自然数前n项平方和、立方和公式及证明

自然数前n项平方和、立方和公式及证明
自然数前n项平方和、立方和公式及证明

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导?即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+... +n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1)

自然数平方和公式的推导与证明

※自然数之和公式的推导 法计算1,2,3,…,n,…的前n项的和: 由 1 + 2 + … + n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1) 可知 上面这种加法叫“倒序相加法” ※等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即 1、思考:受高斯的启示,我们这里可以用什么方法去求和呢? 思考后知道,也可以用“倒序相加法”进行求和。 我们用两种方法表示: ① ② 由①+②,得

由此得到等差数列的前n项和的公式 对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。 2、除此之外,等差数列还有其他方法(读基础教好学生要介绍) 当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的。把代入中,就可以得到 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次 函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同 点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。

自然数平方和公式的推导与证明(一) 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 一、设:S=12+22+32+…+n2 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S 1 的关键,一般人不会这么去设想。有了此步设题, 第一:S =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1 (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 =2S+n3+2n(1+2+3+...+n).. (1) S 1 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: 第二:S 1 =12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: S 1 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+…+n)+n……………………………………………………………..(3 ) 由(2)+ (3)得: =8S-4(1+2+3+...+n)+n.. (4) S 1 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1)

平方和立方和公式推导

数学][转载]自然数平方和公式推导及其应用 (2009-07-29 12:13:14) 转载▼ 标 分类:游戏数学 签: 杂 谈 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 设:S=12+22+32+…+n2 另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一: S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S, (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 S1=2S+n3+2n(1+2+3+...+n).. (1) 第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+...+n)+n.. (3) 由(2)+ (3)得:S1=8S-4(1+2+3+...+n)+n.. (4) 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

前n个自然数的平方和及证明

帕斯卡与前n 个自然数的平方和 十七世纪的法国数学家帕斯卡(Pascal B.,1623.6.19~1662.8.19)想出了一个新的很妙的方法能求出前n 个自然数的平方和。这个方法是这样的: 利用和的立方公式,我们有 (n +1)3=n 3+3n 2+3n +1, 移项可得 (n +1)3 -n 3=3n 2+3n +1, 此式对于任何自然数n 都成立。 依次把n =1,2,3,…,n -1,n 代入上式可得 23 -13=3?12+3?1+1, 33 -23=3?22+3?2+1, 43 -33=3?32+3?3+1, …………………………… n 3-(n -1)3=3(n -1)2+3(n -1)+1, (n +1)3 -n 3=3n 2+3n +1, 把这n 个等式的左边与右边对应相加,则n 个等式的左边各项两两相消,最后只剩下(n +1)3 - 1;而n 个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n 个自然数的平方和,第二列出现我们在上一段已经算过的前n 个自然数的和,第三列是n 个1。因而我们得到 (n +1)3 -1=3S n + 2)1(3+n n +n , 现在这里S n =12+22+…+n 2。 对这个结果进行恒等变形可得 n 3+3n 2+3n =3S n + 2)1(3+n n +n , 2n 3+6n 2+6n =6S n +3n 2+3n +2n 移项、合并同类项可得 6S n =2n 3+3n 2+n =n (n +1)(2n +1), ∴S n = 61n (n +1)(2n +1), 即 12+22+32+…+n 2=6 1n (n +1)(2n +1)。 这个方法把所要计算的前n 个自然数的平方和与已知的前n 个自然数的和及其它一些已知量通过一个方程联系起来,然后解方程求出所希望得到的公式,确实是很妙的。

连续自然数的立方和

连续自然数立方和的公式 “图形法“ 早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非 常简单的方法推导过这个公式。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连 续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5 项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n +1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和: 右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的 宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

“列表法” 这里再介绍一种列表法,同样可以推出这个公式,并且更简单,更好理解。 第一步:列一个表,在第一行填入一个因数1、2、3、4、5,在第一列填入另一个因数1、2、3、4、5。 第二步:在右下方的空格里分别填入对应的两个因数的积。 显然,所有乘积的和等于 这5块依次是:

推导自然数立方和公式两种方法

推导213)1(21??????+=∑=n n k n k 的两种方法 通化市第一中学校 刘天云 邮编 134001 方法一:拆项累加相消求和 已知:)12)(1(6 112++= ∑=n n n k n k 而)]2)(1()1()3)(2)(1([4 1)2)(1(++--+++=++k k k k k k k k k k k 则:∑=+++= ++n k n n n n k k k 1 )3)(2)(1(41)]2)(1([ 所以:∑∑∑∑====--++=n k n k n k n k k k k k k k 1 1121323)]2)(1([ )1(2 12)12)(1(613)3)(2)(1(41+?-++?-+++=n n n n n n n n n 2)1(21?? ????+=n n 另外:∑=+++= ++n k n n n n k k k 1)3)(2)(1(4 1)]2)(1([还可以作如下证明: )2)(1(432321++++??+??n n n )(6323433++++=n C C C )3)(2)(1(4 1643+++==+n n n n C n 方法二:构造群数列推导 构造奇数列,并按第n 群中含有个奇数的方式分群,即 1 / 3,5 / 7,9,11 / 13,15,17,19 / …… 我们用两种方法研究前n 群的所有数的和. 1、第n 群最末一个数是数列的第)1(2 1+n n 项,而且该项为 11)1(2 122)1(21 -+=-+?=+n n n n a n n

那么,第n 群最初一个数是数列的第1)1(2 1+-n n 项,而且该项为 111)1(21221)1(21 +-=-?? ????+-?=+-n n n n a n n 所以,第n 群的n 个数的和为:322)]1()1[(2 1n n n n n n =-+++-. 则前n 群的所有数的和可记作∑=n k k 13. 2、前n 群所有数的和为该奇数列的前)1(21+n n 项的和,即2 )1(21??????+n n 因此:2 13)1(21??????+=∑=n n k n k

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

平方和与立方和公式推导

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2

专题立方和差公式和差的立方公式

专题二 立方和(差)公式、和(差)的立方公式 我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+。 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-; (3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-。 对上面列出的五个公式,有兴趣的同学可以自己去证明。 反过来,就可以利用上述公式对多项式进行因式分解。 例1 计算: (1)2(32)(964)y y y +-+; (2)22151(5)(25)224 x y x xy y -++; (3)2(21)(421)x x x +++。 分析:两项式与三项式相乘,先观察其是否满足立方和(差)公式,然后再计算. 解:(1)原式=3333(2)278y y +=+; (2)原式=333311(5) ()12528x y x y -=-; (3)原式=322328424218841x x x x x x x x +++++=+++。 说明:第(1)、(2)两题直接利用公式计算.第(3)题不能直接利用公式计算,只好用多项式乘法法则计算,若将此题第一个因式中“+1”改成“-1”则利用公式计算;若将第二个因式中“2x +”改成“2x -”则利用公式计算;若将第二个因式 中“2x +”改成“4x +”,可先用完全平方公式分解因式,然后再用和的立方公式计算 23322332(21)(21)(21)(2)3(2)13(2)1181261x x x x x x x x x ++=+=+?+?+=+++。 例2 计算: (1)3639 (1)(1)(1)x x x x -+++; (2)22(1)(1)(1)(1)x x x x x x +-++-+; (3)2222(2)(24)x y x xy y +-+;

最详细的立方和公式

立方和公式 a A3+ b A3=(a+b) (a A2-ab+b A2 ) ?立方差公式 aA3-bA3=(a-b) (aA2+ab+bA2 ) -3项立方和公式 aA3+bA3+cA3-3abc=(a+b+c)(aA2+bA2+cA2-ab-bc-ac) 推导过程: aA3+bA3+cA3-3abc =(aA3+3aA2 b+3abA2+bA3+cA3 ) - (3abc+3aA2 b+3abA2 ) =[(a+b)A3+cA3]-3ab(a+b+c) =(a+b+c)(aA2+bA2+2ab-ac-bc+cA2 ) -3ab(a+b+c) =(a+b+c)(aA2+bA2+cA2+2ab-3ab-ac-bc) =(a+b+c)(aA2+bA2+cA2-ab-bc-ac) 文字表达 ?立方和,差公式 两数和(差),乘它们的平方和与它们的积的差(和),等于这两个数的立方和(差) -3项立方和公式 三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍

公式证明 1.迭代 法: 我们知道: 0次方和的求和公式2N A0=N 即 1人0+2人 0+...+nP=n 1次方和的求和公式INA仁N(N+1) /2 即 1A1+2A1+...+nA仁n(n+1 ) /2 2次方和的求和公式 2N|A2=N(N+1)( 2N+1) /6 即 1人2+2人2+…+n人2=n(n+1 )( 2n +1) /6 ――平方和公式,此公式可由同种方法得出,取公式( x+1) A3-xA3=3xA2+3x+1,迭代即 得。 取公式:(X+1) A4-XA4=4 XXA3+6XXA2+4XX+1 系数可由杨辉三角形来确定 那么就得出: (N+1)人4-24=423+622+4屮1 NA4-(N-1)A4=4(N-1)A3+6(N-1)A2+4(N-1)+1 (N-1)A4-(N-2)A4=4(N-2)A3+6(N-2)A2+4(N-2)+1 2人4-1人4=4 X1A3+6 X1A2+4 X1+1 ... (n) 于是⑴+⑵+⑶+ ..... +(n )有 左边=(N+1) A4-1 右边=4 (1人3+2人3+3人3+ ……+NA3) +6 (1人2+2人2+3人2+ ……+“人2) +4 (1+2+3+……+N)+N 所以呢 把以上这已经证得的三个公式代入 4( 1人3+2人3+3人3+ ……+NA3) +6( 1人2+2人2+3人2+ ……+“人2) +4( 1+2+3+……+N)+N=(N+1) A4-1

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1

2017最新立方公式推导

前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和:前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ......

n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+ ...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+ n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

立方差公式

立方差公式:a3-b3=(a-b)(a2+ab+b2) 推导过程 1.证明如下: (a-b)3=a3-3a2b+3ab2-b3 所以a3-b3=(a-b)3-(-3a2b+3ab2) =(a-b)(a-b)2+3ab(a-b) =(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2) 2.(因式分解思想)证明如下: a3-b3=a3-a2b-b3+a2b =a2(a-b)+b(a2-b2) =a2(a-b)+b(a+b)(a-b) =(a-b)[a2+b(a+b)] =(a-b)(a2+ab+b2) 立方和公式及其推广: (1) a3+b3=(a+b)(a2-ab+b2) (2) a n+ b n=(a+b)[a(n-1)-a(n-2)×b+...+(-1)^(r-1)×a^(n-r)×b^(r-1)+...+ b^(n-1)](n为大于零的奇数,r为中括号内项的序数) (后面括号中各项式的幂之和都为n-1)。 a n表示a的n次方。 字母表达

立方和公式 立方差公式 三项立方和公式 推导过程: 完全立方公式 (a-b)3=a3+3ab2-3a2b-b3 立方和累加 正整数范围中

注:可用数学归纳法证明 2公式证明编辑 迭代法一 我们知道: 0次方和的求和公式 ,即 1次方和的求和公式 ,即 2次方和的求和公式 ,即 ——平方和公式,此公式可由同种方法得出,取公式 ,迭代即得。 具体如下:

(k+1)3 - k3 = (k3 + 3k2 + 3k + 1) - k3 = 3k2 + 3k + 1 利用上面这个式子有: 23 - 13 = 3×12 + 3×1 + 1 33 - 23 = 3×22 + 3×2 + 1 43 - 33 = 3×32 + 3×3+ 1 53 - 43 = 3×42 + 3×4 + 1 …… (n+1)3 - n3 = 3×n2 + 3n + 1 把上述各等式左右分别相加得到: (n+1)3-13 = 3×(12+22+32+……+n2) + 3×(1+2+3+……+n)+n×1 n3 + 3n2 + 3n + 1 - 1 = 3×(12+22+32+……+n2)+3×n(n+1)/2+n (1) 其中12 + 22 + 32+ …… + n2 = n(n+1)(2n+1)/6 代入(1)式,整理後得13 + 23 + 33+ …… + n3=[n(n+1)/2]2 迭代法二 取公式: 系数可由杨辉三角形来确定 那么就得出: …………⑴ …………⑵

立方和公式

立方和公式 立方差公式 三项立方和公式 推导过程: 完全立方公式 (a- b)3=a3+3ab2- 3a2b- b3 立方和累加 正整数范围中 注:可用数学归纳法证明公式证明

迭代法一 我们知道: 0次方和的求和公式 ,即 1次方和的求和公式 ,即 2次方和的求和公式 ,即 ——平方和公式,此公式可由同种方法得出,取公式 ,迭代即得。 具体如下: (k+1) 3 - k3 = (k3 + 3k 2 + 3k + 1) - k3 = 3k 2 + 3k + 1 利用上面这个式子有: 332 ×1+1 2 - 1=3×1 +3 332 ×2+1 3 - 2=3×2 +3 332 ×3+ 1 4 - 3=3×3 +3 332 ×4+1 5 - 4=3×4 +3 ?? 332 (n+1)- n= 3 ×n + 3n + 1 把上述各等式左右分别相加得到: (n+1) 3-1 3= 3 ×(1 2+22 +32+?? +n2) + 3×(1+2+3+?? +n)+n×1 n3 + 3n 2 + 3n + 1 - 1 = 3 ×(1 2+22 +32+?? +n2)+3×n(n+1)/2+n (1)其中12+2 2+32+ ?? + n 2 = n(n+1)(2n+1)/6 代入 (1)式,整理後得 1 3 + 2 3 + 3 3 + ?? + n 3=[n(n+1)/2] 2 迭代法二

取公式: 系数可由杨辉三角形来确定 那么就得出: ????⑴ ????⑵ ????⑶ ???? ????(n). 于是⑴ +⑵+⑶+?+(n) 有 左边 = 右边 = 把以上这已经证得的三个公式代入,得 移项后得 等号右侧合并同类项后得 即 推导完毕。 因式分解证明

由自然数平方和公式推导自然数立方和公式

自然数平方和公式Sn=1*1+2*2+3*3+…+n*n=n(n+1)(2n+1)/6 怎么推导? 利用(n+1)3-n3=3n2+3n+1即可 13-03=3×02+3×0+1 23-13=3×12+3×1+1 33-23=3×22+3×2+1 43-33=3×32+3×3+1 …… (n+1)3-n3=3n2+3n+1 ∴(n+1)3=3Sn+3(1+2+……+n)+(n+1) …… Sn=1*1+2*2+3*3+…+n*n=n(n+1)(2n+1)/6 设S=1^2+2^2+....+n^2 (n+1)^3-n^3 = 3n^2+3n+1 n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1 ... .. ... 2^3-1^3 = 3*1^2+3*1+1 把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n 所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1) 方法1:由(n+1)^3-n^3=3n^2+3n+1,利用叠加法可得 3(1^2+2^2+3^2+...+n^2)+3(1+2+3+...+n)+n=(n+1)^3-1. 由此等式可得1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6. 方法2:由组合数性质可得:C(2,2)+C(2,3)+C(2,4)+...C(2,n)=C(3,n+1), 即2×1/2+3×2/2+4×3/2+...+n(n-1)/2=(n+1)n(n-1)/6 整理得(1^2+2^2+3^2+...+n^2)-(1+2+3+...+n)=(n+1)n(n-1)/3, 所以1^2+2^2+3^2+...+n^2=(n+1)n(n-1)/3+(1+2+3+...+n)=...

自然数的平方和公式的推导方法总结

自然数的平方和公式的推导方法总结 自然数的平方和就是2222123n ++++ ()n N *∈,它的结果是1(1)(21)6 n n n ++。对于这一结论的推导,方法多种多样,现将我所知道的方法一一总结如下,与大家共享。 方法一:设数列{}n a ,其中22212n a n =+++ ,则 {}n a 的一阶差数列记为1 {}n a ,其中121(1)n n n a a a n +=-=+,首项为114a =; {}n a 的二阶差数列记为2{}n a ,其中 21 1221(2)(1)n n n a a a n n +=-=+-+,首项为215a =; {}n a 的三阶差数列记为3{}n a ,其中 3221(25)(23)2n n n a a a n n +=-=+-+=,首项为312a =; 于是我们可知数列{}n a 为三阶等差数列。于是我们应用下面方法求可求出数列{}n a 的通项。 22222222121321()()()n n n a a a a a a a a -=+-+-++- =5+333121n a a a -+++ =5+2+2+……+2=1125n C -+(2)n ≥ 亦知当1n =时亦有21125n n a C -=+, 故有21*125,n n a C n N -=+∈ 1 1111111121321()()()n n n a a a a a a a a -=+-+-++- =4+222121n a a a -+++ =111110122142()5n n C C C C C --++++++ =2111254n n C C --++(2)n ≥ 亦知当1n =时亦有12111254n n n a C C --=++。 故有1 2111254,*n n n a C C n N --=++∈ 121321()()()n n n a a a a a a a a -=+-+-++- =1+111121n a a a -+++

相关文档
最新文档