自然数平方和公式的推导与证明 新课标

自然数平方和公式的推导与证明 新课标
自然数平方和公式的推导与证明 新课标

自然数平方和公式的推导与证明新课标

12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。

设:S=12+22+32+…+n2

另设:S

=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解

1

题的关键,一般人不会这么去设想。有了此步设题,第一:S

=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1

(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即

=2S+n3+2n(1+2+3+...+n).. (1)

S

1

=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为:

第二:S

1

=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:

S

1

22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2)

12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2

= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2

=22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n

=22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n

=4S-4(1+2+3+…+n)+n……………………………………………………………..( 3)

由(2)+ (3)得:=8S-4(1+2+3+...+n)+n.. (4)

S

1

由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n

即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

= n[n2+n(1+n)+2(1+n)-1]

= n(2n2+3n+1)

= n(n+1)(2n+1)

S= n(n+1)(2n+1)/ 6

亦即:S=12+22+32+...+n2= n(n+1)(2n+1)/6 (5)

以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数。

由(5)代入(2)得自然数偶数平方和公式为2n(n+1)(2n+1)/3,其中2n为最后一位自然数。

由(5)代入(3)得自然数奇数平方和公式为n(2n-1)(2n+1)/3,其中2n-1为最后一位自然数。

由自然数平方和公式推导自然数立方和公式

设S=13+23+33+...+n3. (1)

有S=n3+(n-1)3+(n-2)3+...+13 (2)

由(1)+ (2)得:2S=n3+13+(n-1)3+23+(n-2)3+33+…+n3+13

=(n+1)(n2-n+1)

+

(n+1)[(n-1)2-2(n-1)+22)

+

(n+1)[(n-2)2-3(n-2)+32)

+

.

.

.

+

(n+1)(12-n(n-n+1)(n-n+1+ n2)

即2S=( n+1)[2(12+22+32+...+n2)-n-2(n-1) -3(n-2)-...-n (n-n+1)] (3)

由12+22+32+…+n2=n(n+1)(2n+1)/ 6代入(2)得:

2S=(n+1)[2n(n+ 1)(2n+1)/6-n-2n-3n-…nn+2×1+3×2+…+n(n-1)]

=(n+1)[2n(n+1)(2n+1)/6-n(1+2+3+…n)+(1+1)×1+(2+1)×2+…+(n-1+1)(n -1)]

=(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12+1+22+2+…+(n-1)2+ (n-1)]

=(n+1)[2n(n+1)(2n+1)/6-n2(1+n)/2+12+22+...+(n-1)2+1 +2+...+ (n-1)] (4)

由12+22+…+(n-1)2= n(n+1)(2n+1)/6-n 2,1+2+…+(n-1)=n(n-1)/2代入(4)得:

2S=(n+1)[3n(n+1)(2n+1)/6-n2+n(n-1)/2

=n2(n+1)2/2

即S=13+23+33+…+n3= n2(n+1)2/4

结论:自然数的立方和公式为n2(n+1)2/4,其中n为自然数。

自然数偶数立方和公式推导

设S=23+43+63+…+(2n)3

有S=23(13+23+33+…+n3)=8n2(n+1)2/4=2n2(n+1) 2

结论:自然数偶数的立方和公式为2n2(n+1)2,其中2n为最后一位自然偶数。

自然数奇数立方和公式推导

设S=13+23+33+…+(2n) 3

由自然数的立方和公式为n2(n+1)2/4,其中n为自然数代入左边

有n2(2n+1)2=23+43+63+…+(2n) 3+13+33+53…+(2n-1)3

=2n2(n+1)2+13+33+53…+(2n-1)3

移项得:13+33+53…+(2n-1)3 =n2(2n+1)2-2n2(n+1)2

=n2(2n2-1)

结论:自然数奇数的立方和公式为n2(2n2-1),其中2n-1为最后一位自然奇数,即n的取值。

自然数平方和公式的推导与证明

※自然数之和公式的推导 法计算1,2,3,…,n,…的前n项的和: 由 1 + 2 + … + n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1) 可知 上面这种加法叫“倒序相加法” ※等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即 1、思考:受高斯的启示,我们这里可以用什么方法去求和呢? 思考后知道,也可以用“倒序相加法”进行求和。 我们用两种方法表示: ① ② 由①+②,得

由此得到等差数列的前n项和的公式 对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。 2、除此之外,等差数列还有其他方法(读基础教好学生要介绍) 当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的。把代入中,就可以得到 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次 函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同 点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。

自然数平方和公式的推导与证明(一) 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 一、设:S=12+22+32+…+n2 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S 1 的关键,一般人不会这么去设想。有了此步设题, 第一:S =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1 (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 =2S+n3+2n(1+2+3+...+n).. (1) S 1 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: 第二:S 1 =12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: S 1 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+…+n)+n……………………………………………………………..(3 ) 由(2)+ (3)得: =8S-4(1+2+3+...+n)+n.. (4) S 1 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1)

前n个自然数的平方和及证明

帕斯卡与前n 个自然数的平方和 十七世纪的法国数学家帕斯卡(Pascal B.,1623.6.19~1662.8.19)想出了一个新的很妙的方法能求出前n 个自然数的平方和。这个方法是这样的: 利用和的立方公式,我们有 (n +1)3=n 3+3n 2+3n +1, 移项可得 (n +1)3 -n 3=3n 2+3n +1, 此式对于任何自然数n 都成立。 依次把n =1,2,3,…,n -1,n 代入上式可得 23 -13=3?12+3?1+1, 33 -23=3?22+3?2+1, 43 -33=3?32+3?3+1, …………………………… n 3-(n -1)3=3(n -1)2+3(n -1)+1, (n +1)3 -n 3=3n 2+3n +1, 把这n 个等式的左边与右边对应相加,则n 个等式的左边各项两两相消,最后只剩下(n +1)3 - 1;而n 个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n 个自然数的平方和,第二列出现我们在上一段已经算过的前n 个自然数的和,第三列是n 个1。因而我们得到 (n +1)3 -1=3S n + 2)1(3+n n +n , 现在这里S n =12+22+…+n 2。 对这个结果进行恒等变形可得 n 3+3n 2+3n =3S n + 2)1(3+n n +n , 2n 3+6n 2+6n =6S n +3n 2+3n +2n 移项、合并同类项可得 6S n =2n 3+3n 2+n =n (n +1)(2n +1), ∴S n = 61n (n +1)(2n +1), 即 12+22+32+…+n 2=6 1n (n +1)(2n +1)。 这个方法把所要计算的前n 个自然数的平方和与已知的前n 个自然数的和及其它一些已知量通过一个方程联系起来,然后解方程求出所希望得到的公式,确实是很妙的。

平方和立方和公式推导

数学][转载]自然数平方和公式推导及其应用 (2009-07-29 12:13:14) 转载▼ 标 分类:游戏数学 签: 杂 谈 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 设:S=12+22+32+…+n2 另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一: S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S, (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 S1=2S+n3+2n(1+2+3+...+n).. (1) 第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+...+n)+n.. (3) 由(2)+ (3)得:S1=8S-4(1+2+3+...+n)+n.. (4) 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

《完全平方公式》

课题:§1·6 完全平方公式(第1课时) 【北师大版七年级下学期】 内容分析 1.课标要求 数学课标要求在数学课程中,应该当注重发展学生的符号意识、运算能力、推理能力和模型思想.而学生已经学习并掌握了有理数的运算,合并同类项,多项式与多项式相乘等知识,通过学习本节课的学习,能够进一步发展学生的符号意识,运算能力和归纳能力等,同时利用完全平方公式进行运算过程中,有助于学生理解运算的算理,为下一节课解决有些类型的简便运算的问题打下坚实的基础. 2.教材分析 (1)知识技能:学生在已经学习了有理数的运算,整式及其加减,幂的有关运算,整式的乘法等知识之后,自然过渡到多项式与多项式的乘法的特殊情况即两个相同的多项式相乘,本节课所学知识对今后学习因式分解,分式的计算以及解一元二次议程也奠定了坚实的基础. (2)数学能力:学生已经具备了合并同类项法则,幂的有关计算法则,多项式乘以多项式的法则等有关整式计算的能力,也从以往的学习过程中累积了一定的归纳与推理能力.本节课是继“平方差公式”之后学习的另一个公式.对于这个公式的学习,本质上还是归纳与推理的一个过程,通过例子总结归纳出完全平方公式的含义,继而运用完全平方公式进行准确计算. (3)数学思想:本节课的学习让学生经历从特殊到一般的推理过程,掌握推理过程中的归纳思想.并让学生用几何图形理解完全平方公式中,渗透数形结合的思想,体会模型的作用.3.学情分析 学习本节课知识应该具备的知识和能力有:有关有理数的运算,整式的加减,整式的乘法等计算能力.而学生对于本节课要学习的知识已经具备的有:学生已经具备了多项式乘以多项式的能力,能够整理出公式的右边形式,主要是让学生在学习学习过程中归纳出从特殊到一般的规律,从而总结出完全平方公式,并能正确的使用公式. 教学目标 1.知识技能:经历探索完全平方公式的过程,并能运用公式进行简单的计算.

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

完全平方公式(一)

1.6完全平方公式(一) ●教学目标 (一)教学知识点 1.完全平方公式的推导及其应用. 2.完全平方公式的几何背景. (二)能力训练要求 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力. (三)情感与价值观要求 1.了解数学的历史,激发学习数学兴趣. 2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力. ●教学重点 1.完全平方公式的推导过程、结构特点、语言表述、几何解释. 2.完全平方公式的应用. ●教学难点 1.完全平方公式的推导及其几何解释. 2.完全平方公式结构特点及其应用. ●教学方法 自主探索法 学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后达到合理、熟练地应用. ●教具准备 投影片四张 第一张:试验田的改造,记作(§1.6.1 A) 第二张:想一想,记作(§1.6.1 B) 第三张:例题,记作(§1.6.1 C) 第四张:补充练习,记作(§1.6.1 D) ●教学过程 Ⅰ.创设问题情景,引入新课 [师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种. 同学们,谁来帮老农实现这个愿望呢? (同学们开始动手在练习本上画图,寻求解决的途径) [生]我能帮这位爷爷. [师]你能把你的结果展示给大家吗? [生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.

平方和与立方和公式推导

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2

完全平方公式解

完全平方公式讲解 第一部分概念导入 1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律? (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______; (2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______; 2.学生计算 3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1 (m+2)2=(m+2)(m+2)= m2+4m+4 (2)(p-1)2=(p-1)(p-1)= p2-2p+1 (m-2)2=(m-2)(m-2=m2-4m+4 4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。 推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】 得到公式,分析公式 (1).结论:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即: 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. (2)公式特征 左边:二项式的平方 右边:二项式中每一项的平方与这两项乘积2倍的和. 注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“+”,若这两项异号,则2ab的符号为“-”. (3)公式中字母可代表的含义 公式中的a和b可代表一个字母,一个数字及单项式. (4)几何解释 图1-5 图1-5中最大正方形的面积可用两种形式表示:①(a+b)2②a2+2ab+b2,由于这两个代数式表示同一块面积,所以应相等,即(a+b)2=a2+2ab+b2 因此,用几何图形证明了完全平方公式的正确性. 【学习方法指导】 [例1]计算 (1)(3a+2b)2(2)(mn-n2)2 点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.解:(1)(3a+2b)2=(3a)2+2·(3a)·(2b)+(2b)2=9a2+12ab+4b2

完全平方公式

年级八年级课题完全平方公式课型新授教学媒体多媒体 教学目标知识 技能 1.经历探索完全平方公式的过程,使学生感受从一般到特殊的研究方法,进一 步发展符号感和推理能力. 2.会推导完全平方公式,能说出公式的结构特征,并能运用公式进行简单计算.过程 方法 进一步培养学生用数形结合的方法解决问题的能力. 情感 态度 了解数学的历史,激发学习数学的兴趣.鼓励学生自己探索算法的多样化,有意 识地培养学生的创新能力. 教学重点(a±b)2=a2±2ab+b2的推导及应用. 教学难点完全平方公式的推导和公式结构特点及其应用. 教学过程设计 教学程序及教学内容师生行为设计意图一、复习旧知 探究,计算下列各式,你能发现什么规律? (1)(p+1)2 =(p+1)(p+1)=_________; (2)(m+2)2=(m+2)(m+2)=_________; (3)(p-1)2 =(p-1)(p-1)=_________; (4)(m-2)2=(m-2)(m-2)=_________. 答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4. 二、探究新知 1.计算:(a+b)2 和(a-b)2 ;并说明发现的规律。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2. (a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab -ab+b2=a2-2ab+b2. 2.归纳完全平方公式 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即学生利用多项式与 多项式相乘的法则 进行计算,观察计算 结果,寻找一般性的 结论,并进行归纳 教师让学生利用多 项式的乘法法则进 行推理. 教师让学生用自己 的语言叙述所发现 的规律,允许学生之 间互相补充,教师不 急于概括. 这里是对前边 进行的运算的 复习,目的是 让学生通过观 察、归纳,鼓 励他们发现这 个公式的一些 特点,如公式 左右边的特 征,便于进一 步应用公式计 算 公式的推导既 是对上述特例 的概括,更是 从特殊到一般 的归纳证明, 在此应注意向 学生渗透数学

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

求连续自然数平方和的公式 精品

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212 222,而它的通项公式是312+n ,于是大胆猜想 n n ++++++++ 3213212 222=312+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

2017最新立方公式推导

前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和:前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ......

n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+ ...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+ n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

完全平方公式(教案)

完全平方公式(一)教案 武冈三中 姚立云 教学目标: 1、知识目标:理解公式的推导过程,了解公式的几何背景,能正确应用公 式进行简单的计算。 2、能力目标:渗透化归及数形结合的思想方法,培养学生的发现能力,灵 活运用公式的能力和解决实际问题的能力。 3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察、大胆创新 的思维品质。 教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行 简单的计算。 教学难点:理解公式中字母的含义,公式的正确运用。 教 具:拼图版、电脑 教学设计: 一、创设情境,导入新课 小组活动:做拼图游戏 材料:边长为a 的正方形1个,边长为b 的正方形1个,长为a 、宽为b 的长方形4个。 要求:使用上述材料部分或全部拼出一个大正方形。 二、探索与发现 1、学生展示所拼图形,利用面积相等得到公式: 2222)(b ab a b a ++=+ 2、引导学生利用多项式乘以多项式推导2222)(b ab a b a ++=+ 3、引入课题:完全平方公式

4、师生互动 师:公式的左边结构特征是什么? 生:两个数的和的平方。 师:公式的右边结构特征是什么? 生:是一个三项式,其中两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的两倍。 师生共同归纳: 两数和的平方,等于它们的平方和加上它们乘积的2倍(简记:首平方尾平方积的2倍中间放) 师:你能运用公式2222)(b ab a b a ++=+计算2)(b a -吗? 生:可以,把2)(b a -看成2)]([b a -+即可。 师:非常棒,你能把过程写出来吗? 生:能。2222222)()(2)]([)(b ab a b b a a b a b a +-=-+-?+=-+=- 5、例题分析 利用电子白板放映 例:运用完全平方公式计算 (1)2)2(y x + (2)2)2(y x - 解:(1)2222244)2()2(2)2(y xy x y y x x y x ++=+??+=+ 2222)(b ab a b a ++=+ (2)22222244)2()2(2)]2([)2(y xy x y y x x y x y x +-=-+-??+=-+=- 2222)(b ab a b a ++=+ 6、基础练习 利用电子白板放映 (1)判断正误,并改正 ①222)(y x y x +=+ ②222)(y x y x -=-

平方和的计算方法

1×1+2×2+3×3+……+n×n=n(n+1)(2n+1)/6 来历是:用完全立方公式和等差数列求和公式推导 因为: (n+1)3=n3+3n2+3n+1 在这个等式中,让依次取从1开始的n个连续的自然数,就得到n个相对应的等式, 23=13+3×12+3×1+1 33=23+3×22+3×2+1 43=33+3×32+3×3+1 ……………… (n+1) 3=n3+3n2+3n+1 将这个等式中等号两边的式子分别加起来,划去等号两边相同的数,就得到, (n+1) 3=1+3(12+22+32+……+n2)+3(1+2+3+……+n)+n 第二个括号内的和就是一个等差数列,和为n(1+n)÷2,于是 (n+1) 3=1+3(12+22+32+……+n2)+3n(n+1)÷2+n 所以, 3(12+22+32+……+n2)= (n+1) 3-3n(n+1)÷2-(n+1) =n3+3n2+3n+1-3n2/2-3n/2-n-1 =n3+3/2n2+n/2 所以, 12+22+32+……+n2=1/3(n3+3n2/2+n/2) =n(n+1)(2n+1)/6 前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

自然数的平方和公式的推导方法总结

自然数的平方和公式的推导方法总结 自然数的平方和就是2222123n ++++ ()n N *∈,它的结果是1(1)(21)6 n n n ++。对于这一结论的推导,方法多种多样,现将我所知道的方法一一总结如下,与大家共享。 方法一:设数列{}n a ,其中22212n a n =+++ ,则 {}n a 的一阶差数列记为1 {}n a ,其中121(1)n n n a a a n +=-=+,首项为114a =; {}n a 的二阶差数列记为2{}n a ,其中 21 1221(2)(1)n n n a a a n n +=-=+-+,首项为215a =; {}n a 的三阶差数列记为3{}n a ,其中 3221(25)(23)2n n n a a a n n +=-=+-+=,首项为312a =; 于是我们可知数列{}n a 为三阶等差数列。于是我们应用下面方法求可求出数列{}n a 的通项。 22222222121321()()()n n n a a a a a a a a -=+-+-++- =5+333121n a a a -+++ =5+2+2+……+2=1125n C -+(2)n ≥ 亦知当1n =时亦有21125n n a C -=+, 故有21*125,n n a C n N -=+∈ 1 1111111121321()()()n n n a a a a a a a a -=+-+-++- =4+222121n a a a -+++ =111110122142()5n n C C C C C --++++++ =2111254n n C C --++(2)n ≥ 亦知当1n =时亦有12111254n n n a C C --=++。 故有1 2111254,*n n n a C C n N --=++∈ 121321()()()n n n a a a a a a a a -=+-+-++- =1+111121n a a a -+++

完全平方公式

完全平方公式 【概念】 【推导证明】 【典型例题】 【专项练习】 【相关链接】 概念: 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。 222 222()2()2a b a ab b a b a ab b +=++-=-+ 这两个公式叫做(乘法的)完全平方公式。 运用公式时应注意:①公式中的字母a ,b 可以是任意的代数式, ②公式的结果应为三项,注意不要漏项和写错符号。 推导证明: 方法一:(代数法) 1两数和的平方公式 2 22 22()()() 2a b a b a b a ab ab b a ab b +=++=+++=++ 2两数差的平方公式 2 2222()()() 2a b a b a b a ab ab b a ab b -=--=--+=-+ 或 (a -b )2=[a +(-b )]2 =a 2+2?a ?(-b )+(-b )2 =a 2-2ab +b 2 即(a -b )2=a 2-2ab +b 2 方法二:(几何法) a b a b a 2 ab ab b 2

说明:两数差的完全平方公式几何证法(略)典型例题: 【例1】.计算(x+2y)2 解:(x+2y)2=x2+2?x?2y+(2y)2 =x2+4xy+4y2 【例2】.计算(-x+2y)2 解法一:(-x+2y)2=(-x)2+2?(-x)?2y+(2y)2 =x2-4xy+4y2 解法二:(-x+2y)2=(2y-x)2 =(2y)2-2?2y?x+x2 =4y2-4xy+x2 解法三:(-x+2y)2=[-(x-2y)]2 =(x-2y)2 =x2-4xy+4y2 【例3】下列计算中,正确的有() (1)(b-4c)2=b2-16c2 (2)(x-2yz)2=x2+4xyz+4y2z2 (3) 2 22 11 24 a b a ab b ?? +=++ ? ?? (4)(4m-n)2=16m2-4mn+n2 (5)(-2a-b)2=4a2-4ab+b2 解析:只有(3)是正确的 (1)(b-4c)2=b2-16c2按平方差公式计算了,结果应为b2-8bc+16c2, (2)(x-2yz)2=x2+4xyz+4y2z2应该是两数差的完全平方公式,结果应为x2-4xyz+4y2z2(4)(4m-n)2=16m2-4mn+n2 , 中间项应该为-8mn而不是-4mn,结果应为 16m2-8mn+n2 (5)(-2a-b)2=4a2-4ab+b2可以先将(-2a-b)2变形为[-(2a+b)]2=(2a+b)2, 所以结果为4a2+4ab+b2 【例4】.运用公式简便计算 (1)1032(2)1982 解:(1)1032=(100+3)2 =1002+2?100?3+32 =10000+600+9 =10609 (2)1982=(200-2)2 =2002-2?200?2+22 =40000-800+4 【例5】.解下列各式 (1)已知a2+b2=13,ab=6, 求(a+b)2,(a-b)2的值。 (2)已知(a+b)2=7,(a-b)2=4,

平方和公式及推导

浙江宁波外国语试验学校就读初一的外甥回家过春节,大年初二作寒假作业的时候被12+22+32+…+n2=?这道题难住了,拿来问全家人,包括他自己在雅戈尔西服厂任正、副老总的父母和岳母全家一大堆老、少大学生、硕士、博士思考了一下午都没有结论,碰上后来赶到的我,思考了近两个小时,才得出推导正确过程。想必此题具有一定的代表性,而且有了该公式推导,可以得到奇数自然数平方和、偶数自然数平方和、自然数立方和、奇数自然数立方和、偶数自然数立方和公式的推导,特写出来供大家参考。 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 设:S=12+22+32+…+n2 另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一: S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S, (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 S1=2S+n3+2n(1+2+3+...+n).. (1) 第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+...+n)+n.. (3) 由(2)+ (3)得:S1=8S-4(1+2+3+...+n)+n.. (4) 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1) = n(n+1)(2n+1) S= n(n+1)(2n+1)/ 6 亦即:S=12+22+32+...+n2= n(n+1)(2n+1)/6 (5) 以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数。 由(5)代入(2)得自然数偶数平方和公式为2n(n+1)(2n+1)/3,其中2n为最后一位自然数。 由(5)代入(3)得自然数奇数平方和公式为n(2n-1)(2n+1)/3,其中2n-1为最后一位自然数。

相关文档
最新文档