 lim ) 2 ( ) ( 2 lim Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应力强度因子Ⅱ K的表达式。 【解】将x坐标系取在裂纹面上,坐标原点取在裂纹中心,则上图所示问题的边界条件为: ①当y = 0,x→∞时,τ τ σ σ= = = xy y x , 0; ②在y= 0,a x<的裂纹自由面上,0 ,0= = xy y τ σ;而在a x>时,随a x→,∞ → xy τ。 可以验证,完全满足该问题的全部边界条件的解析函数为 2 2 Ⅱ ) ( a z z z Z - = τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ或ζ= z-a, 代入(1),可得: ) 2 ( ) ( ) (Ⅱ a a Z + + = ζ ζ ζ τ ζ

钢结构工程检测与加固结课论文

钢结构工程事故的分析与处理 摘要:本文从疲劳、失稳、锈蚀在钢结构工程设计、加工制作、安装施工、正常使用、老化阶段中会导致结构的损伤与破坏,从而造成事故。并对事故的类型、原因进行了解剖,以及对事故的处理。 关键词:钢结构;疲劳、失稳、锈蚀、事故、分析、处理 1.事故的一般原因分析 设计阶段存在的问题:结构选型及设计方案不合理;计算简图不当,计算结果错误;荷载取值与受力情况不符;材料选用不妥,不能满足工程要求;结点构造不合理,造成致命缺陷;对施工阶段的特点和使用阶段的特殊要求欠考虑。 制作阶段存在的问题:不按图纸要求制作,任意修改施工图;制作尺寸偏差过大;制作工艺不良,设备落后;缺少熟练的技术工人和高素质的管理人员不能严格遵守施工及验收规范;不按照有关标准规范检查验收;存在偷工减料行为。安装阶段存在的问题:安装顺序及工艺不当;吊装、定位、校正的方法不正确;临时支撑刚度不足,安装中的稳定性差;现场焊接及螺栓施工质量达不到设计要求防火及防腐做法不达标;存在偷工减料行为。 正常使用阶段的事故原因:使用不当引发过大地基下沉;超载使用;任意开洞、局部改造削弱了构件截面和结构整体性;生产条件改变,但未进行必要的鉴定与加固;生产操作不当,造成构件或结构损坏但未及时修复;使用条件恶劣,又不认真执行结构定期检查维修规定;不可抗力。如战争、火灾、水灾、地震等。[1]. 2.钢结构的疲劳破坏事故 在反复交变荷载的作用下,在应力水平远低于钢材的极限抗拉强度甚至屈服点的情况下发生的钢结构或构件的破坏现象,称为疲劳破坏。疲劳破坏与钢材的静力强度和最大静力荷载并无明显关系,而主要与应力幅、应力循环次数和构造细节有关。因此,必须从构造细节出发,尽可能地减小应力集中,从而改善结构构件的疲劳性能。在设计过程中,应选用优质钢材,减少材质缺陷;采取合理的构造做法,避免焊缝集中,减少截面突变;在制作、安装过程中,应使缺陷、残余应力的影响减小到最低程度,尽量避免产生附加应力集中;对焊缝进行修补,以缓解因缺陷产生的应力集中。 疲劳砸坏的影晌因素分析。疲劳是一个十分复杂的过程,从微观到宏观,搜劳破坏受到众多因素的影响,尤其是对材料和构件静力强度影响很小的因素,对疲劳影响却非常显著,例如构件的表面缺陆、应力集中等。影响钢结构疲劳破坏的主要因素是应力帽、构造细节和循环次数,而与钢材的静力强度和最大应力无明显关系。应力集中对钢结构的疲劳性能影响显著,而构造细节是应力集中产生的根源。构造细节常见的不利因素如下:钢材的内部缺陆,如偏析、夹渣、分层、裂纹等;制作过程中剪切、冲孔、切割;焊接结构中产生的残余应力;焊接缺陷的存在,如气孔、夹渣、咬肉、未焊透等;非焊接结构的孔洞、刻槽等;构件的截面突变;结构由于安装、温度应力、不均匀沉降等产生的附加应力集中。 如1965年日本为美国建造的Sedeo型半潜式平台在交货途中破损没,1980年Alexan-derkeyland号半潜式平台在北海沉没[3].除了在航空领域,海洋领域多发生疲劳事故外,疲劳失效也频繁发生在铁路公路桥梁和发电站管道上,由于一个鱼眼杆的应力腐蚀裂纹的作用,1967年美国西弗吉尼亚州普莱曾特

也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。本贴所有内容均为原创,转贴请注明,谢谢。 引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。当时这个概念还没引起学术界的轰动。直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。随后在工程中发现了越来越多的LEFM无法解释的问题。cohesive fracture mechnics开始引起更多的关注。在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energy mechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwin energy dissipation mechanism,但作了一些修正。 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1, …… ...... time,0 要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在 *INITIAL CONDITIONS, TYPE=CONTACT中定义 master, slave, 及指定的Nset 这种方法用途其实较为有限。 例子如图 [本帖最后由 yaooay 于 2008-10-31 00:48 编辑] debond example.png(157.24 KB, 下载次数: 488)

经典断裂力学的发展历史及未来的发展方向 姓名:张杰学号:S2******* 摘要:断裂力学是50年代开始发展起来的固体力学的新分支。本文主要按断裂力学发展的历史,着重介绍线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的基本理论与断裂准则,简要谈及建立在奇异性基础上经典断裂力学断裂理论所存在的主要问题与矛盾,以及对未来断裂力学的展望。 关键词:断裂力学;发展方向;断裂准则 1 经典断裂力学的发展历史 金属断裂力学是20世纪50年代开始蓬勃发展起来的固体力学分支。常规的疲劳设计方法,假设材料开始时是无裂纹的连续介质,经过一定的应力循环后,由于疲劳积累损伤而形成裂纹,再经裂纹扩展阶段直至断裂。按常规的疲劳试验方法,试验结果常表示为应力σ与寿命t的关系,常用σ-t曲线表示。常规疲劳设计所用的公式,都是从σ-t曲线为基础而推出的[1]。大多数结构材料的疲劳极限与强度极限成线性关系,所以一般认为强度极限高的材料,疲劳寿命也长。 断裂力学认为裂纹的存在是不可避免的。断裂力学着眼于从裂纹尖端局部区域的应力场、位移场来研究带裂纹的构件所能承受的载荷和断裂韧度及裂纹尺寸间定量关系,研究裂纹的扩展规律,考察裂纹对结构强度和使用寿命的影响,建立断裂准则,提出容许裂纹的设计方法,探讨如何控制和防止混凝土结构断裂破坏的措施。断裂力学学科的先导者英国科学家Griffifth于1920年研究了玻璃、陶瓷等脆性材料的实际强度与理论强度的重大差异,为描述脆性断裂过程提出了脆性材料裂纹扩展的能量准则。这一准则有力地说明了实际强度与最大裂纹尺寸间的关系。Griffifth认为裂纹扩展时为了形成新裂纹表面必定消耗一定的能量,该能量是由弹性应变能释放所提供。长期以来被认为只适于玻璃等脆性材料的Griffifth理论直到20世纪50年代才由Irwin和Orowan重视,加以修正并用于金属材料的脆性断裂,这就成为断裂韧度概念的基础。他们认为Griffifth的能量平衡中必须同时考虑裂纹尖端附近塑性变形耗用的能量。裂纹扩展时能量释放不但用于形成新裂纹表面,对于金属材料来说,还要用于裂纹尖端附近产生塑性变形的能量[2]。 线弹性断裂力学、弹塑性断裂力学和断裂动力学3个方面几乎是同时开始研究的。由于线弹性比较简单,进展较快。1955年,Irwin提出应力场强度的观点,当表示裂纹尖应力场强度的应力强度因子达到临界值(即材料的断裂韧度)时,就发生断裂,这就是应力强度因子断裂准则,该准则与Griffifth能量准则构成了线弹性断裂力学的核心内容。之后,各种确定应力强度因子的方法(包括解析法、

断裂力学裂纹扩展 做裂纹扩展仿真确实比较难,目前一般都是以弹性断裂力学为基础,二维裂纹扩展容易一些,三维裂纹比较复杂,如果仅是要获得扩展寿命,裂纹长度,可以自己编程做,我是这样做的。如果要想获得不同裂纹前沿的应力应变场和K,模拟结构裂纹随载荷的动态真实变化,可能要借助软件: (1) Beasy,边界元软件,将三维问题解化为二维问题,比较方便。 (2) Fatigue软件,也还可以,但对复杂结构很难胜任。 (3) FE-fatigue 也不错 (4) FRANC3D。 至于计算,常用的方法有: (1)Prescribed Method 特点:裂纹只能沿单元边界扩展。 (2)Analytical Geometry Method 特点:将几何和载荷、约束分解为简单的解析形式。 (3)Known Solution Method 特点:查表求已知解。两个重要软件:NASGRO and AFGROW (4)Meshfree method 美国西北大学做的最好。优点是不需重新划分网格。 (5)Adaptive BEM/FEM 自适应网格边界元/有限元,用的较广。 (6)Lattice method 格子方法 (7)Atomic method 一般使用分子动力学方法。 (8)Constitutive method 在本构方程里引入破坏准则,无需预先引入裂纹。如本人上篇帖子。 (9)Cohesive element 使用cohesive element。 断裂学科研究的新趋向 第十届国际断裂大会(ICF10)的情况介绍

四年一届的国际断裂大会(Int. Conference of Frature, ICF-10)于2001年12月3日~12月6日在美国夏威夷召开。与会的有来自44个国家的代表约610人。中国参加会议的代表并有论文在论文集上发表的计34人(含中国香港10人),其中部分代表因故未能到会。此次会议的举办是成功的,现将会议的简要情况与参加会议的体会及有关建议分别作简单汇报于下。 一、ICF 10大会于2001年12月3日开幕,由ICF 10主席Ritchie教授主持,由ICF 名誉主席Yokobori教授(日)和Evans教授(美)作荣誉报告。他们的报告题目分别为:“用复杂系统科学与工程解决强度与断裂问思路的新尝试”,“力学和材料学的新技术挑战和研究的机遇”。Yokobori教授从复杂系统的角度,用系统学的观点阐释了断裂与强度问题的发展历史,从系统综合的新思路,展望断裂学科的发展。Evans教授回顾了以往由于航天与能源系统的需求,推进了断裂学科的进展。时至今日,生物医学、光电子、半导体等领域的产品对断裂学科的研究与发展提出了新的要求各种工程技术对材料和持久性与可靠性提出了新的课题,与破坏相关现象的研究必须从确定系统的临界状态推进到系统的生存状态,它要求人们研究新的破坏机制并集中注意力于维护系统的持久性。报告列举了两类例子来说明上述的趋向:其一是高承压的薄膜,在热学与力学的循环作用下,发生失稳导致破坏;另一是超轻的多功能结构,它在航天与汽车系统中有强列的需求,它除了应用通常的塑性屈曲分析外,还引入新颖的拓扑和优化的方法,体现了材料与结构设计的一体化及其与力学结合,反映了系统综合发展的新的趋向,迎来了力学与材料科学结合的新机遇。 大会还组织了27个专题分组的邀请报告和29个重点邀请报告。这些报告涉及动态断裂;脆性材料疲劳与高温疲劳;压缩断裂;细观断裂;结构诊断和无损检测与断裂;裂尖区非常规畴变带;环境断裂;纳观尺度效应与断裂;压电材料和聚合物的变形与断裂等。 大会组织的33个分组口头报告。涉及高温断裂、断裂物理、非线性断裂、脆

经典断裂力学的发展历史及未来的发展方向一、前言 断裂力学主要研究含裂纹体的力学行为,研究固体中裂纹的产生、传播和快速发展的规律[1]。它和很多其他的理论一样都是从实践中产生和发展的,任何材料与工程结构都无可避免的存在着类似裂纹的缺陷,或是结构中固有的,或是制造加工和使用过程中造成的损伤。这些缺陷的存在和发展,降低了结构的承载能力,甚至使之失效。起初此类断裂在国内外造成了很大的事故与人员伤亡,但建立在材料力学、结构力学和弹性力学基础上的静强度设计方法并不能反映含裂纹结构的强度特点,断裂力学的理论也就应运而生了。断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件. 二、经典断裂力学的发展历史 2.1 线弹性断裂力学 早在1920 年,英国的物理学家Griffith 在对玻璃的断裂研究中便提出断裂力学概念。Griffith 用材料内部有缺陷(裂纹)的观点解释了材料实际强度要小于理论强度的现象,同时当裂纹受力时,如果裂纹扩展所需的表面能小于弹性能的释放值,则裂纹就扩展直至断裂破坏。这一理论在对玻璃的断裂研究中得到证实,但该理论只适用于完全弹性体,即完全脆性材料,所以没得到发展。[2]1921 年,Griffith又提出了能量释放理论,即G 准则。认为一旦含裂纹的脆性材料物体的能量释放。率等于表面能,裂纹就会失稳扩展,导致脆断。Griffith 建立的脆性材料断裂理论,为断裂力学奠定了理论基础。[3]1948年,Irwin经过10年的艰苦探索,提出对Griffith理论的修正,引进一个新参量G,成为能量释放率。1960年Irwin用石墨做实验测出裂纹开始扩展时的K值,抛弃了物体连续性假设,而从物体中含有裂纹这一前提出发,以弹性力学和塑性力学为理论工具,引入参数K IC体现材料对断裂的抵抗能力,参数K 表达裂缝尖端应力强度的大小。建立了临界应力强度因子准则,即K 准则,从而奠定了线弹性断裂力学的理论基础。 1.2.3 弹塑性性断裂力学

断 裂 力 学 论 文 一基本概念 1任何一门科学都是应一定的需要而产生的,断裂力学也是如此。 一提到断裂,人们自然而然地就会联想到各种工程断裂事故。在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。于是人们认识到了传统的设计思想

是有缺欠的,并且开始寻求更合理的设计途径。人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。因此实际材料的强度大大低于理论模型的强度。断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。 因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学2组成 由于研究的观点和出发点不同,断裂力学分为 微观断裂力学 断裂力学{线弹性断裂力学 宏观断裂力学{ 弹塑性断裂力学 微观断裂力学 研究原子位错等等比晶粒尺寸还小的微观结构的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。 宏观断裂力学 在不涉及材料内部的断裂机理的条件下,通过连续介质力学分析和试件的实验做出断裂强度的估算与控制。其中,线弹性断裂力学研究的对象是线弹性裂纹固体,认为裂纹体内各点的应力和应变的关系都是线性的,遵守Hook定律(σ∝ε)。适用于塑性区的尺寸远小于裂纹的尺寸的情况。弹塑性断裂力学则采用弹塑性力学的分析方法来分析裂纹固体,适用于裂纹尖端塑性区的寸接近或大于裂纹尺寸的情况。 裂纹的概念 实际构件中的缺陷是多种多样的,主要包括 缺陷:处焊接中的气泡、未焊透槽加工中产生的刀痕、刻孔冶炼中产生的夹渣、气裂纹~统称为裂纹 影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。 脆性断裂与韧性断裂 韧度(toughness):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。脆性(brittle)和韧性(ductile):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。

断裂力学与“断裂力学之父” 1、断裂力学发展简史 英格里斯(E.C.Inglis)1913年发表无线板椭圆孔应力集中理论分析结果;格里菲斯(A.A.Griffith)1920年发表著名论文“固体的断裂与流动的现象”(“The phenomenon of Rupture and Flow in solids”)。前者为后者准备了某种条件,而后者为后来的固体断裂现象研究与断裂力学的创立奠定了理论基础。 欧文(G.R.Irwin)于1985年和1960年分别发表“断裂”(“Fracture”)和“断裂力学”(“Fracture Mechanics”)两篇具有划时代意义的著名论文。从此,断裂力学这门新型的工程结构强度科学便在全世界广泛地传播开来。现在这门学科已成为当代最新科学技术成就里最富实用价值的强有力的一门新的工程科学了。 奥罗万(E.Orowan)、巴林布拉特(G.I.Barenbatt)等著名学者也发表一系列论文,对断裂力学的发展起到了奠基和发展作用。阿维尔巴赫等人(B.L.Arerbach etal)1959年主编的论文集《断裂》(《Fracture》)对本门学科也同样起到了极大的作用。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出了以下公式: 该公式虽然有所进步,但仍未超出经典的格里菲斯公式范围,而且同表面能一样,应变功U是难以测量的,因而该公式仍难以应用在工程中。 断裂力学的重大突破应归功于欧文应力场强度因子概念的提出,以及以后断裂韧性概念的形成。1957年,欧文应用Westergaard .H.M在1939年提出的解平面问题的一个应力函数求解了带穿透性裂纹的空间大平板两向拉伸的应力问题,并引入应力场强度因子K的概念,随后又在此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术,从而奠定了线弹性断裂力学的基础。 以上便是断裂力学的简要发展历程。 2、格里菲斯简介 作为断裂力学之父,格里菲斯对这个理论的贡献是不言而喻的。以下是对格里菲斯的简介:

断裂力学的起源和展望 摘要:断裂力学是50年代开始发展起来的固体力学的新分支。主要按断裂力学发展的成熟度,着重介绍线弹性断裂力学、弹塑性断裂力学、断裂动力学这三种经典断裂力学的基本理论与断裂准则,简要谈及建立在奇异性基础上经典断裂力学断裂理论所存在的主要问题与矛盾,并说明断裂力学在一些工程上的应用以及对新材料断裂理论的探索与对未来断裂力学的展望。 关键词:断裂力学;基本理论;断裂准则 0引言 断裂力学是近几十年才发展起来的一支新兴学科,它从宏观的连续介质力学角度出发,研究含缺陷或裂纹的物体在外界条件(荷载、温度、介质腐蚀、中子辐射等)作用下宏观裂纹的扩展、失稳开裂、传播和止裂规律[1]。断裂力学应用力学成就研究含缺陷材料和结构的破坏问题,由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。例如,断裂力学技术已被应用于估算各种条件下的疲劳裂纹增长率、环境问题和应力腐蚀问题、动态断裂以及确定试验中高温和低温的影响,并且由于有了这些进展,在设计有断裂危险性的结构时,利用断裂力学对设计结果有较大把握。断裂力学研究的方法是:从线弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹简短附近的局部断裂条件。 1断裂力学的产生和发展 传统强度设计的危机 传统强度设计是以材料力学为基础的。假定材料均匀、连续、各向同性、没有裂纹和缺陷,设计时只要满足下式 []s b k k σσσσ???≤???? 塑性材料(如中低强钢、合金钢) 脆性材料(如铸铁) 结构就安全,否则就不安全。 式中:σ——工作应力;[]σ ——许用应力;s σ——材料屈服强度;b σ——材料抗拉强度;k ——安全系数。 一般取k =1.3~2.0。实际结构中可能有的缺陷和其他想不到的或难以控制的因素(如计算方法的不准确、载荷估计的难以准确等),系数k 中都考虑的到了。 传统的强度设计方法,在工程中已经成功地应用了100多年。事实证明,在一般情况下(如对于中低强钢制的中小型构件或零件),传统设计是可行的。虽然材料破坏条件的研究不断发展以及结构的应力计算方法不断进步,但基本设计思想一直没有变。 原因在于:直到30年代以前,广泛应用的低强合金钢,韧性较好,破坏往往是强度不够,韧性有余。实际上,破坏以塑性失效为主,故传统的强度设计是合理的。以后的研究也证明,对中低强钢的中小型构件或零件,传统设计也是适用的。 30年代(二次世界大战以前),欧洲一些焊接空腹架桥,投入使用不久,在低温下突然脆断,在小载荷下,脆断从焊缝处开始。可惜,当时工程界未认识到是脆断。 40年代以来,,对于中低强钢构件,广泛采用焊接技术,当时焊接技术水平低,焊接缺陷多。中强钢又有低温脆性,故发生一系列的焊接轮、焊接容器、锅炉气包、桥梁等的低应力脆断事故。例如美国,有9个T-2贮罐突然断成两段;在二次大战中,造了5000艘

相关文档
最新文档