氮掺杂碳载钴催化剂制备及其TG-FTIR和XRD光谱分析

氮掺杂碳载钴催化剂制备及其TG-FTIR和XRD光谱分析
氮掺杂碳载钴催化剂制备及其TG-FTIR和XRD光谱分析

钴钼系催化剂的硫化

硫化成功的必备条件有三个:0 _; X" s0 j6 }8 b+ N! } 1)要有足够高的硫化温度,一般不大于500 ℃;2)要有足够的强制硫化时间,并且最好有数小时的闷炉;3)强制硫化时,原料气中的硫化氢越高越好,一般不低于15 g/Nm3 。硫化时要防止催化剂超温,超过550 ℃对催化剂造成危害,但短时间超温对催化剂活性影响不大。 一、硫化条件) q8 j* @- |7 J3 C1 y& U 1、温度对硫化反应深度的影响很大,一般入口温度控制在230~260℃,床层温度控制在250~280℃。硫化反应后期应尽量提温,适当的高温(~425℃)既可以保证催化剂的活性,又可缩短硫化时间。7 K& X* R7 H+ c! }* o 2、硫化压力对硫化深度的影响不是很大,可根据装置的实际情况来确定压力,一般不低于1.0MPa(表压)。 3、H2S的浓度过低(体积分数≤0.2%)时,还原后的催化剂活性较差;H2S的较高时,对催化剂的影响不大。出于安全考虑,H2S的浓度不宜提的太高。/ W9 q8 h) o0 ?% I% h 4、系统中H2的体积分数尽量控制在10%~20%,过低会影响CS2的氢解,过高则有可能发生还原反应。 CS2在200℃以上时才发生氢解反应,所以添加CS2要等到温度达230℃左右开始添加。过早添加容易使CS2氢解不完全,在系统内冷凝和吸附。当达到温度时,就会突然发生氢解反应,放出大量的反应热导致床层温度暴涨。但超过250℃再加CS2,就可能发生CoO和MoO3的还原反应,使催化剂失活。运行过程中要保持H2的体积分数在10%~35%之间,因为当H2的浓度过低时,亦有可能造成CS2氢解不完全,在系统内冷凝和吸附。当H2含量提高时,CS2大量氢解,释放过多的反应热,从而导致催化剂床层温度暴涨。串联硫化时要防止“提温提硫”的同时发生,因为当上段硫穿透时,较高的热点温度和上段穿透的硫进入下一段,造成下段“提温提硫”,很容易造成超温。

一种钌钯碳催化剂的应用

一种钌钯碳催化剂的应用 2016-11-09 13:37来源:内江洛伯尔材料科技有限公司作者:研发部 一种钌钯碳催化剂的应用对苯二甲酸二甲酯,简称DMT (Dimethyl terephthalate),白色针状晶体,熔点140.7°C,沸点284°C,易升华。主要用于合成聚酯纤维、树脂、薄膜、聚酯漆及工程塑料等。DMT —步加氢产物为1,4-环己烷二甲酸二甲酯(简称DMCD),二步加氢产物为1,4_环己烷二甲醇(简称CHDM)。DMCD是一类重要的有机中间体和绿色化学品,可以作为聚合物的改性材料,也是生产CHDM的重要原料。由两者合成的高性能聚酯等材料的热稳定性和化学稳定性好,不含苯环,无毒,是一种绿色环保增塑剂和绿色化学品。特别是合成的聚对苯二甲酸1,4_环己烷二甲醇酯(PCT)、聚对苯二甲酸乙二醇环己烷二甲醇(PETG)、共聚聚酯(PCTA)广泛的用于食品包装,婴幼儿的用具、玩具、器皿等中。因此,DMCD和CHDM的研究和发展将有效的改善国民的食品包装安全问题,对儿童、幼儿的身体健康发育具有重要的意义。目前,人们对于对苯二甲酸二甲酯催化加氢制备1,4_环己烷二甲酸二甲酯进行了大量的研究。使用的加氢催化剂主要有两种,一种是贵金属催化剂,以钌铑钯为活性组分,以活性炭、氧化铝、氧化硅等为载体,近年来成为研究的热点;另一种是非贵金属催化剂,以雷基镍为代表。由于生产雷基镍催化剂存在高能耗高污染,加氢的副产物也比较多,已逐渐被取代。 本文介绍的双金属负载碳载催化剂制备方法为: (I)预先对载体炭材料进行预处理,并用水洗涤至中性,烘干;再在50-150°C、真空条件下脱气处理0.5-4h,备用; (2)将可溶性的钌盐和钯盐分别配制成浓度为0.5_10mol/L、0.l_2mol/的溶液; (3)将预处理的炭材料采用真空等量浸溃法先浸溃钌溶液2-10h,80°C下干燥 2-4h,120°C下干燥2-6h ;再采用同样的方法于50-80°C水浴中浸溃钯溶液 4h,80°C下干燥2-4h,得到钌钯-炭催化剂前体;

【CN109939717A】氮掺杂超薄碳纳米片负载的单原子催化剂及其制备方法与应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910298762.7 (22)申请日 2019.04.15 (71)申请人 中国科学院化学研究所 地址 100080 北京市海淀区中关村北一街2 号 (72)发明人 宋卫国 李会宁 曹昌燕  (74)专利代理机构 北京纪凯知识产权代理有限 公司 11245 代理人 关畅 (51)Int.Cl. B01J 27/24(2006.01) B01J 37/08(2006.01) C07C 211/46(2006.01) C07C 209/32(2006.01) (54)发明名称氮掺杂超薄碳纳米片负载的单原子催化剂及其制备方法与应用(57)摘要本发明公开了一种氮掺杂超薄碳纳米片负载的单原子催化剂及其制备方法与应用。该单原子催化剂以氮掺杂超薄碳纳米片为载体,金属负载量可调,制备方法简单易行,具有很好的重现性,且适用于多种金属(如:Co,Fe,Ni,Cu,Mn等)。其技术方案包括如下步骤:(1)将金属盐与配体形成的配合物吸附于g -C 3N 4上;(2)在前述得到的复合物外包覆一层多巴胺聚合物;(3)将前述包覆后的材料在惰性气氛中进行高温处理,即得到负载于氮掺杂超薄碳纳米片上的金属单原子催化剂。由前述方法制备的钴单原子催化剂在硝基苯氢转移反应中表现出优异的活性与选择性,在相似反应条件下该催化剂的TOF值为文献报道最佳结果的20倍, 极具应用前景。权利要求书2页 说明书4页 附图3页CN 109939717 A 2019.06.28 C N 109939717 A

钯加氢催化剂及其应用

钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1.钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1.钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80℃下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20℃搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40℃-50℃真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40℃-60℃和C2H2∶H2=1:2 时,乙烯产率达98%-100% 。 另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某些反应中,钯/碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)催化剂在腈加氢时,应

硫氮掺杂碳纳米管

Sulfur e nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries Yinchuan Li a ,Rui Mi b ,Shaomin Li b ,Xichuan Liu b ,Wei Ren b ,Hao Liu b ,*,Jun Mei a ,**,Woon-Ming Lau b a School of Materials Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,PR China b Chengdu Green Energy and Green Manufacturing Technology R&D Center,Chengdu Development Center of Science and Technology,China Academy of Engineering Physics,Southwest Airport Economic Development Zone,Shuangliu,Chengdu 610207,PR China a r t i c l e i n f o Article history: Received 31October 2013Received in revised form 26February 2014Accepted 6April 2014Available online 11May 2014Keywords:Nitrogen doped Carbon nanotubes Lithium e sulfur batteries Sulfur distribution a b s t r a c t The performance of lithium sulfur (Li/S)battery was greatly improved by the employment of nitrogen doped carbon nanotubes (N-CNTs)based cathode.By manipulating its structure thereby creating more defects,N-CNTs presents better dispersion of sulfur particles on N-CNTs and higher electrical conductivity compared with their non-doped counterpart,which explain the reason why N-CNTs/S composite shows improved performance.The speci?c discharge capacity was maintained at 625mAh g à1and 513mAh g à1after 100cycles at 0.2C and 0.5C,respectively,which was about 2times as that of CNTs.This method is proved to be a promising way to develop cathode materials for lithium sulfur batteries. Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved. Introduction The increasing capabilities of portable electronic devices as well as the desire for long driving distances between re-charges of electric vehicles require electrical energy storage systems with high energy density [1].The Lithium/sulfur (Li/S)battery is an attractive and promising candidate among emerging battery technology.It has attracted great interest as potential energy storage devices for electrical vehicles and other applications needing large-scale electricity storage [2].Conventional Li/S cells consist of a lithium metal anode,an organic liquid electrolyte,and a sulfur composite cathode [3].Sulfur is useful in the cathode because assuming complete reaction to Li 2S,it has a theoretical speci?c capacity of 1672mAh g à1,and energy density of 2600Wh Kg à1[4],which is signi?cantly higher than the conventional lithium-ion cathode materials [5]. *Corresponding author .Tel.:t862867076208;fax:t862867076210.**Corresponding author .Tel.:t862867076202. E-mail addresses:mliuhao@https://www.360docs.net/doc/e16913210.html, (H.Liu),meijun12@https://www.360docs.net/doc/e16913210.html, (J. Mei). Available online at https://www.360docs.net/doc/e16913210.html, ScienceDirect journal homepage: https://www.360docs.net/doc/e16913210.html,/locate/he i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n e n e r g y 39(2014)16073e 16080 https://www.360docs.net/doc/e16913210.html,/10.1016/j.ijhydene.2014.04.047 0360-3199/Copyright a2014,Hydrogen Energy Publications,LLC.Published by Elsevier Ltd.All rights reserved.

钴钼系耐硫变换催化剂使用注意事项

K8-11系列催化剂使用注意事项 一、催化剂的使用 1.1 催化剂的装填 装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。惰性材料应不含硅,防止高温、高水汽分压下释放出硅。 催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。 一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。 由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。 1.2 开车 1.2.1 升温 为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N 2、H 2 、 空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N 2 。 采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。 当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。 1.2.2 硫化 与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。 如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应: CoO+H 2S ? CoS+H 2 O ?H0 298 =-13.4KJ/mol (1) MoO 3+2H 2 S+H 2 ? MoS 2 +3H 2 O ?H0 298 =-48.1KJ/mol (2) CO+H 2O ? CO 2 +H 2 ?H0 298 =-41.4KJ/mol (3) CO+3H 2? CH 4 +H 2 O ?H0 298 =-206.2KJ/mol (4) 硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期

钯的催化剂种类及其应用

钯的催化剂种类及其应用 钯的催化剂种类及其应用 2011年11月03日 钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。通常钯催化剂分有载体和无载体两类。其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。基本上都用于各种有机催化加氢。钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。 1. 钯/碳酸钙催化剂 钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。还可以加喹啉进一步提高其加氢选择性。它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。 1.1. 钯/碳酸钙催化剂的实验室制备 将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80?下搅拌10min,然后通氢气。还原氯化钯为钯。过滤并水洗得钯/碳酸钙。将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。20?搅拌10min。沸水浴上加热并搅拌40min。滤出、水洗后40?-50?真空干燥得钯/碳酸钙催化剂。 1.2 钯/碳酸钙催化剂的应用 前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。在40?-60?和C2H2?H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。例如:用被铅毒化的钯/碳酸钙催化剂。催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。 开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。工艺过程能重新设计。试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。真空干燥工业生产不现实,可设计成在惰性气氛中干燥。沸水浴上加热搅拌可设计成在红外或微波中加热。载体也可设计成氧化铝或氧化铝球。也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。 2. 钯/碳催化剂 该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。在某 碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。些反应中,钯/ 2.1. 钯/碳催化剂的实验室制备 根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。使用时用氢气还原。一般钯/碳催化剂含钯3%-5% 。 钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。这是因为金属硼化物对腈加氢有良好的活性和选择性。 2.2. 钯/碳催化剂的应用 钯/碳催化剂可用于吡啶加氢制哌啶。将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。用钯/碳(5%钯)

选择性氮掺杂的碳纳米管的结构、组成和化学

选择性氮掺杂的碳纳米管的结构、组成和化学 摘要 掺杂有一系列氮含量为(0-10%)的碳纳米管(CNT)通过使用二茂铁,NH3和二甲苯或吡啶在一个浮动催化剂CVD上进行合成的方法。XPS和Raman显微镜用来定量评估掺氮碳纳米管的组成和结构特性(N-CNTs)。XPS分析表明C1s 光谱轨迹随着氮掺杂N1sXPS光谱发生的移位和扩大显示出三种主要类型的氮协调(吡啶,镍铬合金和季),伴随着吡啶型选择率从0增加到4.5%。一阶拉曼光谱出现的五峰由于氮含量不同在峰强度和宽度上有所不同。D和G带集合强度的比例随着氮含量线形变化。用碘滴定的方法来测量所制备的N-CNTs还原位点的数量。这是通过掺杂氮的方法对碳纳米管化学活性有决定性影响的第一份报告。针对规律性增长和CNTs的选择性掺杂氮已经报道的方法,提出了一种新的方法来系统地研究纳米碳组成和结构对化学和电化学活性在应用上的影响。 1 简介 石墨烯晶格中杂原子(硼、硫、磷和氮)掺杂兑SP2碳材料的物化特性有着不同的影响。其中氮的取代掺杂尤其受到重视,因为其对硬度、导电性和化学活性显著改变进行了理论预测和实验观察。掺氮碳材料合成的几种方法已经在应用中,包括溅射沉积、含氮聚合物石墨化和预先形成的碳爆漏在升温过程中已形成反应气体(HCN和NH3)。虽然前两条线路通常制得的材料可以分别用作惰性涂料和吸附剂。后一条线路特别有希望合成可以增强化学反应中电子转移过程的活性碳,可以应用在电池和燃料电池中。虽然许多研究已经评估了掺氮碳的结构组成特性之间的关系,但是掺氮对物理化学特性的影响没有得到充分界定。举个例子,碳表面积、表面功能和石墨化程度由于采用碳材料和前处理及加工过程的不同而有相当大的差异。进一步,掺杂氮的过程是一个采用活化条件的复杂过程(比如反应气体浓度、时间、温度),因此,关于掺氮碳会得到许多不同的甚至相互矛盾的结论。 一个引人注目的替代方案可以使其直接生长和纳米碳进行氮的取代掺杂,这个方法使用到气相前体而不是像传统方法那样使用液相或者固相前体。通过化学气相沉积技术合成的气相纳米碳对于物化性质有着很好的控制能力,比如杂原子掺杂、结晶度和边缘暴露程度。我们实验室之前的报告已经描述在碳纳米管电极上掺氮对于氧化还原和、过氧化氢分解和邻苯二酚氧化反应的影响。在此,我们提出对于采用吡啶和NH3,通过改进的流化催化剂合成碳纳米管进行控制增长

变换催化剂性能和控制工艺指标

QCS―11催化剂的技术性能介绍 QCS―11是钴钼系一氧化碳耐硫变换催化剂,是我公司专门为高CO、高水气比研究开发的催化剂。已经在两个壳牌气化工艺一变使用。和QCS-03/QCS-01催化剂相比,耐热温度高、活性稳定性好、孔结构更加合理,另外,颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备上述特性的基础和必备条件。 目前高CO、高水气比工艺包括壳牌炉气化、航天炉气化、GSP气化等,其中神华宁煤使用GSP是目前CO和水气比最高的工艺,对催化剂的要求也最高。我公司的QCS系列催化剂采用镁-铝-钛三元载体、稀土助剂,其活性稳定性、工况适应性是最好的,在与国外、国内催化剂对比使用过程中得到很多验证,获得中国、美国、德国、日本、印度、南非等国家的专利。 QCS―11钴钼系一氧化碳耐硫变换催化剂,适用于以重油、渣油部分氧化法或煤气化法造气的变换工艺,促进含硫气体的变换反应,是一种适应宽温(220℃~550℃)、宽硫(工艺气硫含量≥0.01% v/v)和高水气比(0.2~2.0)。该催化剂具有机械强度高,结构稳定性好,脱氧能力强等特点,能有效地脱除与吸附原料气中的氧和焦油等杂质或毒物。对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。具有稳定的变换活性,可延长一氧化碳耐硫变换催化剂的使用寿命。 新鲜催化剂活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时应首先进行硫化,使金属氧化物转变为硫化物。可以用含硫工艺气体硫化,也可用硫化剂单独硫化。 QCS―11耐硫变换催化剂不含对设备和人体有危害的物质,硫化时也只有少量的水生成并随工艺气排出,对设备无危害。 主要特点为: ●耐热温度高、活性稳定性好、孔结构更加合理。 ●颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。 ●镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11催化剂具备独特性 能的基础和必备条件。 ●抗水合性能好,适用高水气比:0.2-2.0,可耐5.0MPa水蒸气分压。 ●耐热稳定性好,适合宽温变换:200-550℃。

钯炭催化剂

钯炭催化剂 英文名称:Palladium-carbon catalyst 中文名称:钯炭催化剂 钯——化学符号Pd ,是银白色金属,较软,有良好的延展性和可塑性,能锻造,压延和拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。 钯炭催化剂是将金属钯负载到活性炭里形成负载型加氢精制催化剂,用于精制处理对苯二甲酸原料,生产精制对苯二甲酸。钯炭催化剂已经先 后在不同工艺的PTA(精对苯二甲酸)装量,如北京燕山、上海石化、辽阳石化、洛阳石化和天津石化等炼化企业,成功进行了工业应用。其 主要技术指标: 项目SAC-05 外观椰壳片状 钯含量% 粒度(4-8目)% ≥95 压碎强度N ≥40 比表面积m2/g 1000-1300 堆密度g/ml 磨耗% ≤1 反应收率% ≥99 钯碳的作用 钯碳是一种催化剂,是把金属钯粉负载到活性碳上制成的,主要作用是对不饱和烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用时投 料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业和其他精细化工的加氢还原精制过程。钯碳的提纯 钯合金可制成膜片(称钯膜)。钯膜的厚度通常为左右。主要于氢气与杂质的分离。钯膜纯化氢的原理是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应是可逆的),在钯的作用下,氢被电离为质子其半径为×1015m,而钯的晶格常数为×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使钯管变形和脆化,故不能用纯钯作透过膜。在钯中添加适量的IB族和Ⅷ族元素,制成钯合金,可改善钯的机械性能。

钯炭催化剂

钯炭催化剂 英文名称:Palladium-carbon catalyst 中文名称:钯炭催化剂 钯——化学符号Pd ,就是银白色金属,较软,有良好的延展性与可塑性,能锻造,压延与拉丝。块状金属钯能吸收大量氢气,使体积显著胀大,变脆乃至破裂成碎片。 钯炭催化剂就是将金属钯负载到活性炭里形成负载型加氢精制催化剂,用于精制处理对苯二甲酸原料,生产精制对苯二甲酸。钯炭催化剂已经先后 在不同工艺的PTA(精对苯二甲酸)装量,如北京燕山、上海石化、辽阳石化、洛阳石化与天津石化等炼化企业,成功进行了工业应用。其主要 技术指标: 项目SAC-05 外观椰壳片状 钯含量% 0、48-0、52 粒度(4-8目)% ≥95 压碎强度N ≥40 比表面积m2/g 1000-1300 堆密度g/ml 0、4-0、5 磨耗% ≤1 反应收率% ≥99 钯碳的作用 钯碳就是一种催化剂,就是把金属钯粉负载到活性碳上制成的,主要作用就是对不饱与烃或CO的催化氢化。具有加氢还原性高、选择性好、性能稳定、使用 时投料比小、可反复套用、易于回收等特点。广泛用于石油化工、医药工业、电子工业、香料工业、染料工业与其她精细化工的加氢还原精制过程。钯碳的提纯 钯合金可制成膜片(称钯膜)。钯膜的厚度通常为0、1mm左右。主要于氢气与杂质的分离。钯膜纯化氢的原理就是,在300—500℃下,把待纯化的氢通入钯膜的一侧时,氢被吸附在钯膜壁上,由于钯的4d电子层缺少两个电子,它能与氢生成不稳定的化学键(钯与氢的这种反应就是可逆的),在钯的作用下,氢被电离为质子其半径为1、5×1015m,而钯的晶格常数为3、88×10-10m(20℃时),故可通过钯膜,在钯的作用下质子又与电子结合并重新形成氢分子,从钯膜的另一侧逸出。在钯膜表面,未被离解的气体就是不能透过的,故可利用钯膜获得高纯氢。虽然钯对氢有独特的透过性能,但纯钯的机械性能差,高温时易氧化,再结晶温度低,易使

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

钴钼系变换催化剂的硫化步骤和方法

硫化步骤: 触媒升温硫化曲线表: 阶段执行时间 (hr) 空速 (h-1 ) 床层各点 温度(℃) 入炉H2S含量(g/Nm3 ) 备注 1.升温12~14 200~300 常温~210 用煤气将系统置换合格后推电炉升温 2.硫化期20~24 100~200 210~300 10~15 待出口气的H2S含量≥3g/Nm3 ,床层穿透 3.强化期10 9 100~200 300~350 350~450 15~20 变换炉出口H2S含量≥10g/Nm3 4.降温置换~8 200~300 180~200 0.05 出口H2S含量≤0.5g/Nm3 ,并入系统生产 1、煤气升温阶段 (1) 常温~120℃(6~8h),120℃恒温2 h,120~200℃(4h)。 (2) 按升温硫化流程调节好有关阀门,压缩机1台三出送气压力<0.2MPa,最大循环气量15000Nm3/h。 (3) 待电加热器、变换炉各处煤气置换O2<0.5%,电加热器通气正常后,启3组电炉丝开始煤气升温。 (4) 打开循环气体出口阀,关低变炉出口DN150放空阀,将循环气体导入压机一入煤气总管,开始循环升温。 (5) 电加热器升温时,采取必要措施严格按升温曲线进行。升温期间视各段温升情况及时增减电炉丝组数,调节各段进气阀开度、气量或煤气换热器进出口煤气副线阀等。当两变换炉床层温差较大时,可用进两炉的升温煤气阀调节不同入炉点的气量。 (6) 升温期间,严格控制煤气中O2<0.5%,防止电加热器起火**,严格控制煤气系统压力不得超过0.3MPa。 (7) 恒温前应先降低热煤气温度。 (8) 在煤气升温结束前3h,两硫化罐应按要求灌装好CS2,并连接好N2瓶,升压至0.45~0.5MPa、并排水后备用。 (9) 升温期间,要注意及时排放油分离器和活性炭滤油器导淋,严防油水带入系统。 (10) 循环升温时,不必开放空,待硫化开始后,可在系统出口处打开放空置换一部分气体,以补充氢气含量。 2、催化剂硫化阶段 (1) 12-16h,210-300℃,入炉煤气中H2S 10-15g/Nm3,300℃恒温8h。 (2) 升温至床层进口温度达210℃,硫化罐排水后,即可用N2将CS2压人系统,用硫化罐出口阀,控制CS2加入量,保证入炉H2S浓度为10-15 g/m3,开始硫化并稍开系统出口放空阀。 (3) 硫化时,密切注意硫化罐液位,当快加完时,应立即切断,倒换另一台继续加入CS2,退出的一台要立即灌装CS2并加压、排水后备用,两CS2罐交替使用,专人负责。 (4) 密切注意床层温度,用电加热器组数、煤气量、煤气换热器进出口煤气副线阀、CS2加入量或进两炉的升温煤气阀等调节,维持床层温度在210-300℃。

钯碳催化剂

摘要:Pd/C催化剂的研究开发情况,包括催化剂性能及催化剂制备工艺。着重介绍了该催化剂性能改进、催化剂栽体活性炭的预处理工艺以及浸渍溶液中添加辅助溶液的研究进展。 关键词:Pd/C催化剂;制备技术 钯炭催化剂催化活性高、选择性好,在石油化工、精细化工和有机合成中占有举足轻重的地位。自从1872年发现钯炭对苯环上的硝基加氢还原反应具有催化作用以来,钯炭催化加氢以其流程简、转化率高、产率高和三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[1]。 在现今炼油、石油化工等工业催化反应中, 有很多的钯催化反应, 尤其是氢化反应中的选择加氢, 以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯, 均广泛采用和开发钯催化剂。对石油重整反应, 钯也是常选取的催化剂组分之一。在脱氢反应和异构化反应中, 虽多数应用贵金属催化剂, 但主要是Pt , 直接用钯的不多。 在NO x催化处理研究中, 负载贵金属类催化剂是最早研究和开发的, 并在实际应用方面也取得了相当大的进展[ 2] 。由于贵金属类催化剂存在价格昂贵、活性温度范围窄和有氧存在时容易失活等缺点, 应用上受到一定的限制。因此开发这类催化剂的代用品是目前环保催化研究中的热门课题, 使用少量Pd的催化剂被认为是最富有潜力的[ 3] 。在开发Pd-基催化剂的过程中, 使用活性炭为载体具有独特的意义。这不仅因为活性炭具有大的表面积、良好的孔结构用丰富的表面基团, 同时还有良好的负载性能和还原性, 而后者在消除NO x的过程中又是不可缺少的。可以设想, 当催化剂负载在活性炭上时, 一方面有可能制得高分散的催化系, 另一方面炭能作为还原剂参与反应, 提供一个还原环境, 降低反应温度并提高催化剂活性。 炭催化剂的研究现状 钯炭催化剂是催化加氢最常用的催化剂,广泛适用于双键、硝基、亚硝基和羰基加氢等领域。 活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当钯负载在活性炭上,一方面可制得高分散的钯,另一方面活性炭能作为还原剂参与

钯炭催化剂的研究进展

钯炭催化剂的研究进展 摘要:介绍了4种钯炭催化剂的制备方法,即浸渍法、浸渍沉淀法、离子交换和化学气相沉积法,综述了载体预处理、浸渍、还原等钯炭催化剂制备方面的研究进展,探讨了贵金属钯的颗粒大小、分布以及分散度等因素对钯炭催化剂性能的影响,展望了钯炭催化剂的发展趋势。 关键词:钯炭催化剂;制备;进展 Abstract:The main preparation methods of impregnation,immersion precipitation,ion exchange,and chemical vapor deposition of palladium catalysts supported on activated carbon were briefly described.The studies progress on the catalyst preparation of activated carbon pretreatment,impregnation,and reduction were reviewed in details.The effects of particle size distribution,and dispersion of precious metal palladium on the catalytic performance of palladium catalysts supported on activated carbon were discussed.The future development trends of palladium catalysts supported on activated carbon were also looked into. Key words:palladium/activated carbon catalyst;preparation;advance 钯炭催化剂催化活性高、选择性好,在石油化工、精细化工和有机合成中占有举足轻重的地位。自从1872年发现钯炭对苯环上的硝基加氢还原反应具有催化作用以来,钯炭催化加氢以其流程简、转化率高、产率高和三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[1]。在本文中,将立足于催化剂的制备过程,探讨改善钯炭催化剂性能的途径。 在现今炼油、石油化工等工业催化反应中, 有很多的钯催化反应, 尤其是氢化反应中的选择加氢, 以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯, 均广泛采用和开发钯催化剂。对石油重整反应, 钯也是常选取的催化剂组分之一。在脱氢反应和异构化反应中, 虽多数应用贵金属催化剂, 但主要是Pt , 直接用钯的不多。 在NO x催化处理研究中, 负载贵金属类催化剂是最早研究和开发的, 并在实际应用方面也取得了相当大的进展[ 2] 。由于贵金属类催化剂存在价格昂贵、活性温度范围窄和有氧存在时容易失活等缺点, 应用上受到一定的限制。因此开发这类催化剂的代用品是目前环保

脱卤偶联反应钯碳催化剂应用探析

脱卤偶联反应钯碳催化剂应用探析 摘要:分析了脱卤偶联反应影响Pd/C催化剂套用的原因,通过优化工艺设备条件,防止催化剂失活、流失及对催化剂的活化处理,提高了催化剂套用次数,极大降低了生产成本。 关键词:4-氯邻苯二甲酸脱卤偶联Pd/C 套用 一、前言 4-氯邻苯二甲酸脱卤偶联反应产物是合成聚酰亚胺的主要中间体。目前,脱卤偶联反应所采用的催化剂为钯碳(Pd/C)。钯碳催化剂价格昂贵,因此钯碳催化剂套用次数的多少,对工厂的经济效益影响较大。通过有效的技术措施提高钯碳催化剂在脱卤偶联反应中的套用次数,降低生产成本有利于提升工厂整体的市场竞争力。 二、脱卤偶联工艺简述 4-氯邻苯二甲酸溶于氢氧化钠水溶液中,形成4-氯邻苯二甲酸二钠盐,在Pd/C催化剂的促进下,滴加甲醇作为还原剂,脱卤偶联生成3,3,,4,4,-联苯四甲酸四钠盐,反应结束后过滤出Pd/C催化剂套用,母液酸化生成3,3,,4,4,-联苯四甲酸脱水生成3,3,,4,4,-联苯四甲酸二酐用于合成聚酰亚胺。 反应方程式: 三、影响Pd/C催化剂套用的因素 1.中毒 在本工艺过程中,硫是引起Pd/C催化剂中毒的主要因素。硫化物(如H2S、硫酸盐等)随反应物料进入反应体系与Pd发生反应后,生成钯的硫化物(如硫化二钯、硫化四钯),它们部分溶于水中过滤时随母液流失;部分又被氢还原成大晶粒的金属单质钯,这种大晶粒钯比分散状态下的微晶钯活性低得多。由于钯的流失和活性降低,钯碳催化剂的活性随之降低直至严重失活而不能重复套用。 2.结垢 一些无机及有机杂质随原辅材料进入反应体系后,吸附在钯碳催化剂的活性炭表面和微孔内,使催化剂活性炭的比表面积降低而影响钯碳催化剂的活性。 3.烧结 脱卤偶联反应过程中生产的Cl-及其它非金属离子和物料及设备中带人的Cr3+、Fe3+、Co2+、Cu2+等金属离子能与钯反应引起化学烧结而影响钯碳催化剂的活性。 4.误漏 在脱卤偶联反应中,回收Pd/C催化剂时过滤设备泄漏而操作人员又未及时发现造成Pd/C催化剂随滤液进入下道工序而流失。 四、提高Pd/C催化剂套用次数的方法 1.减少金属离子和非金属离子的影响 脱卤偶联反设备使用不锈钢材质,减少Fe3+离子对催化剂的影响;脱卤反应用水要严格控制Fe3+、Cu2+等金属离子含量小于50ppm;控制原辅材料中的硫含量小于500 ppm。 2.对回收的Pd/C催化剂活化处理 在每次套用前,将回收的Pd/C催化剂在1:1的甲醇水溶液中回流2小时,这样吸附在催化剂活性炭表面及微孔中的无机及有机杂质大部分解析出来,可有

相关文档
最新文档