正硅酸乙酯的水解缩合反应

正硅酸乙酯的水解缩合反应
正硅酸乙酯的水解缩合反应

创作编号:

GB8878185555334563BT9125XW

创作者:凤呜大王*

正硅酸乙酯的水解缩合反应

正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度0.9320(20/4℃),折光率 1.3928,其熔点、沸点、闪点分别为-77、165.5、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为C8H20O4Si或Si(OCH2CH3)4,分子量208.33,CAS 号78-10-4结构是为:

OR

RO—Si—OR(R=CH2CH3)

OR

研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。

Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1)

第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成

水和醇,因此又分别称为脱水和脱醇缩合。

第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。

OH OH OH OH HO—Si—OH+ HO—Si—OH + HO—Si—O—Si—OH+ H2O (2)

OH OH OH OH

OH O C2H5OH OH HO—Si—OH+C2H5O—Si—OC2H5HO—Si—O—Si—OH+ C2H5O H (3)

OH O C2H5OH OH

n(Si—O—Si) (—Si—O—Si—) (4)

第二步和第三步反应通常又合称为缩聚反应。

从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。

当水解和缩合反应发生后,反应体系中出现微小的、分散的胶体粒子,该混合物被称为溶胶;而第三步聚合反应时,这些胶体粒子通过范德华力、氢键或化学键力相互联结而形成一种空间开放的骨架结构,因而称之为凝胶。有鉴于此,从微观-亚微观-宏观的尺度可将上述TEOS转变为凝胶的过程概括为单体聚合成

核、颗粒生长、粒子链接3个阶段。

正硅酸乙酯的水解缩聚反应可用总反应式表示:

Si(OCH2CH3)4+2H2O=SiO2+4C2H5OH

研究表明,增加水/TEOS之比(以下简称“水硅比”)可以促进水解,但同时水还会稀释生成的单硅酸的浓度,同时水硅比过大还会导致已形成的硅氧键重新水解,二者共同作用的结果是凝胶化时间的延长;相反水硅比较低时,聚合速率则较快。鉴于上述结果,从化学反应平衡的角度可以看出,当水硅比小于等当量2时,TEOS相对较多,发生醇缩合反应(式(3));而当水硅比大于2时,水解反应较快,产生较多的单硅酸和乙醇,前者发生水缩合反应()。

创作编号:

GB8878185555334563BT9125XW

创作者:凤呜大王*

有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响

增刊l毛丹等:有机溶剂对正硅酸乙醅水嘏制各二氧化硅微球的影响?18l? 二氧化硅微球的形貌用场发射扫描电镜(FEsEM, JsM击700)进行表征。 3结果与讨论 3.1反应机理 利用醇盐水解制备球形氧化物或氢氧化物颗粒是 一种常用的方法。在仅有水和醇溶剂存在下,硅醇盐 的水解速率是比较缓慢的,因此一般都需要加入酸性 或碱性的催化剂,前者有助于凝胶结构的形成,后者 可以得到的二氧化硅微球嘲。 制备的二氧化硅微球是用氨水作催化剂,将正硅酸乙酯加入到水的醇溶液中发生永解一缩聚反应得到的,化学反应方程式如下: si(oq目~“屿04岬蛾“q坞伽 r严严PH 一薯”1”E“一一r”r“‘” 严严*严严” HProH+鲫一芦r∞珥々一H旷扩卜ro晒+c趣棚确oc2%衄oq№ 第1步正硅酸乙酯水解形成羟基化的产物和相应的醇;第2步硅酸之间或硅酸与正硅酸乙酯之间发生缩合反应。由于在碱催化系统中水解速率大于缩聚速率且TEOs水解较完全,因此可认为缩聚是在水解基本完全的条件下在多维方向上进行的,形成一种短链交联结构,这种结构的碰撞、缩聚、生长使短链间交联不断加强,最终形成球形颗粒【”。 微球具体的形成过程如下:首先反应物分子冲破溶剂层互相碰撞、水解生成微核,剩余的反应物就会扩散到微核表面沉积、生长,逐渐形成微球,而由于这种微核是不稳定的,他们之间还会发生相互的碰撞结合成更大的新核,反应物也会在这些新核表面沉积生长形成微球嗍。 3.2不同直链一元醇溶剂对二氧化硅微球粒径的影响保持其它反应条件不变,分别采用甲醇、乙醇、正丙酵、正丁醇为溶剂来制各二氧化硅微球。产物的FEsEM照片如图l所示。可以看出二氧化硅微球的粒径、均匀性随溶剂的不同发生显著变化:随着醇碳链的增长,微球的粒径明显变大,但粒径分布越来越宽。 对微球的平均粒径和粒径范围进行了统计分析,其与醇溶剂分子量的关系曲线如图2所示。 表1列出了以上4种一元醇的部分物性参数以及用他们作溶剂得到的二氧化硅微球的平均粒径和最小、最大粒径的数据。可咀看到随着醇碳链的增长,醇分子量增大,粘度也增大。 反应物水和溶剂醇之间存在着分子问氢键作用,水实际是处于溶剂分子包围之中的。在粘度较小的体系圈1不同直链一元醇溶剂的二氧化硅微球FEsEM照片FigrIFESEMimagesof5ili%microsphcfesprepafedindif倚∞ntsolv们ts:(a)meth蛐ol,(b)ethanol,(c) l—propmol,and∽Ⅱ-butanol 删g。ml“ 图2不同直链一元醇溶剂制备的二氧化硅微球的粒径分布与溶剂分子量关系图 Fig.2 necurveOf聆lati姐sbetwe蚰particlesi踮diBtributiOnof 蛐icamic∞sphe”s蛐dmolecuJ盯weightofsolv朋ts 囊l不同直链一元醇溶剂的物性参数及所制备的二氯化硅微球粒径 T曲Ielnephy耐cmche叫cmp_nⅢe把rofmfferem_oIve岫_nd曲epan量cksize山日t—bunonofo啦_micr州巾her器No.solventMg‘moll∥mPa‘8dmm矗,n,nm矗“,nmaMethanoI32.D4O。58120lOO150bEth蚰0146.071.15170110200 c1.ProD加Ol60,092.20520290810dn—BuIanOl74.122.9711406202140 中,当TEOS滴加到水的醇溶液里,反应物分子的扩散速率大,成核速率快,瞬间形成大量核,用于核后续生长反应物相对较少.故而最后得到的微球粒径较小。在粘度较大的体系中,反应物分子扩散速率小,成核速率慢,形成的初始核较少,体系中剩余较多的反应物会逐渐沉积到核表面生长,同时由于体系粘度大,反 应物扩散过程中遇到的阻力大,造成了各个核周围浓度

硅酸乙酯水解液水解原理

硅酸乙酯水解液水解原理 正硅酸乙酯分子式(C 2H 5O )4Si 。工业硅酸乙酯中不单含有正硅酸乙酯,还有其它类型的缩聚产物,化学通式( C 2H 5O )2(n+1)Si n O n-1,n=1、2、3、. . . .6。并按n 值来称呼聚合物,如n=1为单乙酯,n=2为贰乙酯,依次类推。n 越大,其中的SiO 2含量越多。国内生产的硅酸乙酯大多含SiO 230~34%,可把它称为硅酸乙酯32。 硅酸乙酯本身并不是溶胶,不能起粘结剂作用,必须经过水解成为水解液才具有粘结能力。所谓水解反应就是硅酸乙酯中乙氧基(C 2H 5O )逐步被水中的(OH )所取代,而取代产物又不断缩聚的过程。 第一步: 水解反应 Si (OC 2H 5)4 + 4H 2O = Si (OH )4 + 4C 2H 5OH OH H C OH OH Si OH OH O H H C O H C O Si O H C O H C 5225 252525 24|| 4||| |+--→+---- 第二步: 缩合反应: O H OH OH Si OH O OH Si OH HO OH OH Si OH HO H O OH Si OH HO 2][+----→--+-- 第三步:聚合反应: X (Si -O -Si )-(-Si -O -Si -)X OH OH Si OH O OH Si OH HO OH OH Si OH O OH Si OH HO OH OH Si OH O OH Si OH HO OH OH Si OH O OH Si OH HO OH OH Si OH O OH Si OH HO OH OH Si OH O OH Si OH HO ----+----+----+----+----+---- 只有参与水解的水量足够时,才能生成硅酸 和乙醇,即硅酸在乙醇中的溶液。硅酸中SO 2的比例与参与水解反应的水量有关。n=1 m=2为正硅酸;

正硅酸乙酯

正硅酸乙酯 一、内部编号 二、基本信息 正硅酸乙酯别名硅酸四乙酯;四乙氧基硅烷,是一种无色液体,稍有气味,主要用作防热涂料、耐化学作用的涂料、有机合成中间体。 三、理化性质 分子量:208.33,蒸汽压0.13kPa/20℃,闪点:46℃,外观:无色透明液体,比重:0.934(D25) ,引火点:54.4℃,熔点:-77℃,沸点:165.5℃,溶解性:微溶于水,溶于乙醇、乙醚,相对密度(水=1)0.93;相对密度(空气=1)7.22 ,稳定性:稳定,危险标记:7(易燃液体) ,CAS No. 78-10-4 对空气较稳定;微溶于水,在纯水中水解缓慢,在酸或碱的存在下能加速水解作用;与沸水作用得到没有电解质的硅酸溶胶。正硅酸乙酯与较高级醇或其酯类在催化剂存在下反应,可得较高级醇的正硅酸酯。 四、用途 用作防热涂料、耐化学作用的涂料、有机合成中间体 五、危险性 1、易燃,遇高热、明火、有引起燃烧的危险。遇水能逐渐水解放出刺激性气体 2. 燃烧(分解)产物:一氧化碳、二氧化碳、氧化硅。 六、劳动保护 呼吸系统防护:空气中浓度超标时,应该佩戴防毒面具。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴乳胶手套 其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。 七、应急处理 1.皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 2.眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 3.吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4.食入:饮足量温水,催吐,就医。 八、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。

正硅酸乙酯的水解缩合反应学习资料

正硅酸乙酯的水解缩 合反应

正硅酸乙酯的水解缩合反应 正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度0.9320(20/4℃),折光率1.3928,其熔点、沸点、闪点分别为-77、165.5、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为C8H20O4Si或Si(OCH2CH3)4,分子量208.33,CAS号78-10-4结构是为: OR RO—Si—OR(R=CH2CH3) OR 研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。 Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1) 第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成水和醇,因此又分别称为脱水和脱醇缩合。 第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。 OH OH OH OH HO—Si—OH+ HO—Si—OH + HO—Si—O—Si—OH+ H2O (2) OH OH OH OH OH O C2H5 OH OH HO—Si—OH+C2H5O—Si—OC2H5 HO—Si—O—Si—OH+ C2H5O H (3) OH O C2H5 OH OH n(Si—O—Si) (—Si—O—Si—) (4) 第二步和第三步反应通常又合称为缩聚反应。 从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。

正硅酸乙酯简介

正硅酸乙酯是一种无色液体,主要用作防热涂料、耐化学作用的涂料、有机合成中间体 正硅酸乙酯是含硅的有机化合物.它是四氯化硅与乙醇反应的产物,其反应为: SiCl +4C 2H OH Si(OCH 2CH a) +4HC1 正硅酸乙酯是无色透明易于挥发的液体,熔点一77℃,沸点165 oC,比重0.8一O.9,粘度为0.800mm /s(压力为一大气压.温度为25~C)折光系数为1.383,1. 在正硅酸乙酯结构中,烷氧基与硅之间的化学键很不牢固,致使正硅酸乙酯对水极为敏 感.在催化剂的作用下,易于发生水解作用生成多聚硅酸,乙醇及中间产物.生成的多聚硅酸等物质对无机氧化物、硅酸盐、碳f 、纤维素等物质显出良好的粘合性,为此人们常常利用正硅酸乙酯作为粘台剂,制造出许多具有特殊性能的硅酸盐陶瓷和新型的建筑材料. 以正硅酸乙酯为主体,配合其它有机硅化合物制造新型有机硅材料资料鞍多.诸如。用 正硅酸乙酯和甲基三乙氧基硅烷制成的乙醇溶液,加盐酸水解,用三乙胺中和,填加二氧化钛.将此混合物涂于硅酸钙制成的板材上,便可制得一种耐湿、防火、抗冻,坚固的材料.正硅酸乙醋和甲基三乙氧基硅烷,在盐酸作用下水解,再制成醇或酮的溶液,得此溶液涂于石材上,可提高石材的耐水性,耐腐蚀性.用硅酸乙酯与硅氧烷和纤维素衍生物形成的混合物,掺人杀虫剂或杀菌剂,涂于墙上,可形成一多孔涂层,能长时问地按控制速率释放药 剂,具有灭虫杀菌的作用. 正硅酸乙酯是生产耐热、耐化学作用的涂料和胶合剂的原料,它可用于有机硅高分子化 台物的制备,特别是在精密铸造中有很重要的作用正硅酸乙酯的台成是酯化反应中的一 种,目前工业上多采用间歇生产法,反应和精馏分开进行,生产规模较小,质量较低,能耗高,原料利用率较低本文着重讨论用连续反应精馏台成正硅酸乙酯的原理和工艺过程 2.1 反应原理 根据反应动力学的研究表明无水乙醇同四氯化硅的酯化反应是分步进行的.前三步的 反应速度快且为不可逆,但后阶段酯化反应非常缓慢,表现出可逆反应的特性其酯化反应方程式为 仲 SiCI4+C2H5OH— si(OC2H )CI3+HCI十 Si(OC2H5)CI3+c2H5OH— +si(oc2H5)2CI2+HCI十 恤 Si(OC2H5)2Clz+C:H OH— Si(oc2H5)3CI~HCI十 墟 Si(OC2H5)3CI+C2H5OH~ Si(OC2H5)4+HCI十 2.2 实验装置 四氯化硅经压缩空气推动由贮槽到平衡管后经控制流量的活塞进入反应器无水乙醇 由贮槽经泵打入预反应器,与四氯化硅短时相遇,发生部分反应,放出氯化氢气体,利用该气体的压力将预反应物喷射到解吸器中,以除去HCI气体。解吸后的预反应物进入中间贮槽,

正硅酸乙酯(1)

正硅酸乙酯 一、成分/组成信息 化学品名称:正硅酸乙酯分子式: 二、基本信息 正硅酸乙酯别名硅酸四乙酯;四乙氧基硅烷,是一种无色液体,稍有气味,主要用作防热涂料、耐化学作用的涂料、有机合成中间体。 三、理化性质 分子量:208.33,蒸汽压0.13kPa/20℃,闪点:46℃,外观:无色透明液体,比重:0.934(D25) ,引火点:54.4℃,熔点:-77℃,沸点:165.5℃,溶解性:微溶于水,溶于乙醇、乙醚,相对密度(水=1)0.93;相对密度(空气=1)7.22 ,稳定性:稳定,危险标记:7(易燃液体) ,CAS No. 78-10-4 对空气较稳定;微溶于水,在纯水中水解缓慢,在酸或碱的存在下能加速水解作用;与沸水作用得到没有电解质的硅酸溶胶。正硅酸乙酯与较高级醇或其酯类在催化剂存在下反应,可得较高级醇的正硅酸酯。 四、用途 用作防热涂料、耐化学作用的涂料、有机合成中间体 五、危险性 1、易燃,遇高热、明火、有引起燃烧的危险。遇水能逐渐水解放出刺激性气体 2. 燃烧(分解)产物:一氧化碳、二氧化碳、氧化硅。 六、劳动保护 呼吸系统防护:空气中浓度超标时,应该佩戴防毒面具。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴乳胶手套 其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。 七、应急处理 1.皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 2.眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 3.吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 4.食入:饮足量温水,催吐,就医。 八、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水

正硅酸乙酯的水解

一.正硅酸乙酯的水解(甲组分的制备) 正硅酸乙酯水解可以酸或碱作为触媒,以酸为触媒反应较慢,生产时易控制。同时,主剂内带有酸性条件下可稳定活性大的硅烷醇基团,从而提高贮存稳定性。以碱为触媒反应快,常导致胶结。 当正硅酸乙酯是以酸作为触媒来进行水解,所制成的主剂其贮存期通常为9-12个月。但主剂不能与锌粉放在一罐内。因为其中酸性稳定剂与锌粉会起反应产生氢气,此外锌还要与游离的硅烷醇基团反应。 下面以酸为触媒为例说明正硅酸乙酯的水解工艺。将水、盐酸、冰乙酸、丁醇、乙酸丁酯、乙二醇乙醚乙酸酯等加入到反应器中,开动搅拌,升温到60℃±2℃,把正硅酸乙酯于小时内滴加到反应器中。然后升温到70℃±2℃,保温小时后,用吗啉测定终点,合格后,降温到40℃,出料,备用。 用吗啉测定反应终点的方法是在有刻度的10mL容量的试管中加入的水解正硅酸乙酯,然后加入吗啉,将试管正反摇动,测定其胶结时间,在25℃时一般控制在150-350秒之间。二.正硅酸乙酯水解工艺中几个参数的确定: 1. pH值的选择 正硅酸乙酯在碱性介质中水解反应较难控制。当在酸性条件下水解时,应当对pH值进行控制。pH值越大,水解液越不稳定,例如当pH值为6时,水解液大约经过1分钟就可能胶化;pH值越小,水解液越稳定。 综合考虑水解液的贮存稳定性,以及水解液中的酸对锌粉和基体钢材产生反应有利于硅酸锌铁的形成,增强防腐性能,选定pH值为。在实际操作中,有时可以选择冰乙酸作为水解正硅酸乙酯的辅助催化剂,作为主催化剂盐酸的一种有效补充,可以对pH值起缓冲作用。2.水解温度 正硅酸乙酯在水解过程中会缓慢地放热,因而选择合适的水解温度能够保证正硅酸乙酯的水解能较快而平稳地进行。一般地说,在60℃±2℃下滴加正硅酸乙酯,在70℃±2℃下保温,正硅酸乙酯能够有效地水解,且反应平稳。水解温度一旦超过80℃,易形成暴沸,且水解反应生成的乙醇会大量外逸,很不安全。 3.水解度的确定

正硅酸乙酯简介

正硅酸乙酯简介 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正硅酸乙酯是一种无色液体,主要用作防热涂料、耐化学作用的涂料、有机合成中间体 正硅酸乙酯是含硅的有机化合物.它是四氯化硅与乙醇反应的产物,其反应为: SiCl+4C2HOHSi(OCH2CHa)+4HC1 正硅酸乙酯是无色透明易于挥发的液体,熔点一77℃,沸点165oC,比重0.8一O.9,粘 度为0.800mm/s(压力为一大气压.温度为25~C)折光系数为1.383,1. 在正硅酸乙酯结构中,烷氧基与硅之间的化学键很不牢固,致使正硅酸乙酯对水极为敏 感.在催化剂的作用下,易于发生水解作用生成多聚硅酸,乙醇及中间产物.生成的多聚硅酸等物质对无机氧化物、硅酸盐、碳f、纤维素等物质显出良好的粘合性,为此人们常常 利用正硅酸乙酯作为粘台剂,制造出许多具有特殊性能的硅酸盐陶瓷和新型的建筑材料. 以正硅酸乙酯为主体,配合其它有机硅化合物制造新型有机硅材料资料鞍多.诸如。用 正硅酸乙酯和甲基三乙氧基硅烷制成的乙醇溶液,加盐酸水解,用三乙胺中和,填加二氧化钛.将此混合物涂于硅酸钙制成的板材上,便可制得一种耐湿、防火、抗冻,坚固的材料.正硅酸乙醋和甲基三乙氧基硅烷,在盐酸作用下水解,再制成醇或酮的溶液,得此溶液涂于 石材上,可提高石材的耐水性,耐腐蚀性.用硅酸乙酯与硅氧烷和纤维素衍生物形成的混合 物,掺人杀虫剂或杀菌剂,涂于墙上,可形成一多孔涂层,能长时问地按控制速率释放药 剂,具有灭虫杀菌的作用. 正硅酸乙酯是生产耐热、耐化学作用的涂料和胶合剂的原料,它可用于有机硅高分子化 台物的制备,特别是在精密铸造中有很重要的作用正硅酸乙酯的台成是酯化反应中的一 种,目前工业上多采用间歇生产法,反应和精馏分开进行,生产规模较小,质量较低,能耗高, 原料利用率较低本文着重讨论用连续反应精馏台成正硅酸乙酯的原理和工艺过程 2.1反应原理 根据反应动力学的研究表明无水乙醇同四氯化硅的酯化反应是分步进行的.前三步的 反应速度快且为不可逆,但后阶段酯化反应非常缓慢,表现出可逆反应的特性其酯化反应 方程式为 SiCI4+C2H5OH—si(OC2H)CI3+HCI十 Si(OC2H5)CI3+c2H5OH—+si(oc2H5)2CI2+HCI十 Si(OC2H5)2Clz+C:HOH—Si(oc2H5)3CI~HCI十 Si(OC2H5)3CI+C2H5OH~Si(OC2H5)4+HCI十 2.2实验装置 四氯化硅经压缩空气推动由贮槽到平衡管后经控制流量的活塞进入反应器无水乙醇 由贮槽经泵打入预反应器,与四氯化硅短时相遇,发生部分反应,放出氯化氢气体,利用该气 体的压力将预反应物喷射到解吸器中,以除去HCI气体。解吸后的预反应物进入中间贮槽, 再由空气推动进入高位槽,经控制流量的开关到预热器,然后进入连续反应精馏塔,塔釜得 到产品正硅酸乙酯,上升的HCI气体经塔顶冷凝器进入吸收系统,馏出液为乙醇。 硅酸乙酯是一种硅有机化合物.通常所讲的 硅酸乙酯是正硅酸乙酯[Si(0CH)]。根据产品中 SiO的含量,商品硅酸乙酯有多种牌号.正硅酸乙 酯SiO含量约为28%(俗称si一28)。工业上用到 的还有Si一30,Si一32等。正硅酸乙酯被广泛应用

正硅酸乙酯水解

利用凝胶色谱技术(GPC)系统研究正硅酸乙酯水解产物聚合过程动力学,测定动态聚合物分子量分布。实验结果表明, 聚合物具有一定的分子量分布范围; 首次发现不论是否加HCl,正硅酸乙酯水解产物聚合反应类型都是缩聚反应, 缩聚机理和弱酸性水溶液硅酸相似,缩聚后期重均分子量对数log(Mw)和反应时间成线性关系,并且H2O/Si(OEt)4≥6时缩聚后期聚合物分子量分布出现2个聚合物分布峰; HCl抑制缩聚反应,而H2O 促进缩聚反应。 用CC-9A气相色谱仪测定并计算了正硅酸乙酯水解与缩合形成溶胶-凝胶的转化过程中的ROH、H_2O、Si-OR、Si-OH的浓度变化.研究了温度、pH对水解与缩合反应的影响.得出了水解与缩合反应机理与速率常数.发现酸性体系对水解有利而对缩合不利;且缩合反应主要是在硅醇之间进行.碱性体系对缩合有利而对水解不利;且缩合反应主要是在硅醇与硅酯之间进行. 【正题名】: 正硅酸乙酯水解制备二氧化硅纳米粉体的研究 【作者】: 迟广俊 【出版年】: 2000 【总页数】: 65 【授予学位】: 硕 【授予学位单位】: 鞍山钢铁学院 【导师姓名】: 赵国鹏周英彦 【馆藏号】: Y338825 【分类号】: O69 【关键词】: 液相法纳米二氧化硅制备双滴加 【正文语种】: CHI 【文摘语种】: CHI 【文摘】:该文采用乙醇为溶剂、以TEOS为原料首次研究了在该体系下通过水解法制备SiO<,2>纳米粉体的工艺及其各因素的影响规律,对其成核、长大及团聚机理进行探讨。主要结果如下:1、在低TEOS 浓度和高TEOS浓度下,对TEOS浓度、NH<,3>浓度、H<,2>O浓度对最终粒径的影响进行了研究。实验研究表明,在低TEOS浓度下,溶液内沉淀含固量较低,所制备的粒子单分散性较好,粒径偏大(主要在80nm-173-nm之间);随着TEOS浓度、NH<,3>浓度、H<,2>O浓度的增加,粒子直径相应变大;随着H<,2>O 浓度的增加,粒径变化不显著。在高TEOS浓度下,溶液内沉淀含固量较高,随着TEOS浓度、NH<,3>浓度、H<,2>O浓度的增加,所制备的粒子直径相应变小,粒径均小于100nm,属于纳米级粉体。2、在高TEOS浓度下对温度、电解质、物料混合方式等因素对最终粒么的影响进行了研究。3、为了防止粒子在反应溶液中的聚集,在高TEOS浓度下,该文首次在实验中通过改变溶液的粘度、采用超声波等方法,获得了粒径小且均匀的纳米粉体;实验还表明,表面活性剂的加入,能够防止粒子聚集。4、在低TEOS浓度下,对反应过程中溶液的pH、透光率变化进行跟踪跟踪测定。5、为了防止粒子在干燥过程中的聚集,进行了用正丁醇对沉淀进行共沸蒸馏处理和不用正丁醇处理的对比实验。6、运用胶体化学基本原理、爆发性成核理论及多核兼并理论对粒子的成核、长大机理进行了探讨。

正硅酸乙酯水解过程的研究进展_王喜贵

正硅酸乙酯水解过程的研究进展 王喜贵 赵慧 张强 吴红英 (内蒙古师范大学化学系 呼和浩特 010022) 摘 要 本文综述了近几年来正硅酸乙酯水解、缩合反应历程的研究进展,并讨论了影响反应速率和反应历程的因素。 关键词 正硅酸乙酯 水解反应 正硅酸乙酯的水解是利用湿化学方法制备新型玻璃、陶瓷及其它无机功能材料的崭新方法,也被称为溶胶—凝胶方法,所谓溶胶—凝胶法是指金属有机或无机化合物经过溶液、溶胶、凝胶而固化,再经过热处理而形成氧化物或其它化合物固体的方法,该法是在19世纪中叶,由法国化学家Ebeman 〔1〕等人最早应用的。正硅酸乙酯的水解是溶胶—凝胶技术中应用最广的制备以SiO 2为基质材料的玻璃、陶瓷等新型材料的方法。1950年AELION 〔2〕等人对正硅酸乙酯水解进行了系统的研究,得出了一些有实际应用的结论,为以后利用正硅酸乙酯水解制备各种材料提供了理论基础。溶胶—凝胶技术与传统的使用熔融—冷却法制备玻璃和陶瓷等材料相比具有许多独特的优点:(1)反应温度低,能确保各组份分子保持其物理、化学特性。(2)反应从溶液开始,确保各组份在分子状态混合均匀,防止相分离。(3)化学计量准确,易于加工成型,易于改性、易于控制掺杂成分的种类和数量。(4)不涉及高温反应,所以副反应少,可制备高纯度和高均匀度的材料。(5)工艺简单、生产设备简单,不需要昂贵设备。由于溶胶—凝胶工艺独特的优点日益受到人们的重视,其应用也十分广泛〔3-6〕。但溶胶—凝胶技术的水解过程对制备出的材料性能有很大影响,特别是对正硅酸乙酯来说,如果控制不好其水解过程,制备过程的材料极易破裂,所以人们对正硅酸乙酯的水解过程进行了详细研究,通过控制水解和聚合反应的条件,制备出的各种性能的材料,本文综述了正硅酸乙酯水解过程的各种控制研究。 1 正硅酸乙酯的水解缩合反应 正硅酸乙酯的水解缩合反应分三步,第一步是正硅酸乙酯水解形成羟基化的产物和相应的醇,羟基化的产物也称硅酸。第二步是硅酸之间或硅酸与正硅酸乙酯之间发生缩合反应形成胶体状态混合物。第三步形成的低聚合物继续聚合形成硅三维网络结构,反应过程如下: 第一步:水解反应 Si (OC 2H 5)4+4H 2O =Si (O H )4+4C 2H 5O H 第二步:缩合反应 HO -Si -O H +HO -Si -O H O H O H O H O H HO -Si -O -Si -O H +H 2O O H O H O H O H 17  第27卷 内蒙古石油化工 内蒙古科委自然科学基金资助项目

正硅酸乙酯msds

1、物质的理化常数 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口服或经皮肤吸收后对身体有害。对皮肤有刺激作用。其蒸气或雾对眼睛、皮肤、粘膜和呼吸道有刺激作用。接触后能引起头痛、恶心和呕吐。 二、毒理学资料及环境行为 急性毒性:LD506279mg/kg(大鼠经口);5878mg/kg(兔经皮);人吸入,2130mg/m3,眼鼻刺激;人吸入851mg/m3,不引起肺、肾损害。 亚急性和慢性毒性:大鼠吸入,3404mg/m3×7小时/日×30日,死亡,肺、肾、肝均有病理变化。 危险特性:易燃,遇高热、明火、有引起燃烧的危险。遇水能逐渐水解放出刺激性气体。 燃烧(分解)产物:一氧化碳、二氧化碳、氧化硅。 3.现场应急监测方法:

4.实验室监测方法: 空气中含量的测定:样品用树腊吸附,二硫化碳洗脱,再用气相色谱法分析(NIOSH法) 5.环境标准: 美国(1974)职业安全及卫生管理局标准空气:时间加权平均值100ppm 嗅觉阈浓度<85ppm 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 废弃物处置方法:用焚烧法。废料先和易燃溶剂混合后再焚烧。 二、防护措施 呼吸系统防护:空气中浓度超标时,应该佩戴防毒面具。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴乳胶手套。 其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。 三、急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐,就医。 灭火方法:喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:干粉、二氧化碳、砂土。禁止用水或泡沫灭火。

2021年正硅酸乙酯的水解缩合反应

正硅酸乙酯的水解缩合反应 欧阳光明(2021.03.07) 正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度0.9320(20/4℃),折光率1.3928,其熔点、沸点、闪点分别为-77、165.5、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为C8H20O4Si或Si(OCH2CH3)4,分子量208.33,CAS号78-10-4结构是为: OR RO—Si—OR(R=CH2CH3) OR 研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。 Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1) 第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成水和醇,因此又分别称为脱水和脱醇缩合。 第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。 OH OHOHOH

HO—Si—OH+HO—Si—OH +HO—Si—O—Si—OH+ H2O (2) OHOHOHOH OH OC2H5 OH OH HO—Si—OH+C2H5O—Si—OC2H5 HO—Si—O—Si—OH+ C2H5O H (3) OH OC2H5 OH OH n(Si—O—Si) (—Si—O—Si—) (4) 第二步和第三步反应通常又合称为缩聚反应。 从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。 当水解和缩合反应发生后,反应体系中出现微小的、分散的胶体粒子,该混合物被称为溶胶;而第三步聚合反应时,这些胶体粒子通过范德华力、氢键或化学键力相互联结而形成一种空间开放的骨架结构,因而称之为凝胶。有鉴于此,从微观-亚微观-宏观的尺度可将上述TEOS转变为凝胶的过程概括为单体聚合成核、颗粒生长、粒子链接3个阶段。 正硅酸乙酯的水解缩聚反应可用总反应式表示: Si(OCH2CH3)4+2H2O=SiO2+4C2H5OH 研究表明,增加水/TEOS之比(以下简称“水硅比”)可以促进水解,但同时水还会稀释生成的单硅酸的浓度,同时水硅比过大还会导致已形成的硅氧键重新水解,二者共同作用的结果是凝胶化时间

正硅酸乙酯的水解缩合反应

正硅酸乙酯的水解缩合反应 正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度0.9320(20/4℃),折光率1.3928,其熔点、沸点、闪点分别为-77、165.5、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为C8H20O4Si或Si(OCH2CH3)4,分子量208.33,CAS号78-10-4结构是为: OR RO—Si—OR(R=CH2CH3) OR 研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。 Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1) 第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成水和醇,因此又分别称为脱水和脱醇缩合。 第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。 OH OH OH OH HO—Si—OH+ HO—Si—OH + HO—Si—O—Si—OH+ H2O (2) OH OH OH OH O C2H5OH OH HO—Si—OH+C2H5O—Si—OC2H5HO—Si—O—Si—OH+ C2H5O H (3) OH O C2H5OH

n(Si—O—Si) (—Si—O—Si—) (4) 第二步和第三步反应通常又合称为缩聚反应。 从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。 当水解和缩合反应发生后,反应体系中出现微小的、分散的胶体粒子,该混合物被称为溶胶;而第三步聚合反应时,这些胶体粒子通过范德华力、氢键或化学键力相互联结而形成一种空间开放的骨架结构,因而称之为凝胶。有鉴于此,从微观-亚微观-宏观的尺度可将上述TEOS转变为凝胶的过程概括为单体聚合成核、颗粒生长、粒子链接3个阶段。 正硅酸乙酯的水解缩聚反应可用总反应式表示: Si(OCH2CH3)4+2H2O=SiO2+4C2H5OH 研究表明,增加水/TEOS之比(以下简称“水硅比”)可以促进水解,但同时水还会稀释生成的单硅酸的浓度,同时水硅比过大还会导致已形成的硅氧键重新水解,二者共同作用的结果是凝胶化时间的延长;相反水硅比较低时,聚合速率则较快。鉴于上述结果,从化学反应平衡的角度可以看出,当水硅比小于等当量2时,TEOS相对较多,发生醇缩合反应(式(3));而当水硅比大于2时,水解反应较快,产生较多的单硅酸和乙醇,前者发生水缩合反应()。

正硅酸乙酯的水解缩合反应

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 正硅酸乙酯的水解缩合反应 正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度0.9320(20/4℃),折光率 1.3928,其熔点、沸点、闪点分别为-77、165.5、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为C8H20O4Si或Si(OCH2CH3)4,分子量208.33,CAS 号78-10-4结构是为: OR RO—Si—OR(R=CH2CH3) OR 研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。 Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1) 第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成

水和醇,因此又分别称为脱水和脱醇缩合。 第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。 OH OH OH OH HO—Si—OH+ HO—Si—OH + HO—Si—O—Si—OH+ H2O (2) OH OH OH OH OH O C2H5OH OH HO—Si—OH+C2H5O—Si—OC2H5HO—Si—O—Si—OH+ C2H5O H (3) OH O C2H5OH OH n(Si—O—Si) (—Si—O—Si—) (4) 第二步和第三步反应通常又合称为缩聚反应。 从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。 当水解和缩合反应发生后,反应体系中出现微小的、分散的胶体粒子,该混合物被称为溶胶;而第三步聚合反应时,这些胶体粒子通过范德华力、氢键或化学键力相互联结而形成一种空间开放的骨架结构,因而称之为凝胶。有鉴于此,从微观-亚微观-宏观的尺度可将上述TEOS转变为凝胶的过程概括为单体聚合成

正硅酸乙酯

正硅酸乙酯 1.物质的理化常数: 国标编号33609 CAS号78-10-4 中文名称正硅酸乙酯 英文名称ethyl silicate;tetraethyl orthosilicate 别名硅酸四乙酯;四乙氧基硅烷 分子式C8H20O4Si;CH3CH2OSi(OCH2CH3)3 外观与性状无色液体,稍有气味 分子量208.33 蒸汽压0.13kPa/20℃闪点:46℃ 熔点-77℃沸点:165.5℃溶解性微溶于水,溶于乙醇、乙醚 密度相对密度(水=1)0.93;相对密度(空气=1)7.22 稳定性稳定 危险标记7(易燃液体) 主要用途用作防热涂料、耐化学作用的涂料、有机合成中间体 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口服或经皮肤吸收后对身体有害。对皮肤有刺激作用。其蒸气或雾对眼睛、皮肤、粘膜和呼吸道有刺激作用。接触后能引起头痛、恶心和呕吐。 二、毒理学资料及环境行为 急性毒性:LD506279mg/kg(大鼠经口);5878mg/kg(兔经皮);人吸入,2130mg/m3,眼鼻刺激;人吸入851mg/m3,不引起肺、肾损害。 亚急性和慢性毒性:大鼠吸入,3404mg/m3×7小时/日×30日,死亡,肺、肾、肝均有病理变化。 危险特性:易燃,遇高热、明火、有引起燃烧的危险。遇水能逐渐水解放出刺激性气体。 燃烧(分解)产物:一氧化碳、二氧化碳、氧化硅。 3.现场应急监测方法: 4.实验室监测方法: 空气中含量的测定:样品用树腊吸附,二硫化碳洗脱,再用气相色谱法分析(NIOSH法) 5.环境标准: 美国(1974)职业安全及卫生管理局标准空气:时间加权平均值100ppm 嗅觉阈浓度<85ppm 6.应急处理处置方法: 一、泄漏应急处理

正硅酸乙酯的水解缩合反应

正硅酸乙酯的水解缩合 反应 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

正硅酸乙酯的水解缩合反应 正硅酸乙酯又称硅酸四乙酯或四乙氧基硅烷,常温下为无色液体,稍有气味。微溶于水,溶于乙醇、乙醚。相对密度(20/4℃),折光率,其熔点、沸点、闪点分别为-77、、46℃,无水分时稳定,蒸馏时分解。遇水逐渐分解成氧化硅。分子式为 C8H20O4Si或Si(OCH2CH3)4,分子量,CAS号78-10-4结构是为: OR RO—Si—OR(R=CH2CH3) OR 研究表明,正硅酸乙酯的水解缩合反应可分为3步,第一步是正硅酸乙酯形成单硅酸和醇,如式(1)所示,此即水解反应。 Si(OCH2CH3)4+H2O Si(OH)4+C2H5OH (1) 第二步是第一步反应生成的硅酸之间或者硅酸与正硅酸乙酯之间发生缩合反应,如式(2)、(3)所示。此时,Si—O—Si键开始形成。由于二者除生成聚合度较高的硅酸外,分别生成水和醇,因此又分别称为脱水和脱醇缩合。 第三步是由此前形成的低聚合物进一步聚合形成长链的向三维空间扩展的骨架结构,因此称为聚合反应。如式4所示。 OH OH OH OH HO—Si—OH+ HO—Si—OH + HO—Si—O—Si—OH+ H2O (2) OH OH OH OH OH O C2H5 OH OH HO—Si—OH+C2H5O—Si—OC2H5 HO—Si—O—Si—OH+ C2H5O H (3) OH O C2H5 OH OH n(Si—O—Si) (—Si—O—Si—) (4) 第二步和第三步反应通常又合称为缩聚反应。 从以上4个反应对TEOS与水的反应全过程有重要影响,因为水解反应的生成物是第二步反应的反应物,而且缩聚反应常在水解反应未完全完成前就已开始了。

相关文档
最新文档