高低碱度

高低碱度
高低碱度

酸性和高碱度烧结矿合理搭配的

高炉炉料结构研究

范建军蔡涓夏

(太原钢铁集团有限公司,太原030003;)

摘要:

按照山西某钢铁厂的原料条件,为开发代替原来碱度1. 5的质量较差的烧结矿,进行了碱度0. 6一2. 3的不同碱度烧结矿的烧结性研究和不同碱度烧结矿综合炉料性研究,结果表明:对酸性烧结矿(R=0.6,0. 8、1. 0),碱度1.0的烧结矿其烧结性能指标相对碱度0. 6 , 0. 8的要好,且44%碱度1.05的烧结矿配.加44%碱度1. 87的烧结矿和12 %的球团矿其综合炉料性能优于原来的86%碱度1. 5的烧结矿配加14 %球团矿的炉料结构。

关键词:酸性烧结矿烧结特性熔滴特性

山西某地方钢铁厂,近两年在建设高炉的同时,配套建设厂两台烧结机,且烧结矿生产能力较大,但没有配套建设酸性球团矿生产线。因此,自高炉投产以来,为充分发挥烧结机的产能,烧结矿的配比达到86%左右,外购球团矿的比例为14%左右。烧结矿比例在86%左右时,为平衡高炉炉渣碱度,烧结矿的碱度在1. 5左右,生产中发现烧结矿的质量较差,特别是自然粉严重,不能落地存储。

以往的试验研究和经验表明,碱度1. 5左右的烧结矿由于处于自熔性烧结矿到高碱度烧结矿的过度阶段,因此,矿物组成较复杂,而碱度1. 0以下的酸性烧结矿矿物组成相对简单,自然粉化不是相对较轻;高碱度烧结矿由于铁酸钙含量比较高,其质量比较好。因此,该钢铁厂同太钢技术中心合作进行厂试验研究,重点研究能否生产酸性烧结矿和高碱度烧结矿搭配使用以代替日前的碱度1. 5左右烧结矿,以改善烧结矿的质量。

1烧结性能试验研究

1.1工艺参数及原料化学成分

烧结性能试验研究在小300 mm x 600 mm的烧结杯上进行,其方法同常规方法相同,有关操作参数如下:点火负压:转速:8 r/min ,5 kPa,烧结负压:10 kPa,点火时间:2 min。混料机规格为小800 mm x 1200 mm ,混料机混料时间:4 min },试验所用原料化学成分见表

1. 2不同碱度烧结矿烧结性试验结果及分析

按照该厂的原料条件,设计烧结矿碱度为0.6, 0.8, 1.0, 1.4, 1.8, 2.0, 2.3七个水平进行厂烧结杯试验研究,重点考察厂不同碱度烧结矿其垂直燃烧速度、烧结转股强度、烧结粒度组成等指标的变化。具体试验结果见表2

1. 3结果分析

(1)从整个的试验结果可以看出,碱度0.6, 0.8, 1.0的烧结混合料相比,0. 6 , 0. 8碱度烧结混合料烧结时,烧结时间太长,表现为垂直烧结速度较低,仅为13一16 mm/min,烧结利用系数较碱度1. 0的烧结矿低约20 %,烧结矿的转鼓强度与碱度1. 0的烧结矿儿乎在同一水平,这与碱度0.6, 0.8混合料的原料结构有关。碱度0. 6的混合料仅配有2%的熔剂自石石,其余均为铁矿粉和燃料,碱度0. 8的烧结混合料也只是适量提高厂自石石的用量并没有配加生石灰,因此,碱度0. 6 , 0. 8的混合料的造球效果很差,混合料的平均粒径仅为3. 5 mm左右。即使适当提高混合料水分后,大粒级的混合料虽有所增加,但因混合料粒度组成不太合理,烧结矿夹生料太多,导致返矿增大,转鼓强度降低。

(2)采取强化制粒措施后(8号方案,配加适量钻结剂),碱度0. 6混合料的平均粒径可达到4. O1 mm,烧结利用系数可提高8%。另外,从试验结果也可以看出,碱度0.6, 0.8的混合料的适宜水分为5. 8%一6. 0%,且水分的波动对烧结矿的质量影响很大,而添加一定量的钻结剂后,可在一定程度上缓解水分的波动对混合料粒度组成的影响,从外观上看,添加钻结剂的混合料粒度组成相当均匀。碱度1. 0以上的混合料由于可以配加5%左右的生石灰,因此,混合粒的制粒效果改善相当明显,混合料的平均粒径达到4. 2 mm以上,烧结利用系数同其余高碱度烧结矿基本一致。

(3)碱度0.6, 0.8, 1.0三种碱度的烧结矿其转鼓强度基本一致,均在60%左右,碱度达到1. 4以后,烧结矿的转鼓强度升高到64%以上。因此,在普通的烧结工艺条件下,对于0.6, 0.8, 1.0三种碱度的烧结矿,结合烧结利用系数和转鼓强度指标综合分析,碱度1. 0的烧结矿其烧结性能指标优于碱度0. 6和0. 8的烧结矿

(4)对于0.6, 0.8, 1.0碱度的烧结矿,提高固体燃料用量后,烧结矿的转鼓强度可得到一定程度的提高(限于篇幅该内容没有列出来),这与酸性烧结矿其矿物组成主要以磁铁矿为主有关。当煤粉的配比为5%时,烧结矿的转鼓强度相当低,为53%左右;但若提高固体燃料的配比(煤粉的配比由5%提高到6%)烧结矿的转鼓强度提高的幅度较大,对0. 6的烧结矿其强度提高到61%一62 %;对0. 8的烧结矿其强度提高到57%一60%;碱度1. 0的烧结矿其规律也相当明显,煤粉用量提高后,其强度提高近5一6个百分点。对以上三种碱度的烧结矿进行矿相组成分析得知,在该碱度范围内,烧结矿矿物组成中磁铁矿的含量约为60% }75%,赤铁矿的含量约为5%一8%,儿乎没有铁酸钙出现,铁橄榄石的量约为3%-

5%,因此提高固体燃料用量后,铁橄榄石的量增加,烧结矿的强度提高。

(5)随着烧结矿碱度的升高,烧结矿粒度组成中+40 mm的比例呈下降趋势,中间粒级的烧结矿的比例逐渐提高。碱度0. 6和0. 8时,+ 40 mm的比例分别为25. 43%和28. 81 %,而碱度1. 0的烧结矿仅为18. 81%左右;对于10}25mm的比例分别为23. 71 % , 20. 08%和30.

41 %。对于高炉操作来说,一般希望10 } 25 mm粒级的烧结矿占的比例大一点,因此说,碱度0.6, 0.8, 1.0的烧结矿相比,碱度1. 0的烧结矿其粒度组成比较合理。

(6)碱度1. 4以上的烧结矿,其烧结性能指标随着碱度的升高而进一步改善2烧结矿冶金性能及综合炉料冶金性能试验烧结性能指标仅是考察不同碱度烧结矿质量优劣的一部分,要对不同碱度的烧结矿做出综合评价,还需进行冶金性能的试验。冶金性能试验主要对烧结矿的900℃还原度和550℃低温还原粉化率进行厂测试研究,同时对不同碱度的烧结矿搭配使用后的综合炉料性能进行厂研究。

2. 1试验标准

2. 1. 1 900℃还原度和550℃低温还原粉化率试验所用标准如下:

(1) 900℃还原度试验所用标准如下:

1)试样,重量500 g,粒度10一12. 5 mm ;

2)还原条件,气体成分为:30% CO +70% NZ,还原温度为900 0C;

3)还原时l司,180 min

(2) 550℃低温还原粉化率试验所用标准如下:

1)试样,重量500 g,粒度10一12. 5 mm ;

2)还原条件,气体成分为30% CO +70% NZ,还原温度为5500C ;

3)还原时l司,30 min;

4)转鼓,采用小130 mm x 200 mm标准I型转鼓测定;

5)试样处理,转鼓转速30 r/min,共转动30 min,然后经标准筛进行筛分,以一3. 15 mm 的重量百分比为低温还原粉化率

2. 1. 2熔滴性能试验采用的标准如下:

石半反应管内径为48 mm x 300 mm,试样粒度为8一10 mm,试样量为反应管内高1001Smm,还原气体由30% CO + 70% NZ组成,还原气流量为15 L/min,升温速度0一950℃为100C/min, 950℃时恒温60 min,大于950℃时为5 0C /min,试验过程中测定试验的收缩温度,压差变化和熔滴温度区间,试验结果以熔滴性能总特性值( S)的大小来表示,(S, kPa·℃)值越小越好(S)

2. 2试验结果及分析

900℃还原度和550℃低温还原粉化率试验结果见表3。熔滴性能试验结果见表4

试验分析如下:

(1)由以上的试验结果可以出,随着碱度的提高,烧结矿的还原度呈升高趋势,说明随着碱度的提高,烧结矿的还原度得到提高,碱度达到2.0左右时,烧结矿还原度提高的幅度将越来越小;但碱度 1.o以下的烧结矿其还原度相当低,碱度0.s以下的烧结矿其还原度在45%左右,远低于碱度1. 0烧结矿的68%左右;不同碱度的烧结矿其低温还原粉化率均比较低。

(2)由以上的炉料结构试验结果可以看出,对于1号、2号、3号试验,随着碱度0. 69烧结矿比例由30%提高到33%、42%后,其熔滴性能不太理想,主要是最大压差值△只1太高。(助值由1029 kPa·℃提高到1163 kPa℃和1662 kPa " 0C,逐步呈升高趋势,这说明

(3)碱度0. 85的酸性烧结矿与不同高碱度烧结矿搭配后,其熔滴性能同样也不太理想,也是最大压差值vP-,太大,熔滴特性(助较大。对于4号、5号、6号试验,随着碱度0. 85随着碱度0. 69烧结矿比例的升高,熔滴性能将逐渐变差。烧结矿比例由35%提高到38%、48%后,(助值由1031 kPa·℃提高到1039 kPa·℃和1249 kPa·℃,逐步呈升高趋势,这说明随着碱度0. 85烧结矿比例的升高,熔滴性能将逐渐变差。

4)碱度1. OS的烧结矿与碱度1. 87的烧结矿搭配后,vP-,最小,仅为360 Pa, }S)也最小,为334 kPa·℃。

(5)碱度1. OS的烧结矿与碱度1. 87的烧结矿搭配后,其熔滴性能较与碱度1. 95的烧结矿搭配较好

6)生产烧结矿样(Z}=1.57)与球团矿搭配后,其熔滴性能介于碱度1. OS的烧结矿与碱度1. 87的烧结矿搭配和碱度1. OS的烧结矿与碱度1. 95的烧结矿搭配。

因此,由以上的炉料结果可以看出,碱度0. 69 , 0. 85 , 1. OS三种碱度的烧结矿与不同高碱度的烧结矿搭配后,熔滴性能以44%烧结矿(Z} -1. OS) +44%烧结矿(Z} -1. 87) +12%球团矿为最佳

3结论

(1)碱度0.6, 0.8, 1.0的烧结矿相比,碱度1. 0的烧结矿其烧结性能相对较好

(2)碱度低于1. 0的烧结矿其还原度指标相当低。

(3)碱度0. 69 , 0. 85的酸性烧结矿与不同高碱度烧结矿搭配后,随着其比例的升高,熔滴性能总特性值逐步呈升高趋势,熔滴性能将逐渐变差。

(4)碱度1. OS的烧结矿与碱度1. 87的烧结矿搭配后,熔滴性能最好

5)生产烧结矿(Z} -1. 57)与球团矿搭配后,其熔滴性能介于碱度1. OS的烧结矿与碱度1. 87的烧结矿搭配和碱度1. 95的烧结矿搭配。

(6)碱度0. 69 , 0. 85 , 1. OS三种碱度的烧结矿与不同高碱度的烧结矿搭配后,熔滴性

能以44%烧结矿(Z} -L OS) +44%烧结矿(Z} -1. 87) +12%球团矿为最佳,可代替日前大生产烧结矿样配加球团矿的炉料结构。

参考文献:

X11傅菊英,姜涛,朱德庆,等烧结球团学「D71长沙:中南工讹大学出版社,1996

烧结矿与球团矿的比较

第一节烧结矿与球团矿的比较 烧结和球团都是粉矿造块的方法。但它们的生产工艺和固结成块的基本原理却有很大区别,在高炉上冶炼的效果也有各自的特点。 烧结与球团的区别主要表现在以下几方面: 1、原料条件:球团和烧结对原料条件要求的主要差别在于粒度不同。 1)球团对原料要求严格。要求造球料粒度细(-200网目大于80%),比表面 积大,原料的 品位要高,SiO2含量要少。 2)烧结对原料粒度要求可粗一些,对原料的适应性强。烧结原料中-150目粒 级的应小于 20%,一般SiO2含量要高于5%;可使用富矿粉和钢铁厂的其他副产品,如钢渣、炉尘、轧钢皮、焦粉等都可充分利用。 2、固结成块的机理不同: 1)烧结矿是靠液相固结的,为了保证烧结矿的强度,要求产生一定数量的液相 (一般>25%), 因此混合料中必须有燃料,为烧结过程提供热源。 2)球团矿主要是依靠矿粉颗粒的高温再结晶固结的,要避免产生过多液相 (<5%),防止 球团粘结;热量由焙烧炉内的燃料燃烧提供,混合料中不加燃料。 3、冶金性能: 1)球团矿粒度小而均匀,常温强度高,可作为商品买卖;含铁品位高,氧化度 高,还原性

好;酸性氧化球团的高温性能较差,需要防止还原膨胀率过高。 2)烧结矿是不规则的多孔质块矿,粒度不够均匀,最好分级入炉,运输和贮存 时粉末较多, 一般不作为商品买卖;含铁品位比球团矿低,高碱度烧结矿高温性能较好。4、冶炼效果:二者均属于人造富矿,与天然矿相比,具有含铁品位高、还原性 好、强度合 适、软熔温度高、有害杂质少等的优点。代替天然块矿冶炼时,能大幅度提高产量,改善煤气利用,降低焦比。 5、环境状况:球团矿的生产环境明显优于烧结。 1)球团矿的强度好,粉末少,料层透气性好,抽风负压低,烟气含粉尘量少, 除尘负荷轻, 排人大气的粉尘就少。 2)由于烧结是以固体燃料为主,与气、液体燃料相比,其含硫量较高,挥发分 中又含有氮。 1、设备投资和生产费用 带式焙烧机和链箅机—回转窑比带式烧结机设备复杂、庞大,加之增加了原料细磨与造球设备,因而球团的建厂投资费用要高于烧结。一般生产单位质量的球团矿比烧结矿的建厂投资约高15%左右。就生产费用而言,球团和烧结各有高低。球团磨矿和供风系统电耗高,但余热利用率高,热能消耗少,总能耗低于烧结。而烧结的维修费用比球团要少,从综合生产费用看,球团略高于烧结,但按含铁量计算,球团又比烧结略低一些。

碱度的测定(全套步骤)

一.天平的使用 实验室电子天平:梅特勒-托利多AL204/01 1. 工作原理 电磁力平衡的原理 2. 基本操作 使用环境:首先,放置天平的工作台应稳定牢固,远离震动源;周围没有高强电磁场;没有排放有毒有腐蚀性气体的污染源;尽可能远离门、窗、散热器以及空调装置的出风口。其次,天平室温度和湿度应保持恒定,温度控制在20℃~28℃、湿度在40%RH-70%RH之间。 调整:开机前,首先检查天平是否处于水平状态,即天平水平仪中水平泡是否处于中心位置,如果天平未处于水平,则调节天平底脚两个水平旋钮加以校正。如果在称重过程中不可避免的要移动天平,则每次移动后,都要重新调整水平。 开机预热:连接电源,让秤盘空载,按“On/Off”按钮。天平开启并进行自检,自检通过显示0.0000g,进入预热。为保证获得精确的称量结果,必须至少在校准前60 分钟开机,以达到工作温度。但在一般情况下,天平开机后,让其保持在待机状态下,预热20 分钟,即可称量。 校准:在开机状态下,将天平称盘上的被称量物清除,按“->0/T<-”(清零/ 去皮)键,待显示器稳定显示。接着按住“Cal”键不放,直到显示“Cal 200.0000g”字样,放入标值200g 的校准砝码在秤盘中心位置,天平自动进行校准,当“Cal 0.0000g”闪烁时,移去砝码,随后显示屏上短时间出现“CAL donE”信息,紧接着又出现“0.0000g”时,天平校准结束。天平进入称量工作状态,等待称量。 称量:打开玻璃防风罩密封门,将待测物轻轻放在秤盘中心,关上密封门,待示值稳定后,记录下待测物的质量,再将被测物轻轻取出,关紧密封门;当称量过程中需要去皮,按去皮按钮(O/T),此时示值为“0.0000g”。 关机:称量完毕,确定天平秤盘上清洁无物后,按住“On/Off”按钮直至关机(屏幕上无显示)。如还需要继续使用,可以不关闭天平。 3.注意事项 应使用自带的电源适配器,并按说明书选择适当的电压(~220V 或110V)。 当称量易挥发和具有腐蚀性的物品时,要将物品盛放在密闭的容器内,以免称量不准和腐蚀天平。在称重过程,一定要避免用尖锐的物品接触天平的操作键盘。尽量避免裸指直接接触按键,否则日久天长,手指上的汗渍会侵蚀坏按键保护层。 4.维护和保养方法 经常对电子天平进行自校或定期外校,使其处于最佳工作状态。 当称量易挥发和具有腐蚀性的物品时,要将物品盛放在密闭的容器内,以免腐蚀和损坏电子天平。一般情况下,不要将过热或过冷的物体放在天平内称量,宜当物体的温度与天平室的温度达到一致后,方可进行称量。 在称重时,电子天平严禁超载,称量较重物品时,称量时间应尽可能短。 在对秤盘和外壳擦拭时,可以用一块柔软、没有绒毛的织物来轻轻擦拭,严禁使用具有强溶性的清洁剂清洗。对称量时撒落在称量室的物品要及时清理干净。如果电子分析天平长时间搁置不用,应定期对其进行通电检查,确保电子元器件的干燥。

稳定烧结矿碱度的研究

1. 绪论 1.1 选题背景 目前高炉冶炼工艺要求炉料必须具备一定的粒度,这就决定了大量含铁贫矿和经选矿获得的含铁量高的铁精矿以及天然含铁富矿粉不能直接进入高炉进行冶炼,为了利用这些资源,人们发明了烧结、球团等人工方法,将这些粉矿制成具有一定粒度的人造富矿后进入高炉使用。 烧结,是将各种粉状的含铁原料中和混匀后再添加一定比例的熔剂、燃料、水,混合均匀并制成具有一定粒度的混合料颗粒后,送入烧结机点火烧结的一种工艺。在燃料产生的高温和一系列物理化学反应的作用下,混合料中会产生部分易熔物质,易熔物质熔化后形成液相,润湿或粘结其周边未熔化的物料,冷却后,所形成的块状物料称为烧结矿。通过烧结过程,可改善冶金原料的物理化学性能,如孔隙率、机械强度、粒度组成、化学成分、还原性、低温还原粉化性等,使高炉生产效率得到巨大提升。 目前世界上高炉含铁炉料主要有三种:烧结矿、球团矿、天然块矿。每个国家和地区因铁矿资源、地理环境、环保政策等因素的不同,采用的炉料结构不同。我国高炉炉料结构是以高碱度烧结矿为主,配加酸性球团矿及天然块矿,烧结矿的比例基本都在60%以上。因烧结矿在炉料结构中所占比例远远大于球团和块矿,所以烧结矿质量的稳定对高炉的稳定顺行至关重要。 烧结矿质量评价分为物理指标、化学指标。物理指标包括筛分指数,粒度组成,转鼓强度,落下强度等;化学指标包括TFe,碱度,FeO、MgO等。车间在生产烧结矿的过程中,如果烧结矿的物理指标出现异常,它的表现是直观的,比

如整体偏碎、发黄,作为一名有经验的烧结看火工可以较为轻松且准确地通过烧结机尾烧结矿落入单辊前的整体状态以及落入单辊平台时引发的振动和声音判断烧结矿的强度如何,在看火以后沿线的岗位也可以第一时间发现烧结矿物理状态变化并联系上面工序做出调整,对于已经出现的物理指标较差的烧结矿一般都通过单独打入一个烧结成品矿仓,然后在生产正常时以较小流量混入正常烧结矿中送入高炉。因此对于烧结矿物理指标的波动对于高炉来说并不是那么可怕,不是说物理指标对高炉的影响小,而是因它的表现明显,可以被及时发现、调整、处置。当烧结矿的化学指标出现异常时,并不能第一时间通过目测得知;当通过化验发现成分异常时,有可能是从上次取样之后就开始异常了,到这次取样时才发现,意味着有些料可能已经进入高炉了。同时,能引起成分异常的原因在企业生产的环境大多于实验室环境,比如原料自身性质不稳定、中和混匀过程有问题、烧结配料室下料不准确、取样出现偏差、制样过程不标准等等。这些原因需要逐一排查。所以,要降低化学指标波动相对困难很多,主要是因为能引起烧结矿化学指标波动的因素贯穿从原料进场到烧结矿入炉前整个烧结矿生产流程,且呈现出短板效应,即使那些被认为是主要的因素被改善到了极致,一些看起来不太起眼的环节有漏洞,结果还是会功亏一篑。 在烧结矿诸多化学指标中,碱度是最重要的一项。烧结矿的碱度一般指二元碱度,即烧结矿中CaO与SiO2含量的比值,用R表示。稳定烧结矿碱度的意义首先体现在烧结矿质量上,一些研究者认为烧结矿碱度与烧结矿成品率、转鼓强度、低温还原粉化指数等指标存在密切关系[1-6];更为重要的是体现在高炉冶炼过程中。高炉冶炼过程不仅要求铁矿石还原出金属铁,还需要还原出的铁与未还原的脉石熔化,利用它们的密度不同达到分离的目的。铁经渗碳变成铁水,熔化后

总碱度测定(pH法)

海水总碱度测定 1术语 海水总碱度是中和海水中弱酸阴离子所需氢离子的量除以海水体积。 海水总碱度用符号A 表示、单位为mmol/L 可用下式表示: A=c(HCO 3-)+2c(CO 32-)+c[B(OH)4-]+c(OH -)+c(H + )+c(剩) 式中最后一项为剩余总碱度,指碳酸、硼酸及氢氧根以外的所有弱酸阴离子浓度的总和,通常其含量较之其他项要低得多,一般情况下可忽略不计。 2技术指标: 2.1 准确度:总碱度为1.5 mmol/L 时相对误差± 3.5%;总碱度为2.2mmol/L 时相对误差±2.5%。 2.2 精密度:相对标准偏差:±1.5%。 3测定方法 3.1 方法原理 向水样中加入过量盐酸标准溶液,用pH 计测定混合溶液pH 值,根据公式计算水样总碱度。 3.2 试剂及其配制 3.2.1 0.05mol/L 邻苯二甲酸氢钾标准缓冲溶液; 3.2.2 0.00600mol/L 盐酸标准溶液(国家二级标准物质),或按以下法配制: a .量取8.4mL 一级浓盐酸(ρ=1.18g/mL)于1000mL 容量瓶,用煮沸15分钟放冷至室温的蒸馏水定容; b .量取上述盐酸(a)60mL ,再定容至1000mL 。配得浓度约0.006mol/mL 稀盐酸溶液。 3.2.3碳酸钠溶液[c(1 2Na 2CO 3)=0.010 00 mol/mL] 称取0.5300g 无水碳酸钠,(一级试剂,预先在220℃恒温2小时,置于干燥器中冷却至室温),用少量蒸馏水溶解后,定容至1000mL 。 3.2.4 甲基红[(CH 3)2NCHN:NC 6H 4COOH]—次甲基蓝混合指示剂 称取0.032g 甲基红溶于80mL95%乙醇中,加入6.0mL 次甲基蓝乙醇溶液(0.01g 次甲基蓝溶于100mL95%乙醇中),混合后加入1.2mL 氢氧化钠溶液[ρNaOH=40.0g/L],溶液成暗色,贮于棕色瓶中。 3.2.5 盐酸标准溶液的标定和浓度计算 吸取碳酸钠标准溶液15.00mL 于三角烧瓶中,加甲基红—次甲基蓝混合指示剂6滴,用稀盐酸溶液滴定。当溶液由橙黄色转变为稳定浅紫红色即为终点。按公式(1)计算盐酸标准溶液浓度: c HCl = c(1 2 Na 2CO 3)×V Na 2CO 3 V HCl --------------------------(1) 式中:c HCl --------盐酸标准溶液的浓度,mol/L ; c(1 2Na 2CO 3)---碳酸钠标准溶液的浓度,mol/L ; V HCl ----------盐酸标准溶液的体积,mL ; V Na 2CO 3-------碳酸钠标准溶液的体积,mL 。 3.3 主要仪器 a .pH 计; b .50mL 具内塞聚乙烯广口瓶; c .具塞滴定管。 3.4 测定步骤

分析化学实验碱度的测定实验报告

实验报告 姓名:班级:同组人: 项目碱度的测定课程:分析化学学号: 一、实验目的 1、掌握酸碱滴定法测定碱度的原理和方法。 2、掌握碱度测定结果的计算。 3、熟练滴定操作及相关仪器的操作方法。 二、实验原理 水的碱度主要由碳酸盐、重碳酸盐、及氢氧化物组成,但在某些情况下,如水中存在磷酸盐、硅酸盐、硼酸盐等也会产生一定的碱度。 碱度的测定是在水样中加入适当的指示剂,用酸标准溶液进行滴定,可分别测出水样 中各种碱度,其反应如下: OH- + H+= H2O CO32- + H+= HCO3- HCO3-+ H+= H2O + CO2 根据上述到达终点时所用酸的量可计算出溶液中碳酸盐、重碳酸盐及总碱度。 三、仪器和药品 仪器:250mL锥形瓶3个;50mL酸式滴定管1支、20、50 mL移液管、50mL量筒。试剂:0.1%酚酞指示剂、0.1%甲基橙指示剂、0.1mol/L盐酸标准溶液、0.05000mol/L Na2CO3 四、内容及步骤 (一)0.1mol/L盐酸标准溶液浓度的标定 准确量取20.00mL 已配好的0.05000mol/L Na2CO3标准溶液置于3只250mL锥形瓶中,加水约30mL,温热,摇动使之溶解,以甲基橙为指示剂,以0.lmol/LHCl标准液滴定至溶液由黄色转变为橙色,记下HCl标准溶液的消耗用量(3份测定的平均偏差应小于0.2%,否则应重复测定),并计算出HCl标准溶液的浓度。 (二)碱度的测定(双指示剂法) 准确移取水样l00mL于250mL锥形瓶中,加人酚酞指示剂三滴,如呈红色,用0.1mol/L 盐酸溶液滴定至颜色刚好消失,记下盐酸溶液的消耗体积(V1);在此溶液中,再加入2滴甲基橙指示剂,继续用标准盐酸溶液滴定至橙色为止,记下盐酸的消耗量(V)。判断水样中碱度的组成及含量。 五、实验结果记录与计算 (一)盐酸标准溶液浓度的标定

LF精炼渣脱硫能力优化与循环利用(精编文档).doc

【最新整理,下载后即可编辑】 LF精炼渣脱硫能力优化与循环利用 (汪衍军西安建筑科技大学冶金工程学院) 摘要:LF钢包精炼炉是冶炼优质钢常用的精炼设备,它通过电弧加热、造还原精炼渣和底吹氩搅拌等方法,为快速脱氧、脱硫、均匀钢水温度、成分并去除钢液中有害夹杂物提供了有效的精炼手段,在纯净钢冶炼方面发挥了巨大作用。LF精炼炉优化了转炉和连铸之间的工艺衔接而且加快了生产节奏,随着对纯净钢需求的不断增加,用LF炉对钢液进行脱硫操作已成为大多数钢厂普遍采用的工艺方法,于是优化精炼渣系和各种工艺因素便成为生产和研究中的重点内容。同时,LF 精炼废渣带来的堆放占地和环境污染日益突出等问题,开展精炼废渣资源循环利用的研究对于环境保护和钢铁企业的节能减排具有重要意义。结合国内外学者对脱除LF 精炼渣中硫进行的大量研究,促进了LF 精炼渣综合利用,对实现节能减排有重要的意义。 关键词:LF精炼渣;脱硫;综合利用

Optimization and Cyclic Utilization of LF Refining Slag Desulfurization Capacity (Wang Yanjun Xi’an University of Architecture and Technology Metallurgical Engineering)ABSTRACT:LF ladle refining furnace smelting high-quality steel used in the refining equipment, which by arc heating, causing reduction refining slag and bottom argon stirring methods for rapid deoxidation, desulfurization, uniform steel temperature, composition and removing the liquid steel harmful inclusions provided an effective means of refining, smelting steel in pure plays a significant role. LF refining furnace to optimize the process of convergence between the converter and continuous casting and speed up the pace of production, With the increasing demand for clean steel, with LF furnace of molten steel desulfurization process operation has become a widely used method for most mills so to optimize refining slag and various technological factors of production and research has become the focus of the content. At the same time, the LF slag stacking area and environmental pollution have become increasingly prominent problems, to carry out research on refining resources recycling waste has important significance for environmental protection and energy saving and emission reduction of iron and steel enterprises. Based on a large amount of sulphur in the slag of the domestic and foreign scholars on the removal of LF refining, promote the comprehensive utilization of LF refining slag, have the important significance for the realization of energy saving and emission reduction. Key words:LF refining slag,desulfurization,cyclic utilization

碱度投加量的实例计算

碱度投加量的实例计算! 一、PH对硝化的影响 pH值酸碱度是影响硝化作用的重要因素。硝化细菌对pH反应很敏感,在pH中性或微碱性条件下(pH为8~9的范围内),其生物活性最强,硝化过程迅速。 当pH>9.6或<6.0时,硝化菌的生物活性将受到抑制并趋于停止。 若pH>9.6时,虽然NH4+转化为NO2—和NO3—的过程仍然异常迅速,但是从NH4的电离平衡关系可知,NH3的浓度会迅速增加。由于硝化菌对NH3极敏感,结果会影响到硝化作用速率。 在酸性条件下,当pH<7.0时硝化作用速度减慢, pH <6.5硝化作用速度显著减慢,硝化速率将明显下降。pH<5.0时硝化作用速率接近零。 pH下降的原因 pH下降的原因有两个,一是进水碱度不高。二是进水碳源不足,无法补充硝化消耗的一半的碱度。

由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N约消耗7.14g 碱度(以CaC03计)。因而当污水中的碱度不足而TKN 负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0以下,使硝化速率降低或受到抑制。 如果无强酸排人,正常的城市污水应该是偏碱性的,即pH一般都大于7.0,此时的pH则主要取决于人流污水中碱度的大小。 所以,在生物硝化反应器中,应尽量控制混合液pH>7.0,制pH>7.0,是生物硝化系统顺利进行的前提。 而要准确控制pH,pH<6.5时,则必须向污水中加碱。应进行碱度核算。 二、脱氮需碱量的计算 在硝化过程中需要消耗一定量的碱度,如果污水中没有足够的碱度,硝化反应将导致pH值的下降,使反应速率减缓,所以硝化反应要顺利进行就必须使污水中的碱度大于硝化所需的碱度。在实际工程应用中,对于典型的城市污水,进水中NH3-N浓度一般为20~40mg

烧结矿的碱度计算

烧结矿的碱度计算 设计时配料计算与现场配料计算相比有以下的不同点:1)原料化学成分要齐全准确,计算前要调整到各成分的数量之与为100%;2)各配料比的总与应为100%;3)选用经验数据应可靠,计算力求准确;4)烧结矿的碱度使得高炉炉料中不添加或少添加石灰石。 烧结矿的碱度就是根据高炉冶炼时规定的炉渣碱度来确定的。高炉的炉渣碱度主要决定于入炉原料的碱度。在单一烧结矿入炉的条件下,炉渣的碱度则决定于烧结矿。由于炉渣碱度要求一定,烧结矿的碱度也应一定。最理想的烧结矿碱度应使高炉炉料中不再加入石灰石,炉渣的碱度就达到规定的要求,这种烧结矿称为自熔性烧结矿。有些炼铁厂,高炉炉料配比中有较多的天然矿石,为了不加或少加石灰石,使用高碱度烧结矿,这种烧结矿也称为熔剂性烧结矿。 烧结矿碱度有以下几种表示法: R为烧结矿碱度,CaO,MgO,SiO2,Al2O3,,为烧结矿中各成分的含量%、在原料中Al2O3及MgO含量波动不大的情况下,采用(3)式表示,只有Al2O3或MgO波动较大的情况才用(1)或(2)式。对于我国大多数烧结厂来说,其原料中的Al2O3及MgO都比较稳定,因此采用CaO/SiO2表示烧结矿的碱度。 自熔性烧结矿碱度可由以下步骤计算: 设烧结矿的碱度为R 炉渣的碱度为R′ 混合矿含铁Fe矿% 生铁含铁Fe生铁% 混合矿含CaO及SiO2为CaO矿及SiO2矿% 焦炭含CaO及SiO2为CaO焦及SiO2焦% 高炉焦比K千克/100千克生铁 1)每100千克生铁消耗的混合矿量为:

该式没有考虑生铁中Si要消耗SiO2,,也没有考虑到石灰石及焦粉配入烧结料中带入的SiO2,当焦比低时,生铁中含Si较高时误差较大,若考虑生铁中的Si消耗SiO2,以及焦粉带入的SiO2,则烧结矿的碱度应按下式计算: 式中K′———每100千克烧结矿消耗的焦粉千克数; SiO2焦′———焦粉中含SiO2; A———每千克生铁消耗的烧结矿千克数。 举例:高炉炉渣的碱度为1、05,生铁含Fe为94%,含Si为0、7%、混合矿含Fe为53%,SiO2为9、47%,每100千克烧结矿的焦粉消耗7、5千克。焦炭灰分为11、38%,其中CaO5、32%,SiO245、12,高炉焦比为575千克。 由(4)式可知:

水质总碱度检测方法完整版

水质总碱度检测方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水质总碱度检测方法 1.目的 本方法规定了用酸式滴定法测定工厂生产用水及生活饮用水的总碱度。 2.范围 适用于工厂所有生产用水及生活饮用水。 3.原理 碱度是水介质与氢离子反应的定量能力,通过用强酸标准溶液将一定体积的水样滴定至pH 值为所测得的碱度称为总碱度.测定结果用相当于碳酸钙的质量浓度,mg/L 为单位表示。 5.试剂 5.1. L 甲基橙指示剂:称取甲基橙溶于,70℃的纯水中冷却定容至 100ml 。此试剂贮存于棕色玻璃瓶中,有效期3个月 5.2. L 盐酸标准溶液:吸取盐酸(ρ20=mL ),稀释至1000mL 。此试剂贮 存于玻璃瓶中,有效期2个月。按下述方法标定: 5.3. 称取在2500 C 烘箱中烘干过的无水碳酸钠~克于250mL 锥形瓶中,加50mL 纯水溶解,加4滴甲基橙指示剂,用配制的盐酸溶液滴定至溶液由黄色突变为橙色。同时做空白试验。 计算公式:c(HCl)= 0()0.05299 m V V -? 式中:c(HCl)—盐酸标准溶液的浓度,mol/L ; m —碳酸钠的质量,g ; V —滴定碳酸钠所消耗盐酸标准溶液的体积,mL ; Vo —空白试验消耗盐酸标准溶液的体积,mL 。 —与盐酸标准溶液[c(HCl)=L]相当的以克表示的碳酸钠的 质量。 6.仪器 6.1. 酸式滴定管 6.2. 移液管 6.3. 250mL 锥形瓶 7.操作规程

7.1. 吸取水样于250mL 锥形瓶中,加4滴甲基橙指示剂,用盐酸标准溶 液滴定至试液由黄色突变为橙色。 8.计算公式: ρ(CaCO3)= 1()50.041000c HCl V V ??? 式中:ρ(CaCO3) —水样的总碱度,mg/L ; c(HCl)—盐酸标准溶液的的浓度,mol/L ; V 1—滴定水样消耗标准盐酸溶液的体积,mL ; V —所取水样的体积,mL ; —与氢氧化钠标准溶液[c(NaOH)=L]相当的以克表示的总碱 度(CaCO3)的质量。

水质分析化验方法钙镁碱度

水质分析化验方法钙镁碱 度 The following text is amended on 12 November 2020.

水质分析化验方法 (一)总硬度的测定 1、原理 钙离子和镁离子都能与EDTA形成稳定的络合物,其络合稳定常数分别为和.考虑到EDTA受酸效应的影响,将溶液PH值控制为10时,钙、镁离子都与EDTA完全络合,因此在此条件下测定的应是两者的总量,即总硬度。 2、主要试剂 (1)氨一氯化铵缓冲溶液(PH=10)称取氯化铵溶于200ml水中,加入570ml氨水,用水稀释至1000Ml; (2)三乙醇胺 1+1水溶液; (3)酸性铬蓝K-萘酚绿B(简称K-B)混合指示剂称取1g酸性铬蓝K 和2.5g萘酸绿B置于研钵中,加50g干燥的分析纯硝酸钾磨细混匀。 (4)EDTA标准溶液 C(EDTA)=L或C(1/2EDTA)=L. 3、测定步骤 取水样(必要时先用中速滤纸过滤后再取样)于250ml锥形瓶中,加 10mlPH=10的缓冲溶液,加入少许K-B指示剂,用EDTA标准溶液滴定至溶液由红色变为蓝色时即为终点,记下所消耗的EDTA标准溶液的体积.水样的总硬度X为 式中 C(1/2EDTA)——取1/2EDTA为基本单元时的浓度,mlo/L; V1——滴定时消耗的EDTA溶液体积,ml; V——所取水样体积,ml。 总硬度以CaCO 3 计时 式中 M(CaCO 3)——COCO 3 的摩尔质量,g/mol;

C(EDTA)——EDTA溶液的浓度,mol/L. (二)钙离子的测定 1、EDTA滴定法 ,这时用(1)原理溶液PH≥12时,水样中的镁离子沉淀为Mg(OH) 2 EDTA滴定,钙则被EDTA完全络合而镁离子则无干扰。滴定所消耗EDTA的物质的量即为钙离子的物质的量。 (2)主要试剂 ①氢氧化钾溶液 20%; ②EDTA标准溶液 C(EDTA)=L; ③钙黄绿素-酚酞混合指示剂 (3)测定步骤用移液管移取水样50ml(必要时过滤后再取样)于250ml锥形瓶中,加1+1盐酸数滴,混匀,加热至沸30s,冷却后加20%氢氧化钾溶液5ml,加少许混合指示剂,用EDTA标准溶液滴定至由黄绿色荧光突然消失并出现紫红色时即为终点,记下所消耗的EDTA标准溶液的体积。钙离子的含量X为 式中 C(EDTA)——EDTA溶液的浓度,mol/L; ——滴定时消耗EDTA溶液的体积,ml; V 2 V——所取水样的体积,ml; ——钙离子的摩尔质量,g/mol.. (三)镁离子的测定 1、EDTA滴定法 (1)原理由硬度测定时得到的钙离子和镁离子的总量,减去由本节中测得的钙离子的含量即得镁离子的含量。 水样中镁离子的含量为

轴承钢和帘线钢精炼渣系的比较(完成版)分析

轴承钢和帘线钢冶炼精炼渣系研究 一、轴承钢 1、轴承钢相关背景 轴承用钢包括高碳铬轴承钢、渗碳轴承钢、高温轴承钢、不锈轴承钢及特殊 工况条件下应用的特种轴承钢等。其中尤以高碳铬轴承钢生产量为最多。含C 1.O %、Cr 1.5%的高碳铬轴承钢是轴承钢的代表品种。自本世纪初问世以来, 已有近100年的历史,从它诞生至今,化学元素的古最几乎没有变化,但其疲劳 寿命却有成倍甚至成几十倍的提高,原因主要就在于近些年冶金工艺的现代化、 炉外精炼技术的普遍采用,使得轴承材料的纯净度不断提高。 在合金钢领域内,轴承钢是检验项目最多、质量要求最严、生产难度最大的 钢种之一。衡量轴承钢的冶金质量,一般从三个方面着眼, 是纯净度,即钢中 夹杂物的含量;二是碳化物不均匀性;三是钢材的尺寸精度、表向裂纹和脱碳[1] 。 2、轴承钢精炼渣处理 精炼渣处理钢液是应用最广泛的精炼手段之一,几乎所有的精炼设备工艺都 会采用精炼渣处理钢液。在钢液的精炼过程中,精炼渣一方面吸收上浮的夹杂物 从而减少夹杂物总量,另一方面由于精炼渣-钢-夹杂物三者之间的互相影响精炼 渣还有夹杂物改质的作用。 根据不同的方法精炼渣有很多种分类,但一般都是依据二元碱度将精炼渣分 为高碱度精炼渣和低碱度精炼渣。在轴承钢的冶炼中,由于对质量的不同需求和 初炼钢水状况的不同形成了高碱度渣精炼和低碱度渣精炼两种工艺路线[2]。 2.1、高碱度渣精炼工艺 高碱度渣精炼工艺即控制精炼渣中碱度R>4.0,总铁含量≤1.0%。这种精炼 工艺的精炼渣系有很强的脱硫能力,能够生产超低硫系列的轴承钢。而且具有很 高的脱氧能力,能够吸附大量Al 2O 3夹杂物,因此在轴承钢中几乎就没有氧化物 夹杂物。但是精炼渣中Ca0含量高,加上精炼普遍采用铝作为脱氧剂,因此极易 被铝还原生成球形夹杂物对轴承钢的质量危害很大。因此,在采用高碱度精炼渣 精炼轴承钢时,要严格控制铝脱氧剂的用量,最大程度地避免球形夹杂物的形成。 (1)日本各轴承钢生产厂家大都采用高碱度渣精炼,其中以山阳特殊制钢公 司取得的效果最为瞩目,硫质量分数降到0.002%-0.003%,全氧质量分数达到平 均5.4× 10?6,个别炉次甚至达到了3 ×10?6。山阳公司采用高碱度渣精炼工 艺将钢液中的全氧质量分数降到了极低的程度,钢中B 类夹杂物几乎不存在了, 但是D 类夹杂物的数量却较多,平均达到了0.9级。 (2)莱钢公司[3]为了降低钢中全氧质量分数,提高GCrI 5钢质量,在LF 精 炼过程中采用了碱度4~5的高碱度精炼渣,取得了良好的效果,全氧质量分数 由平均11 ×10?6降到7.9×10?6。 应该注意到,高碱度精炼渣虽然在脱硫和降低全氧质量分数上取得了很好的 效果,但却增加了钢中的球状不变形夹杂物。在轴承钢的冶炼中,选择一种适当

溶液PH的计算方法.

溶 液 PH 的 计 算 方 法 内蒙古赤峰市松山区当铺地中学024045白广福 众所周知,溶液的酸碱度可用c(H +)或c(OH -)表示,但当我们遇到较稀的溶液时,这时再用 C(H +)或C(OH -)表示是很不方便的,为此丹麦化学家索伦森提出了PH 。它的定义为氢离子浓 度的负常用对数.PH=-lgc(H +)。在高中阶段,以水的电离和溶液PH 计算为考查内容的试题 能有效的测试考生的判断、推理、运算等思维能力;在近几年的高考试题中也是屡见不鲜。 下面介绍几种关于溶液PH 的计算方法。 1、单一溶液PH 的计算 (1)强酸溶液:如H n A,设物质的量浓度为cmoL/L,则c(H +)=ncmoL/L, PH=-lgc(H +)= - lgnc 例1、求0.1 mo1/L 盐酸溶液的pH ? 解析:盐酸是强酸,所以 0.1moL/L 盐酸的c(H +)为0.1moL/L ,带入PH=-lgc(H +)即得PH=1 (2)强碱溶液,如B(OH)n,设溶液物质的量浓度为cmoL/L,则c(H +)=14 10nc -moL/L,PH=-lgc(H +)=14+lgnc 2、两两混合溶液的PH 计算 (1)强酸与强酸混合 由C(H + )混=112212()()c H V c H V V V ++++先求出混合后的C(H +)混,再根据公式求出PH. 技巧一:若两强酸等体积混合,可用速算法:混合后的PH 等于混合前溶液PH 小的加0.3如: (2)强碱与强碱混合 由c(OH - )混=112212()()c OH V c OH V V V --++先求出混合后C(OH -),再通过K w 求出(H +). 技巧二:若两强碱溶液等体积混合,可采用速算法:混合扣溶液的PH 等于混合前溶液PH 大的减去0.3. 例2、(93年高考题)25mLPH=10的氢氧化钾溶液跟50mLPH=10的氢氧化钡溶液混合, 混合液的PH 是( ) A、9.7 B 、10 C 、10.3 D 、10.7 解析:根据技巧二、可得出答案为B (3)强酸与强碱混合 强酸与强碱混合实质为中和反应,可以有以下三种情况: ①若恰好中和,PH=7。 例3、(04年全国新老课程11题)1体积pH=2.5的盐酸与10体积某一元强碱溶液恰好完 全反应,则该碱溶液的pH 等于( ) A 。9.0 B 。9.5 C 。10.5 D 。11.0 解析:因为是恰好中和,则中和后溶液的PH=7,设碱的PH=X,则有 2.5141101010X --?=?,解得X=10.5,答案为C。 ②若酸剩余,先求出中和后剩余的c(H +),再求出PH ③若碱剩余,先求出中和后剩余的c(OH -), 再通过K w 求出c(H +),最后求PH。 3、溶液稀释后的PH求法

工业纯碱总碱度的测定

6工业纯碱总碱度的测定 一、实验目的 1.了解利用双指示剂法测定Na 2CO 3和NaHCO 3混合物的原理和方法。 2.学习用参比溶液确定终点的方法。 3.进一步掌握微量滴定操作技术。 二、实验原理 混合碱是NaCO 3与NaOH或NaHCO 3与Na 2CO 3的混合物。欲测定同一份试样中各组分的含 量,可用HCl标准溶液滴定,根据滴定过程中pH值变化的情况,选用酚酞和甲基橙为指示 剂,常称之为“双指示剂法”。 若混合碱是由Na 2CO 3和NaOH组成,第一等当点时,反应如下: HCl+NaOH→NaCl+H

2O HCl+Na 2CO 3→NaHCO 3+H 2O 以酚酞为指示剂(变色pH范围为8.0~10.0),用HCl标准溶液滴定至溶液由红色恰 好变为无色。设此时所消耗的盐酸标准溶液的体积为V 1(mL)。第二等当点的反应 为:HCl+NaHCO 3→NaCl+CO 2↑+H 2O 以甲基橙为指示剂(变色pH范围为3.1~4.4),用HCl标准溶液滴至溶液由黄色变为 橙色。消耗的盐酸标准溶液为V 2(mL)。 当V 1>V 2时,试样为Na 2CO

3与NaOH的混合物,中和Na 2CO 3所消耗的HCl标准溶液为2V 1 (mL),中和NaOH时所消耗的HCl量应为(V 1-V 2)mL。据此,可求得混合碱中Na 2CO 3和NaOH 的含量。 当V 1<V 2时,试样为Na 2CO 3与NaHCO 3的混合物,此时中和Na 2CO 3消耗的HCl标准溶液的 体积为2V 1mL,中和NaHCO 3消耗的HCl标准溶液的体积为(V

1酸碱滴定法:碱度的测定

1、酸碱滴定法:碱度的测定 【知识的回顾】: 1、滴定方法概述:酸碱滴定、沉淀滴定、氧化还原滴定、络合滴定 2、滴定方式概述:直接滴定、间接滴定、返滴定、置换滴定 3、酸碱滴定常用的指示剂:P.P.(pH=8.0-10.0),M.O.(pH=3.1-4.4) 4、二元弱碱的滴定:举例:Na2CO3 滴定过程:HCl滴定Na2CO3, (1)先加入P.P.,溶液显粉红色,滴定至溶液无色,消耗HCl标液V1ml; (2)再加入M.O.,溶液呈黄色,滴定至溶液呈橙色,消耗HCl标液V2ml。 【规律】:V2=2 V1 【课堂引入】:如果溶液中不仅含有碳酸盐,还有碳酸氢盐,或者氢氧根,结果会怎样?【本课内容】:混合碱的分析 1. 单独OH-碱度的分析 【理论推理】: 在HCl滴定至酚酞(P.P.)变色之后,消耗HCl标液V1ml,继续滴加甲基橙(M.O.),发现溶液马上变红色,即V2=0ml,没有消耗HCl标液。 即:当V1≠0,V2=0时,溶液中仅含有OH—。 说明:没有碳酸盐碱度,OH—。 2. 单独CO32—碱度的分析: 【理论推理】:

在HCl滴定至酚酞(P.P.)变色之后,消耗HCl标液V1ml,继续滴加甲基橙(M.O.),滴定至溶液变红色,消耗HCl标液V2 ml,且V1=V2。 即:当V1=V2时,溶液中仅含有OH—。 说明:只有碳酸盐碱度,CO32—。 3. 单独HCO3—(重碳酸盐)碱度的分析: 【理论推理】: 向溶液中加入指示剂酚酞(P.P.),溶液不显粉红色,即消耗HCl标液V1=0ml,继续滴加甲基橙(M.O.),溶液呈现橙黄色,滴定至溶液变红色,消耗HCl标液V2 ml。 即:当V1=0,V2≠0时,溶液中仅含有HCO3—。 说明:只有碳酸盐碱度,HCO3—。 4. CO32—和HCO3—碱度的分析: 【理论推理】: 向溶液中加入指示剂酚酞(P.P.),溶液显粉红色,滴定至粉红色消失,消耗HCl标液V1ml,继续滴加甲基橙(M.O.),溶液呈现橙黄色,滴定至溶液变红色,消耗HCl标液V2 ml。 且发现V2>V1。 即:当V2>V1>0时,溶液中同时含有碳酸盐碱度和碳酸氢盐碱度。 说明:溶液中含有CO32—和HCO3—。 5. OH—和CO32—碱度的分析

碱度

碱度(总碱度、重碳酸盐和碳酸盐) 1 概述 水的碱度是指水中所含能与强酸定量作用的物质总量。 水中碱度的来源较多,地表水的碱度基本上是碳酸盐、重碳酸盐及氢氧化物含量的函数,所以总碱度被当做这些成分浓度的总和。当水中含有硼酸盐、磷酸盐或硅酸盐等时,则总碱度的测定值包含它们所起的作用。废水及其他复杂体系的水体中,还含有有机碱类,金属水解性盐类等,均为碱度组成部分。在这些情况下,碱度就成为一种水的综合性指标,代表能被强酸滴定物质的总和。 碱度的测定值因使用的指示剂重点pH值不同而有很大的差异,只有当试样中的化学组成已知时,才能解释为具体的物质。对于天然水和未污染的地表水,可直接以酸滴定至pH 8.3时消耗的量,为酚酞碱度,以酸滴定至pH为4.4~4.5时消耗的量,为甲基橙碱度。通过计算,可求出相应的碳酸盐、重碳酸盐和氢氧根离子的含量,对于废水、污水,则由于组成成分复杂,这种计算无实际意义,往往需要根据水中物质的组成成分确定其与酸作用达到终点时的pH值。然后,用酸滴定以便获得分析者感兴趣的参数,并作出皆是。 碱度指标通常用于评价水体缓冲能力及金属在其中的溶解性和毒性,是对水和废水处理过程控制的判断性指标。若碱度是由过量的碱金属盐类所形成,则碱度又是确定这种水是否适宜灌溉的重要依据。 2方法选择

用标准算滴定水中碱度是各种方法基础,有两种常用的方法,及酸碱度指示剂滴定法和电位滴定法。电位滴定法根据电位滴定曲线在终点时的突跃,确定特定pH 值下的碱度,它不受水样浊度、色度的影响,使用范围较广。用指示剂判断滴定终点的方法简便快捷,使用于控制性试验及例行分析。二法均可根据需要和条件选用。 (一)酸碱指示剂滴定法 (1)方法原理 水样用标准酸溶液滴定至规定的pH 值,其终点可由加入的酸碱指示剂在该pH 值时的色变来判断。 当滴定至酚酞指示剂由红色变为无色时,溶液pH 值即为8.3,指示水中氢氧根离子已被中和,碳酸盐均被重碳酸盐,反应如下: -+- +-→+→+3232HCO H CO O H H OH 当滴定甲基橙指示剂由橘黄色变成橘红色时,溶液的pH 值为 4.4-4.5,指示水中的重碳酸盐(包括原有的和由碳酸盐转化成的)已被中和,反应如下: ↑+→++-223CO O H H HCO 根据上述两个终点到达时所消耗的盐酸标准滴定溶液的量,可以计算水中碳酸盐、重碳酸盐及总碱度。 上述计算方法不适用于污水及复杂体系中碳酸盐和重碳酸盐的计算。 (2)干扰及消除 水样浑浊、有色均干扰测定,遇此情况,可用电位滴定法测定。

关于改善高品位烧结矿质量的几个问题

关于改善高品位烧结矿质量的几个问题 实现高品位烧结矿质量的提升对我国冶金行业具有极其重要的意义,同时提升矿物质的提取率,对我国这样一个人均资源占有量极低的国家也是十分重要的研究领域。基于此,论文对如何改善高品位烧结矿质量展开探讨。 【Abstract】Improving the quality of high grad sintered ore has great significance to China’s metallurgical industry,while improving the extraction rate of minerals,also has a very important research field for China,which has a very low per capita resource. Based on this,the article explores on how to improve the quality of high grade sintered ore. 标签:高品位;烧结矿;质量;对策 1 高品位烧结矿概述 烧结作为一种矿粉黏结过程,其主要是将各类含铁的原料、燃料、熔剂以及水等混合并造球在一起后,利用烧结设备使其产生一系列的物理化学反应,最终形成的产物被称为烧结矿。高品位烧结矿主要是指烧结矿中品味相对较高的类型,最初针对高品位烧结矿的研究主要集中于北欧国家,早在1986年下半年,瑞典的相关学者就研究了磁铁精矿、赤铁矿等多种高品位烧结矿的工艺方案。从结构上来看,高品位烧结矿与普通烧结矿存在较大的差异性,其中以磁铁精矿为例,在磁铁精矿的高品位烧结矿中,铁酸钙的含量十分稀少,但磁铁矿的含量却相对较多,甚至可以达到60%。随着人们对高品位烧结矿的不断重视,由于其铁高、硅低以及渣量少所带来的强度以及还原性较低成为了目前高品位烧结矿所面临的主要问题。 2 改善高品位烧结矿质量提高的对策 2.1 加强对高品位烧结矿的合理配置 2.1.1 原矿特征 论文以云南某一钢铁厂为例,对该钢铁厂的烧结矿原矿进行特征上的分析。 首先,该钢铁厂的原矿主要从巴西、南非等国家进口。而从不同国家进口的原矿在其性质上也存在着一些不同之处。如进行反应的酸碱度、温度以及生成的铁酸钙都不尽相同。 而在烧结矿方面不同国家进口的原矿其烧结的性能也存在着一定的差异,进而就会导致在烧结的过程和结果上呈现一定的差异性。该钢铁厂主要选用的是磁铁精矿进行烧结,但是如果还想进一步提升烧结矿的整体质量,可以适当加入一部分的巴西矿,而因为巴西矿在价格上较高,同时其反应的性能还较弱,因此还

轴承钢用精炼渣冶金性能分析

轴承钢用精炼渣冶金性能分析 1、前言 (壹佰钢铁网推荐)高质量的轴承钢要求高的纯净度和组织均匀,即杂质元素和非金属夹杂少,碳化物细小且分布均匀。精炼渣具有脱氧、脱硫、去夹杂的作用,其性质直接影响LF精炼过程的冶金效果。当碱性还原渣同钢液密切接触时,钢液中实际的氧、硫的数值大于同渣平衡的氧、硫的数值,使钢液中的氧和硫向渣中扩散;精炼渣中CaO、Al2O3等成分能够与Si、Al、Mn等的脱氧产物结合成低熔点的化合物,从而降低脱氧产物的活度,强化脱氧反应;由于精炼渣均由氧化物组成,氧化物之间的界面张力小,易于结合成低熔点化合物,而钢液与脱氧产物间的界面张力大于渣和脱氧产物之间的界面张力,精炼渣可以吸收脱氧产物,使脱氧产物容易从钢液中排除。此外,精炼渣融化后形成泡沫渣,渣层覆盖钢液,可有效防止气体吸入,且有利于埋弧操作,减轻电弧对钢包内衬和钢包盖的损害,提高热效率。因此,研究精炼渣成分变化及其对钢洁净度的影响,对LF精炼作用的充分发挥具有重要意义。 要对轴承钢中夹杂物进行控制,首先要对钢中夹杂物的种类、形貌进行定性分析。根据精炼工艺可知:钢中可能存在A类硫化物夹杂、B类氧化铝夹杂、C类铝酸钙复合夹杂物以及镁铝尖晶石和氮化钛夹杂等。由于全程采用沉淀脱氧工艺,炉渣对脱氧产物(主要是氧化铝)的吸附作用尤为重要,通过氩气弱搅拌等手段可改善夹杂物上浮的动力学条件,但是如果熔渣本身吸收夹杂物的性能不好,使得夹杂物不能从钢水中彻底分离,会恶化轴承钢的机械性能。因此,精炼渣的组成、性质直接影响轴承钢的使用性能。本研究系统地讨论精炼渣成渣工艺和组成对成渣过程的影响作用规律,并对精炼渣的碱度和脱硫效果进行系统探讨,获得能够有效去除钢中硫和氧化物夹渣的精炼渣系。 2、生产工艺对精炼成渣的影响 2.1、精炼渣组成 传统的轴承钢精炼渣系主要是以CaO-Al2O3和CaO-SiO2-Al2O3的高碱度精炼渣系为主。由CaO-Al2O3二元相图可知:渣中存在低熔点的化合物12CaO·7Al2O3,可通过调节精炼渣中Al2O3含量降低熔渣的熔点,改善合成渣精炼的动力学条件。SiO2属于酸性氧化物,不利于精炼渣脱硫,但SiO2对熔渣的泡沫化性能有较大的影响。由CaO-Al2O3二元系和CaO-SiO2-Al2O3三元系表面张力图可知,SiO2属表面活性物质,其含量增加可降低表面张力,促进发泡,增加渣膜的弹性和强度。

相关文档
最新文档