电磁波实验报告

电磁波实验报告
电磁波实验报告

(此文档为word格式,下载后您可任意编辑修改!)

电磁场与微波技术

实验报告

院系:

班级:

姓名:

学号:

指导老师:

实验一线驻波比波长频率的测量

一、实验目的

1、熟练认识和了解微波测试系统的基本组成和工作原理。

2、掌握微波测试系统各组件的调整和使用方法。

3、掌握用交叉读数法测波导波长的过程。

二、实验用微波元件及设备简介

1.波导管:本实验所使用的波导管型号为BJ—100,其内腔尺寸为α=22.86mm,b=10.16mm。其主模频率范围为8.20~12.50GHz,截止频率为6.557GHz。2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性(见图1)。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。

3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成(见图2),用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。

图 1 隔离器结构示意图图2 衰减其结构示意图

4.谐振式频率计(波长表):

图3 a 谐振式频率计结构原理图一图3 b 谐振式频率计结构原理图二

1. 谐振腔腔体 1. 螺旋测微机构

2. 耦合孔 2. 可调短路活塞

3. 矩形波导 3. 圆柱谐振腔

4. 可调短路活塞 4. 耦合孔

5. 计数器 5. 矩形波导

6. 刻度

7. 刻度套筒

电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。(图3a) 或从刻度套筒直接读出输入微波的频率(图3b)。两种结构方式都是以活塞在腔体中位移距离来确定电磁波的频率的,不同的是,图3a读取刻度的方法测试精度较高,通常可做到5×10-4,价格较低。而见图3b直读频率刻度,由于在频率刻度套筒加工受到限制,频率读取精度较低,一般只能做到3×10-3左右且价格较高。

5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。

6.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

7.微波源:提供所需微波信号,频率范围在8.6~9.6GHz内可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。

8.选频放大器:用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后由输出级输出直流电平,由对数放大器展宽供给指示电路检测。

三、实验内容及过程

1.微波信号源的调整:

频率表在点频工作下,显示等幅波工作频率,在扫频工作下显示扫频工作频率,在教学下,此表黑屏。电压表显示体效应管的工作电压,常态时为12.00.5V,教学工作下可通过“电压调节钮”来调节。电流表显示体效应管的工作电流,正常情况小于500毫安。

2.测量线探针的调谐:

我们使用的是不调谐的探头,所以在使用中不必调谐,只是通过探头座锁紧螺钉可以将不调谐探头活动2mm。

3.用波长计测频率:

(1)在测量线终端接上全匹配负载。

(2)仔细微旋波长计的千分尺,边旋边观测指示器读数。由于波长计的q值非常

高,谐振曲线非常尖锐,千分尺上0.01mm的变化都可能导致失谐与谐振两种状态之间切换,因此,一定慢慢地仔细微旋千分尺。记下指示器读数为最小时(注意:如果检流指示器出现反向指示,按下其底部的按钮,读数即可)的千分尺读数并使波长计失谐。

(3)由读得的千分尺刻度可在该波长计的波长表频率刻度对照表上读得信号源的工作频率。

4.交叉读数法测量波导波长:

(1)检查系统连接的平稳,工作方式选择为方波调制,使信号源工作于最佳状态。

(2)用直读式频率计测量信号频率,并配合信号源上的频率调谐旋钮调整信号源的工作频率,使信号源的工作频率为9370MHz。

(3)测量线终端换接短路板,使系统处于短路状态。将测量线探针移至测量线的一端。

(4)按交叉读数法测量波导波长:测量三组数据,求平均值。

d01=(d11+d12)2 d02=(d21+d22)2

则得:λg=2|d02-d01|

5、测量

原理:驻波系数的测量是微波测量中最基本的测量。通过驻波系数测量不仅可以了解传输线上的场分布,而且可以测量阻抗、波导波长、相位移、衰减、Q 值

等其他参量。在微波能量的传输时,如果匹配不好,形成驻波,能量就不能有效地传给负载,这就增大了损耗。在大功率传输时,由于驻波的存在,驻波电场的最大点处可以产生击穿打火,因而驻波测量及匹配技术是十分重要的。

电压驻波比是传输线中电场最大值与最小值之比,表示为:

(1)

测量驻波比的方法很多,测量仪器也较多。本实验主要让同学们通过测量线法、等指示度法、功率衰减法测量一些负载的驻波比,掌握三种方法所适用的测量范围、测量原理、测量步骤。

1)小信号检波电流与电压:平方成正比,2

∝??→∝??→∝

I U U E E I

2)方法:左右移动测量线探针的位置找到、

3)实验仪器框图:

测得数据如下:=296mA、=8mA 所以得到=37

6、测量波导波长()

1)原理:相邻波节(波腹)之间的距离为

2)方法:(等指示法或平均法)

测得数据如下:=103+30×0.02=103.6=113+25×0.02=113.5

=127+11×0.02=127.22 =134+46×0.02=134.92

可得=262.14-217.1=45.04

7、测f

1)原理:当信号源频率与频率计(谐振器)谐振频率相等时,频率计吸收信号最多。

2)方法:所有元件都固定不动,只缓慢旋转频率计的短路活塞,找到选频放大器最小的位置,此时频率计的频率即为信号源输出信号的频率。信号源的频率为9.78GHz,当旋转频率计的短路活塞至9.48GHz时,选频放大器上示数最小,为380mA。

四、实验心得

通过本次实验我了解了微波测试系统的基本组成和工作原理,掌握了微波测试系统各组件的调整和使用方法,我们采用直接法,方法比较简单,只是需要我们耐心读数而已。通过观察波形,记录数据,以及和组员的配合,我们顺利的完成了用交叉读数法测波导波长的过程,并得到了正确的数据。

实验二微波上下变频器的原理与测量

一、实验目的

1.了解微波变频模块的基本工作原理;

2.利用实验模块各指标的实际测量以了解变频器件的特性;

3.了解变频器件的电路构架;

二、实验原理

混频器通常被用于将不同频率的信号相乘,以便实现频率的变换。这样做的原因在于,要在众多密集分布、间隔很近的相邻信道中滤出特定的射频信号需要Q值极高的滤波器。

然而,如果能在通信系统中将射频信号的载波频率降低,或者说进行下变频,则上述任务就比较容易实现。图18-1是外差式接收机的电路原理框图,它也许是人们最熟悉的下变频系统。

图中接收到的射频信号经过低噪声前置放大器(LNA)放大后输入到混频器中,混频器实现输入射频信号f RF与本地振荡器(LO)信号f LO相乘。混频器的输出信号中含有的成分,经过低通滤波器可以滤出其中频率较低的所谓中频(IF)分量然后再进行后续处理。

图18-1 采用混频器的外差式接收机

混频器的两个重要组成部分是信号合成单元和信号检测单元。信号合成可以用90°(或180°)定向耦合器实现。信号检测单元中的非线性元件通常是采用一个二极管。以后我们也会看到,双二极管的反平行结构及四个二极管的双平衡结构也很常用。除了二极管以外,人们已经采用BJT和MESFET研制出了可以工作在X波段的低噪声、高频率混频器。

在详细讨论混频器的电路设计之前,我们先简要说明混频器为何能在输入端口接受两个信号并在输出端口产生多个频率分量。显然,一个线性的系统是不能实现这个任务的,我们必须采用诸如二极管、FET或BJT等非线性器件,它们可以产生丰富的谐波成分。图18-2是一个基本的系统框图,其中混频器与射频信号V RF(t)以及本振信号V LO(t)相连,本振信号也被称为泵浦信号。

图18-2 混频器的基本原理:用两个输入信号频率

在系统的输出端口产生新的信号频率

由图可见,输入电压信号与本振信号混合后施加在具有非线性传输特性的半导体器件

上,该器件可以输出电流驱动负载。二极管和BJT 都具有指数型传输特性,类似于肖特基二极管方程:

式(18-1)

然而,MESFET 的传输特性可近似为二次曲线:

式(18-2)

为了简化书写,我们省略了漏极电流和栅极-源极电压的下标。输入电压由射频信号V RF =V RF cos(ωRF t),本振信号V LO =V LO cos(ωLO t)以及偏置电压V Q 之和表示;即:

00cos()cos()Q RF RF L L V V V t V t ωω=++ 式(18-3)

此电压作用在非线性器件上所产生的电流响应可根据电压在Q 点附近的泰勒级数展开求得: 2222()(/)1/2(/)Q Q VQ VQ I V I V dI dV V d I dV I VA V B =+++=+++ 式(18-4)

其中常数A 和B 分别为(dIdV )|VQ 和12 d 2IdV 2)|VQ 。忽略直流偏置V Q 和I Q ,并将式(18-3)代入式(18-4)可得:

{}{}

22220000()cos()cos()cos ()cos ()RF RF L L RF RF L L I V A V t V t B V t V t ωωωω=+++ 002cos()cos()RF L RF L BV V t t ωω++ 式(18-5)

根据三角恒等式cos 2(ωt)=(12){1- cos(2ωt)},上式中包含余玄平方的项可以展开为直流项以及包含和的项。关键的是式(18-5)式中的最后一项,它变为:

[][]{}000()cos ()cos ()RF L RF L RF L I V BV V t t ωωωω=+++- 式(18-6)

这个表达式清楚地表明,二极管或晶体管的非线性效应可以产生新的频率分量ωR F ±ωlo ,而且其幅度与V RF V LO 的乘积有关,其中B 是与器件有关的参数。

公式(18-6)只包含了泰勒级数展开式的前3项,因此只有2阶交调产物()。其他高阶产物,如3阶交调产物(V 3C )都被忽略了。二极管和BJT 中的这类高阶谐波项对混频器性能的影响极大。然而,如果采用具有二次曲线传输特性的FET ,则输出信号中将只有2阶交调产物。所以,FET 不容易产生有害的高阶交调产物。

三、实验步骤:

本实验箱包含了微波上变频模块以及微波下变频模块,其原理相同。这里仅以微波上变频模块为例进行测试。实验框图如图18-11:

图18-11 上变频模块测试图

变频器转换增益的测量:

1.将频谱分析仪中心频率设定为2017.5MH Z并校准频谱分析仪器。

2.测量时使用我们有源实验箱上调制模块输出信号作为中频信号,其频率为15MH Z,输出功率为4 dBm并接至电路IF端。将微波锁相源输出信号仿真一个本地振荡信号,其中心频率为2GHz,输出功率为12.5 dBm 并接至电路了L O端。

3.并利用频谱分析仪中之Mark 功能来测量混频器电路之RF端口输出功率及频率;利用转换损耗之定义将混频器之转换损耗计算出来,将测量结果纪录于表18-1 中。

4.通过微波锁相源拨码盘,依次调整L O信号输入的频率,从1970MH Z开始重复步骤2 与步骤3,直至L O信号输入的频率为2030 MH Z为止,并将测量结果记录于表18-1 中。

变频器端口隔离度的测量:

1.将频谱分析仪之参考电平、中心频率其分别设定为0 dBm、2017.5MH Z并校准频谱分析仪器。

2.将微波锁相源输出信号仿真一个本地振荡信号接于变频模块的IF输入端,设置频率为2000MH Z,功率为12.5 dBm。同时将模块的RF端接50Ω负载,而频谱仪的输入端接于模块的L O输出端来测量混频器之IF-L O隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

3.将微波锁相源输出信号接于变频模块的IF输入端,同时将模块的L O端接50Ω负载,而频谱仪的输入端接于模块的RF输出端来测量混频器之IF-RF 隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

4.将微波锁相源经过功率分配器输出信号接于变频模块的L O输入端,同时将模块的IF 端接50Ω负载,而频谱仪的输入端接于模块的RF输出端来测量混频器之L O-RF隔离度,将频谱分析仪之Marker 的频率标示在2000MHz,记录测量结果.

四、实验结果:

LO输入1970 1980 1990 2000 2010 2020 2030

频率

(MHz)

973.8 986.8 993.5 1006.5 1013.1 1021.6 1032.5 RF输出

频率

(MHz)

--53 --56 --85 --83 --46 --45 --86

RF输出

功率

(dBm)

2 4 5 10 8 4 9

转换损

耗(dB)

五、实验心得

通过本次实验我了解了微波变频模块的基本工作原理,一步一步按步骤进行实验,利用实验模块各指标的实际测量得出一组数据,从而进一步了解了变频器件的特性并了解了变频器件的电路构架。通过此次实验,我更加深刻的领悟到了动手实践的重要性,所以课程实验不仅给了我们提高动手能力的机会,同时也是对所学知识的深刻理解。

实验三微波影音传输系统的搭建及调试

一、实验目的

1.掌握模拟微波通信系统的典型架构及应用;

2.了解各微波模块在通信系统中的位置和作用;

3.调试并理解模拟微波通信系统基本特性。

二、实验原理

(一)模拟微波通信系统的典型架构

微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通信手段。最初的微波通信系统都是模拟制式的,它与当时的同轴电缆载波传输系统同为通信网长途传输干线的重要传输手段,例如我国城市间的电视节目传输主要依靠的就是微波传输。模拟微波通信系统组成如图21-1所示。

影音

调制

模块微波接收系统

LNA PA 混频模块

ATT 微波发送系统PA PA

混频模块图21-1 模拟信号微波通信系统

(二)

微波发射机的重要指标:

1. 谐波抑制:

所谓谐波,是指与发射机输出信号有相干关系的信号。在频谱上反映为信号频率f 0的整数倍nf 0频率处的单根谱线(n=2,3,4,……)。谐波功率与载波功率之比称为谐波抑制。它反映了发射机抑制谐波的能力。显然我们希望该比值越小越好。

2. 杂散:

杂散是指和输出信号没有谐波关系的一些无用谱。在频谱上可能表现为若干对称边带,也可能表现为信号频率f0谱线旁存在的非谐波关系的离散单根谱线。这些谱线的幅度一般都高于噪声。杂散抑制就是指与载波频率成非谐波关系的离散频谱功率与载波功率之比。

谐波和杂散主要由发射机中的非线性元件产生,也有机内外干扰信号的影响。它们表征了信号输出谱的纯度。

3. IMD3:

通常,输出端口有用与无用功率(单位dBm )之差被定义为以dB 为单位的交调失真,即

如图21-2所示,当频率为f1和f2的两个等幅信号同时加在放大器的输入端时,由于放大器非线性的影响,在输出端将出现互调失真的成份。其中f2±f1为二阶互调分量,而2f1±f2为三阶互调分量。除非是对于宽带的电路,一般我们不考虑二阶互调失真的影响。它是用来衡量接收系统抵抗内调变失真能力的参数。

图21-2 微波器件非线性产生邻道干扰

(三) 微波接收机的重要指标

1. 噪声系数:

由于放大器本身就有噪声,输出端的信噪比和输入端信噪比是不一样的,为此,使用噪声系数来衡量放大器本身的噪声水平,它的基本定义为:

在环境温度为标准室温(17℃)、一个网络(或收信机)输入与输出端在匹配的条件下,噪声系数NF 等于输入端的信噪比与输出端的信噪比的比值,记作 'o i 1N S //x i

x i i o i i o o i

i N N G N N G N G N G N S N S N S F +=?+?=?=?==

式(21-1) 式中Nx 是出现在放大器的输出端,由放大器内部产生的噪声。

由公式(21-1)可以看出,网络(或收信机)的噪声系数最小值为1(合0dB )。NF=1,说明网络本身不产生热噪声,即=0,其输出端的噪声功率仅由输出端的噪声源所决定。

实际的收信机不可能NF=1,即NF>1。式(21-1)说明,接收机本身产生的热噪声功率越大,值越大。接收机本身的噪声功率要比输入端的噪声功率经放大后的值还要大很多,根据噪声系数的定义,可以说是衡量接收机热噪声性能的一项指标。

2. 镜频抑制:

为了说明镜频问题,我们可考察射频信号用给定本振信号进行下变频的情况。除了需要的信号外,我们再以IF 为间隔相对于LO 对称放置一个干扰信号(见图21-3)。射频信号的变换关系应为:

镜频信号的变换关系则为:

()IM LO LO IF LO IF ωωωωωω-=--=-

由于,所以这两个频率谱都移动到了相同的频段内,如图21-3所示。

图21-3 镜频映射问题

为了避免出现幅度可能大于射频信号的有害镜频信号,可以再混频器的前面增加所谓镜频滤波器来抑制镜频的影响,并提供有效的信号频谱隔离。更有效的措施是采用镜频抑制混频器。

3.邻频抑制:

通信接收机要求尽可能高的邻频抑制,因此不得不对中频滤波器的矩形系数有所要求4.本振泄露:

振泄露就是指泄露到输出口或输入口的本振信号,而本振是指“本机振荡”。

超外差式接收要将接收的讯号与接收机通过振荡电路产生的频率进行“混频”,产生固定的中频讯号进行放大,这个由接收机产生的振荡称为“本振”。

5.灵敏度:

接收机灵敏度是指在确保一定质量要求(如达到规定信噪比)的情况下,接收机输入端所需的最小信号强度。

6.动态范围:

微波接收机的动态范围是指接收机能正常接收的微波信号的功率范围,其上、下限由下述条件确定:

(1)信号太弱时,将被噪声所淹没,由此可取信号功率的下限;

(2)信号太强时,超过最大可允许的输入功率,接收机会出现饱和或过载。

通常我们希望接收机有较大动态范围。

三、实验内容

实验设备:

项次设备名称数量备注

1 微波有源实验箱1~2台两台实验箱分别做收发系统

2 微带天线2只微波无源箱

3 摄像头1个带麦克风和电源

4 电视机1台

5 射频线若干

6 视频线2根

7 SMA—有线电视插头转接线1根

8 频谱分析仪 1台

实验步骤:

(一) 两台实验箱的传输实验

压控振荡器

微波锁相源功分器低噪声放大器腔体滤波器数字调制与解调模块

微波下变频

模块功率放大器压控衰减器微波上变频

模块视频音频

调制模块压控振荡器微波锁相源功分器低噪声放大器腔体滤波器数字调制与解调模块

微波下变频

模块功率放大器压控衰减器微波上变频模块视频音频调制模块

语音

视频实验平台一

实验平台

1.如图所示,将发实验系统接好摄像头和微波调制器的发射支路。

2.将微波锁相源设定为1970MHz ,打开实验箱电源,测量微波发射频谱特性。

3.收实验系统将接收支路连接好,同样将微波锁相源设定为1970MHz ,打开电源,在

电视机上应能看到较大的调频雪花噪声颗粒。

4.对电视机进行调谐,调出图像信号。

四、实验心得

通过本次实验我掌握了模拟微波通信系统的典型架构及应用,了解了各微波模块在通信系统中的位置和作用。按照实验要求连接电路图,并对电视机进行调谐,最后在电视机上看到了图像,在这个过程中我理解了模拟微波通信系统基本特性。这个实验整体上比较简单,只需要我们严格按照原理图连接线路,基本就可以得到正确结果。所以这只是考察我们对原理图的理解,我们按照步骤做即可。

实验四 双分支定向耦合器的原理与设计

一、实验目的

1、了解双分支型定向耦合器的电路原理和设计方法;

2、学习ADS软件进行双分支型定向耦合器电路的设计仿真;

3.掌握双分支型定向耦合器的PCB制作及调试方法。

二、双分支型定向耦合器的技术指标

工作频率MHz

驻波比小于等于1.5

隔离度大于等于20dB

耦合度为6加减1dB

方向性大于等于20dB(方向性=隔离度-耦合度)

三.双分支型定向耦合器的工作原理

定向耦合器是一种有方向性的功率耦合元件,可用于监视功率,频率和频谱;对功率进行分配和合成;还可以进行测量反射系数和功率等。

定向耦合器是四端口网络结构,如下图所示:

四.实验内容及步骤

1、新建一个工程,在默认目录下取名为”coupler”(实验时自己取名),并选择原理图中微带线的单位为mm。

2、在下拉菜单中选择无源器件“Passive Circuit DG-Microtrip Circuits”

3、在左边无源器件中选择耦合器“Blcplr”和重要的控键“MSUB”。

4、修改“MSUB”参数:基板厚度H=0.8mm,

相对介电常数Er=4.3,金属层厚度T=0.035mm。修改耦合器参数:频率F=2GHZ,

耦合度C=6dB

5、打开无源器件控制窗口,设置仿真的扫描频率“”MHZ,间隔为100kHZ ,点Simulate 开始仿真。

6、看仿真结果是否符合设计要求。

其中S11为驻波比(<1.5)S31为耦合度(6±1dB)S41为隔离度(>20dB)

7、点击耦合器,再点任务栏“向下的箭头”,可看到耦合器的内部结构。

8、删除四个端口,在下拉菜单中找到“Simulation-S_Param”,点“Term”图标表示的50欧标准阻抗接在四个端口,再接地。

9、版图仿真:选择任务栏”Layou”的第一项,在弹出的对话框中点“OK”得到版图。

10、根据版图中的尺寸制成PCB板。

五,实验心得

本次实验是一个软件实验,按照所给的实验步骤进行操作。在实验过程中,由于自己的

操作不当以及软件自身的一些问题,所以我们遇到了一些问题,通过询问助教以及与同学讨论,最终将问题顺利解决,并在实验最后得到了正确的结果。通过本次实验我了解了双分支型定向耦合器的电路原理和设计方法,学会了用ADS软件进行双分支型定向耦合器电路的设计仿真,收获很大。

电磁场与电磁波实验报告-2

电磁场与电磁波实验报告

实验一电磁场参量的测量 实验目的 1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波 的相位常数和波速 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f 得到电磁波的主要参量:和等。 本实验采取了如下的实验装置 设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在 分界面上产生反射波E r和折射波E t。设介质板的反射系数为R,由空气进入 介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板 P r2和固定板P r1都是金属板,其电场反射系数都为-1。在一次近似的条件下,

接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT o T c E^e j 2 这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。 又因为为定值,L2则随可动板位移而变化。当P r2移动L值,使P r3有零 指示输出时,必有E M与E r2反相。故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。从而测出电磁波的波长和相位常数。下面用数学式 来表达测定波长的关系式。 在P r3处的相干波合成为E r E M E「2 e j 1 e j2 j 1 2 / 或写成E r2RT0T c E0i cos 2 e 2(1-2) 式中 1 2 2 L 为了测量准确,一般采用P3零指示法,即cos 20 或(2n 1),n=0,1,2…… 这里n表示相干波合成驻波场的波节点(E r 0 )数。同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。故把n=0时E r 0驻波节点为参考节点的位置L。 2 又因 2 — L (1-3) 2 故2n 1 2 — L 或 4 L (2 n 1)(1-4)由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的值。当n=0的节点处L。作为第一个波节点,对其他N值则有: n=1, 4 L 4L1 L0 2 ,对应第二个波节点,或第一个半波长数。

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1.点电荷电场的等电位方程是( )。A . B . C . D . C R q =04πεC R q =2 04πεC R q =024πεC R q =2 024πε2.磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3.磁偶极矩为的磁偶极子,它的矢量磁位为( )。 A . B . C . D .024R m e R μπ?u r r 02 ·4R m e R μπu r r 02 4R m e R επ?u r r 2 ·4R m e R επu r r  4.全电流中由电场的变化形成的是( )。A .传导电流 B .运流电流 C .位移电流 D .感应电流 5.μ0是真空中的磁导率,它的值是( )。 A .4×H/m B .4×H/m C .8.85×F/m D .8.85×F/m π7 10-π7 107 10-12 106.电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质7.静电场中试验电荷受到的作用力大小与试验电荷的电量( )A.成反比 B.成平方关系 C.成正比 D.无关8.真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9.磁通Φ的单位为( )A.特斯拉 B.韦伯 C.库仑 D.安/匝10.矢量磁位的旋度是( )A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度11.真空中介电常数ε0的值为( )A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12.下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量13.电场强度的量度单位为( )A .库/米 B .法/米 C .牛/米D .伏/米14.磁媒质中的磁场强度由( )A .自由电流和传导电流产生B .束缚电流和磁化电流产生C .磁化电流和位移电流产生D .自由电流和束缚电流产生15.仅使用库仓规范,则矢量磁位的值( )A .不唯一 B .等于零 C .大于零D .小于零16.电位函数的负梯度(-▽)是( )。?A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17.电场强度为=E 0sin(ωt -βz +)+E 0cos(ωt -βz -)的电磁波是( )。 E v x e v 4πy e v 4π A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18.在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场及电磁波实验报告

电磁场与电磁波 实验报告 实验名称:有限差分法解电场边值问题 实验日期:2012年12月8日 姓名:赵文强 学号:100240333 XX工业大学(威海)

问题陈述 如下图无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。 参数说明:a=b=10m, U=100v 实验要求 1)使用分离变量法求解解析解; 2)使用简单迭代发求解,设-10 =100.1,1 x y ε?=?= ,两种情况分别求解数值解; 3)使用超松弛迭代法求解,设-10 =100.1 x y ε?=?= ,确定?(松弛因子)。 求解过程 一、分离变量法求解 因为矩形导体槽在z方向为无限长,所以槽内电位函数满足直 角坐标系中的二维拉普拉斯方程。 22 22 (0,)0,(,)0(0) (,0)0,(,)(0) x y y a y y b x x b U x a ?? ?? ?? ?? += ?? ==≤≤ ==≤≤

根据边界条件可以确定解的形式: 1ππ(,)sin()sinh()n n n x n y x y A a a ?∞ ='=∑ 利用边界条件0(,)x b U ?=求解系数。 01 ππsin( )sinh()n n n x n b A U a a ∞ ='=∑ 01 πsin( )n n n x U f a ∞ ==∑ 0 0041,3,5,2πsin()d π 2,4,6,a n U n n x f U x n a a n ?=? ==??=? ? 011 πππsin()sinh()sin()n n n n n x n b n x A U f a a a ∞ ∞ =='==∑∑ 041,3,5,πsinh(π/) 'πsinh()02,4,6,n n U n f n n b a A n b n a ? =? ==??= ? 01,3,5, 4ππ(,)sin()sinh()πsinh(π/)n U n x n y x y n n b a a a ?∞ == ∑ 简单迭代法求解 二、 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上?的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式

《电磁场与电磁波》期末复习题-基础

电磁场与电磁波复习题 1. 点电荷电场的等电位方程是( )。 A .C R q =04πε B .C R q =204πε C .C R q =02 4πε D .C R q =202 4πε 2. 磁场强度的单位是( )。 A .韦伯 B .特斯拉 C .亨利 D .安培/米 3. 磁偶极矩为m 的磁偶极子,它的矢量磁位为( )。 A .024R m e R μπ? B .02 ?4R m e R μπ C .024R m e R επ? D .02 ?4R m e R επ 4. 全电流中由电场的变化形成的是( )。 A .传导电流 B .运流电流 C .位移电流 D .感应电流 5. μ0是真空中的磁导率,它的值是( )。 A .4π×710-H/m B .4π×710H/m C .8.85×710-F/m D .8.85×1210F/m 6. 电磁波传播速度的大小决定于( )。 A .电磁波波长 B .电磁波振幅 C .电磁波周期 D .媒质的性质 7. 静电场中试验电荷受到的作用力大小与试验电荷的电量( ) A.成反比 B.成平方关系 C.成正比 D.无关 8. 真空中磁导率的数值为( ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 9. 磁通Φ的单位为( ) A.特斯拉 B.韦伯 C.库仑 D.安/匝 10. 矢量磁位的旋度是( ) A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度 11. 真空中介电常数ε0的值为( ) A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12. 下面说法正确的是( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量 13. 电场强度的量度单位为( ) A .库/米 B .法/米 C .牛/米 D .伏/米 14. 磁媒质中的磁场强度由( ) A .自由电流和传导电流产生 B .束缚电流和磁化电流产生 C .磁化电流和位移电流产生 D .自由电流和束缚电流产生 15. 仅使用库仓规范,则矢量磁位的值( ) A .不唯一 B .等于零 C .大于零 D .小于零 16. 电位函数的负梯度(-▽?)是( )。 A.磁场强度 B.电场强度 C.磁感应强度 D.电位移矢量 17. 电场强度为E =x e E 0sin(ωt -βz +4π)+y e E 0cos(ωt -βz -4 π)的电磁波是( )。 A.圆极化波 B.线极化波 C.椭圆极化波 D.无极化波 18. 在一个静电场中,良导体表面的电场方向与导体该点的法向方向的关系是( )。

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() =+(式1) 010log/0 PL d dB PL d n d d 即平均接收功率为: ()[][]()()()[]() =--=- Pr010log/0Pr010log/0 d dBm Pt dBm PL d n d d d dBm n d d (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

电磁波与电磁场期末复习题(试题+答案)

电磁波与电磁场期末试题 一、填空题(20分) 1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。 2.在理想导体与介质分界面上,法线矢量n 由理想导体2指向介质1,则磁场满 足的边界条件:0 1=?B n ,s J H n =?1 。 3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式 n ??=?ε σ-。 4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。 5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。 6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。 7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。 8.表征时变场中电磁能量的守恒关系是坡印廷定理。 9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为 谐振腔 。 10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 2 4r Q πε;无限长线电荷(电荷线 密度为λ)E =r πελ 2。 11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合, 而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。

12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。 二、判断题(每空2分,共10分) 1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。(×) 2.一个点电荷Q 放在球形高斯面中心处。如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。(×) 3.在线性磁介质中,由I L ψ= 的关系可知,电感系数不仅与导线的几何尺寸、 材料特性有关,还与通过线圈的电流有关。(×) 4.电磁波垂直入射至两种媒质分界面时,反射系数ρ与透射系数τ之间的关系为1+ρ=τ。(√) 5.损耗媒质中的平面波,其电场强度和磁场强度在空间上互相垂直、时间上同相位。(×) 三、计算题(75分) 1.半径为a 的导体球带电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的电流线密度。(10分) 解:以球心为坐标原点,转轴(一直径)为Z 轴。设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则p 点的线速度为 θ ωωφsin a e r v =?= 球面上电荷面密度为 2 4a Q πσ= 故 θ ωπθωπσφ φ sin 4sin 42 a Q e a a Q e v J s === 2.真空中长直线电流I 的磁场中有一等边三角形,边长为b ,如图所示,求三角形回路内的磁通。(10分) 解:根据安培环路定律,得到长直导线的电流I 产生的磁场: Z

【科普】电磁波的基础知识

科普】电磁波的基础知识 ,radar )是指“发射电雷达(radio diction and ranging 磁波信号并接收在其作用范围内的被观测 物体(目标)的回 波的装置”。电磁波能量从雷达硬件输出到天线,再从天线辐

射出去,而后从一个或多个物体返回的回波通过先前辐射能量的天线接收,最后传输回雷达的硬件设备。在雷达术语中最为关键的一词为——电磁波。那么,电磁波是什么呢?早在1865 年James Clerk Maxwell 提出了电磁基本方程(麦克斯韦方程)预测了电磁波的存在,并指出电磁波是由波动的电场和磁场构成,传播速度可通过自由空间的基本电磁属性来计算。我们常见的可见光就是电磁波的一种,其波长范围为380-780nm 。通常情况下温度高于绝对零度的物质或粒子都有电磁辐射,温度越高辐射量越大,但大多不能被肉眼观察到。 后来,Hertiz 证明了不可见的电磁波的存在,我们称之为无 线电波。现在,我们知道了电磁波有一个连续的波谱,包括通常“雷达”术语是指利用无线电波的系统。电磁场包含电场与磁场两个方面,分别用电场强度E 或电位移D 及磁通密度 无线电波、红外线、可见光、紫外线、射线、Y射线。 B (或磁场强度H)表示其特性;E和H在空间上都是正弦 变化的。在相位上,电场和磁场相互垂直,并且都垂直于传 播方向。每秒通过某特定位置的波峰的个数成为频率(f), 可用每秒的周期数来量度(赫兹Hz)。在雷达系统中,频率通常指载波的频率。两个相邻波峰之间的距离成为波长 波长与频率的关系:入=c/f=2 n /入=2n f/c。瞬时的能量通量密 度(w/m2 )为|S|=E X H,S为波印亭矢量。我们常说的真空 中的光速,也就是电磁波的真空速度c=299792458m/s ,利用光速人们定义了米这个长度单位。光速的近似值为 3T0A8m/s,除少数特殊情况外,工程上一般使用近似值。 电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动

《电磁场与电磁波》期末考试试题A卷

《电磁场与电磁波》期末考试试题A 卷 一:(16分)简答以下各题: 1. 写出均匀、理想介质中,积分形式的无源(电流源、电荷源)麦克斯韦方程组;(4分) d d d d d 0d 0l S l S S S t t ?? ?=???? ???=-???? ? ?=?? ?=????????D H l S B E l S D S B S 2. 假设两种理想介质间带有面密度为S ρ的自由电荷,写出这两种介质间矢量形式的交变电磁场边界条件;(4分) ()()()()12121212000 S ρ?-=?? ?-=?? ?-=???-=?n D D n B B n E E n H H 3. 矩形金属波导中采用TE 10模(波)作为传输模式有什么好处(3点即可);(4分)

4. 均匀平面波从媒质1(ε1,μ1=μ0,σ1=0)垂直入射到与媒质2(ε2,μ2=μ0, σ2=0)的边界上。当ε1与ε2的大小关系如何时,边界上的电场振幅大于入射波电场振幅?当ε1与ε2的大小关系如何时,边界上的电场振幅小于入射波电场振幅?(4分) 答:(1)电场在边界上振幅与入射波振幅之比是1+R ,所以问题的关键是判的R 的正负。第一问答案ε1 < ε2 ,第二问答案 ε1> ε2 二、(16分)自由空间中平面波的电场为:() 120e j t kx z ω+=πE e ,试求: 1. 与之对应的H ;(5分) 2. 相应的坡印廷矢量瞬时值;(5分) 3. 若电场存在于某一均匀的漏电介质中,其参量为(0ε, 0μ,σ),且在频率为9kHz 时其激发的传导电流与位移电流幅度相等,试求电导率σ。(6分) 解: 1.容易看出是均匀平面波,因此有 ()()()j j 01120e e 120t kx t kx x x z y ωωπηπ++??-=?= -??= ???e H E e e e (A/m ) 或者直接利用麦克斯韦方程也可以求解:( )j 0 e j t kx y ωωμ+??==-E H e 2.若对复数形式取实部得到瞬时值,则 ()120cos z t kx =πω+E e ,()cos y t kx =ω+H e , ()()()2 120cos cos 120cos z y x t kx t kx t kx πωωπω??=?=+?+=-+?????? S E H e e e (W/m 2)。若瞬时值是取虚部,则结果为 ()2 120sin x t kx πω=-+S e 。 3.根据条件可知 397 01 29101051036σωεππ--==??? ?=?(S/m ) 三、(10分)空气中一均匀平面波的电场为 ()(1.6 1.2) 34j x y x y z A e --=++E e e e ,问欲使其为左旋圆极化波, A =?欲使其为右旋圆极化波,A =? 解:(1)左旋圆极化波时,5A j = (2)右旋圆极化波时,5A j =- 由于 345 x y +=e e ,所以5A =。在xoy 平面上画出34x y +e e 和43x y -k =e e ,由 z e 向34x y +e e (相位滞后的方向)旋转,拇指指向k ,符合左手螺旋,因此

电磁波动方程和平面电磁波

电磁波动方程和平面电磁波 电工基础教研室周学

本节的研究目的 掌握无源空间线性各向同性均匀介质中波动方程的推导; 掌握等相面,平面波,均匀平面波概念;掌握均匀平面电磁波的基本特征。 本节的研究内容 一、电磁波动方程 二、均匀平面电磁波

波动是电磁场的基本属性当时,电场和磁场相耦合,相互为源,可以脱离电荷、电流,以波的形式存在于空间中。 0/≠??t 0≠??t B 0≠??t E E B 电磁波 ???????=??-?=??-?010******* 22t E c E t H c H

电磁波的波段划分及其应用名称频率范围波长范围典型业务 甚低频VLF[超长波] 3~30KHz100~10km导航,声纳低频LF[长波,LW] 30~300KHz10~1km导航,频标中频MF[中波, MW] 300~3000KHz1km~100m AM, 海上通信高频HF[短波, SW] 3~30MHz100m~10m AM, 通信 甚高频VHF[超短波] 30~300MHz10~1m TV, FM, MC 特高频UHF[微波] 300~3000MHz100~10cm TV, MC, GPS 超高频SHF[微波] 3~30GHz10~1cm通信,雷达 极高频EHF[微波] 30~300GHz10~1mm通信, 雷达 光频[光波] 1~50THz300~0.006 m光纤通信

研究电磁波在空间的传播规律和特性,就是讨论由电磁场基本方程组导出的电磁波动方程在给定条件下的解。

00E H E t H E t H E γεμ????=+???????=-?????=????=?D E B H J E εμγ?=?=??=?在无源空间中,假设媒质是各向同性、线性、均匀的,则 2 2222200H H H t t E E E t t μγμεμγμε????--=?????????--=????无源空间的电磁波动方程,研究电磁波问题的基础

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 2 04q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 122 101 4n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量) (1-3) 电位为 12101 4n i n i i q r ????πε==+++= ∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

电磁场与电磁波期末考试试题库

《电磁场与电磁波》自测试题 1.介电常数为ε的均匀线性介质中,电荷的分布为()r ρ,则空间任一点E ?= ____________, D ?= _____________。 2. /ρε; ρ 1. 线电流1I 与2I 垂直穿过纸面,如图所示。已知11I A =,试问 1 .l H dl =? __ _______; 若 .0l H dl =?, 则2 I =_____ ____。 2. 1-; 1A 1. 镜像法是用等效的 代替原来场问题的边界,该方法的理论依据是___。 2. 镜像电荷; 唯一性定理 1. 在导电媒质中, 电磁波的相速随频率改变的现象称为_____________, 这样的媒质又称为_________ 。 2. 色散; 色散媒质 1. 已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t x ωβ=+, 则电场强度的方向为__________, 能流密度的方向为__________。 2. z e ; x e - 1. 传输线的工作状态有________ ____、_______ _____、____________三种,其中________ ____状态不传递电磁能量。 2. 行波; 驻波; 混合波;驻波 1. 真空中有一边长为 的正六角 形,六个顶点都放有 点电荷。则在图示两种情形 下,在六角形中心点处的场 强大小为图 中 ____________________;图 中 ____________________。 2. ; 1. 平行板空气电容器中,电位 (其中 a 、b 、c 与 d 为常数), 则电场强度 __________________ ,电荷体密度_____________________ 。 2. ;

相关文档
最新文档