薄膜电阻率理论

薄膜电阻率理论
薄膜电阻率理论

金属薄膜电阻率与表面粗糙度、残余应

力的关系

唐武1,邓龙江1,徐可为2,Jian Lu3

(1. 电子科技大学电子薄膜与集成器件国家重点实验室,四川成都610054)

(2. 西安交通大学,陕西西安710049)

金属电阻形成的根源是自由电子发生碰撞,从而失去了从外电场获得的定向速度。这种碰撞可能发生于电子-晶格、电子-杂质、电子-晶界、电子-表面。在块体材料中,电子-表面碰撞的次数在总的碰撞次数中所占比率极小,可以忽略,因而块体材料的电阻率与物体尺寸无关。但对薄膜而言,当其表面特征尺寸可与该温度下电子自由程相当时,电子-薄膜的表面碰撞为非镜面反射(即反射方向与入射方向无关,亦即漫反射),电阻率就会随表面状态改变。

在薄膜材料中,由于厚度很小,所以在电子表面碰撞过程中的电子损失速度不可忽略。由此对薄膜材料的电阻率造成影响。

通常情况下电阻率随粗糙度的增大而增大。

法奇斯(Fuchs).桑德海默尔(Sondheimer)理论:F-S

式(1)是在假设薄膜电子完全发生漫反射时的电阻率。实际情况下反射率与基底粗糙度有关,粗糙度越大,发生漫反射比例越高,当表面粗糙度为0或者镜面时,将发生完全镜面反射,此时根据式(1)可得到薄膜电阻与块状电阻率相等的关系。设镜面反射所占比例为P,则此时薄膜电阻率表达式为:

研究粗糙度对薄膜电阻率的影响:

电阻率随残余应力的增大而增大。与晶体取向可能有关。残余应力增加,薄膜晶体扭曲越严重,晶体对电子造成的散射越显著。

薄膜电阻率测量系统设计

摘要 电阻率是电子材料的重要参考性能数,薄膜电阻率的测量备受关注。采用传统四探针高电阻率测量方法测量薄膜电阻率,需要加入较多的修正才能得到精确的结果。因此,研究薄膜电阻率的测量系统原理、软硬件集成方法等具有很重要的意义和应用价值。 在综合比较各种电阻率测量方法的基础上,本设计采用双电测组合法测量薄膜电阻率。首先,系统研究双电测组合法薄膜电阻率测量原理,跟据测量要求改进电阻率的计算方法,极大的简化相关修正,提高测量结果的可靠性和精确度。其次,基于单片机的Rymaszewski四探针双电测组合法设计了薄膜电阻率自动化测量系统。在8051单片机的控制下,利用基于CD4052芯片的接口电路实现电流探针,电压探针的自动切换,并通过单片机控制实现两次电压测量;同时根据两次测量结果编程完成范德堡修正因子的计算,最终实现薄膜电阻率自动测量和显示,建立基于8051单片机的双电测四探针薄膜电阻率测量系统。实验结果表明,所设计的自动测量系统不仅可以满足多种薄膜电阻率测量要求,而且提高了测量精度和自动化程度,同时精简了薄膜电阻率测量过程。 关键词:四探针双电测组合法;范德堡修正因子;CD4052;薄膜电阻率 Abstract Attention is mainly paid to the measurement of resistivity--an important property of

thin film. Owing to apply traditional four-probe method on film sample resistivity measurement, complex corrections are required in order to acquire an accurate result and sample will easily be scratched during the measuring process when using manual four-probe equipment. Therefore, the measurement theory, software and hardware integration method by virtual instrumentation for thin film resistivity automatic system are of important value. In comprehensive comparative measurement method of resistivity, on the basis of the design USES double electrical measurement group legal measuring film resistivity. First, system research double electrical measurement is the legitimate film resistivity measurements of the principle with according to measurement requirements, the calculation method of improving resistivity, greatly simplified related correction, improve the reliability and precision measurement result. Secondly,Based on SCM Rymaszewski four-point probe double electrical measurement group the film resistivity legitimate design automation measuring system. In 8051 under the control of the single chip microcomputer based on CD4052 chip interface circuit implements current probe, voltage probe to switch, and through the single-chip microcomputer control achieve two voltage measurement; And according to two measurement results programmed Vanderbilt correction factor calculation, and finally achieve the film resistivity of automatic measurement and display, based on the single chip microcomputer 8051 double electrical measurement of four probe film resistivity measuring system. The experimental result shows that the design of automatic measurement system can not only meet a variety of film resistivity measurement requirements, and improve the measuring precision and automation degree, and streamline film resistivity measurement process. Keywords: dual electro measurement with four point probes; van der Pauw correction factor ; CD4052;Film resistivity 目录 第一章绪论 .................................... 错误!未定义书签。1.1设计的目的 . (4)

测定金属电阻率-

测定金属的电阻率 实验目的: 学会用伏安法测量电阻的阻值,测定金属的电阻率。 实验原理: 用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测 导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS /L =πd 2 R /4L 实验器材: 金属丝、千分尺、安培表、伏特表、(3伏)电源、(20Ω)滑动变阻器、电键一个、导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 实验步骤: (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横 截面积S =πD 2 /4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 【点拨】为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 实验记录 图1

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

常见金属电阻率

常用金属导体在20℃时的电阻率 材料电阻率(Ωm) (1)银1.65×10-8 (2)铜1.75×10-8 (3)金2.40×10-8 (4)铝2.83×10-8 (5钨5.48×10-8 (6)铁9.78×10-8 (7)铂2.22×10-7 (8)锰铜4.4×10-7 (9)汞9.6×10-7 (10)康铜5.0×10-7 (11)镍铬合金1.0×10-6 (12)铁铬铝合金1.4×10-6 (13)铝镍铁合金1.6×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些金属氧化物更大,而绝缘体的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做半导体(semiconductors)。 另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ωm),αo(×10-3) 锌20 5.94.2 铝(软)202.754.2 铝(软)–781.64 石墨(8~13)×10-6 阿露美尔合金20331.2 锑038.75.4 铱206.53.9 铟08.25.1 殷钢0752 锇209.54.2 镉207.44.2 钾206.95.1① 钙204.63.3 金202.44.0 银201.624.1 铬(软)2017

镍铬合金(克露美尔)—70—110.11—.54 钴a06.376.58 康铜—50–.04–1.01 锆30494.0 黄铜–5—71.4–2 水银094.080.99 水银2095.8 锡2011.44.5 锶030.33.5 青铜–13—180.5 铯20214.8 铋201204.5 铊20195 钨205.55.3 钨100035 钨3000123 钨–783.2 钽20153.5 金属温度(0℃)ραo,100 杜拉铝(软)—3.4 铁(纯)209.86.6 铁(纯)–784.9 铁(钢)—10—201.5—5 铁(铸)—57—114 铜(软)201.724.3 铜(软)1002.28 铜(软)–781.03 铜(软)–1830.30 钍20182.4 钠204.65.5① 铅20214.2 镍铬合金(不含铁)20109.10 镍铬合金(含铁)2095—104.3—.5 镍铬林合金—27—45.2—.34 镍(软)207.246.7 镍(软)–783.9 铂2010.63.9 铂100043

四探针测量金属薄膜电阻率

实验三(I)探针测量半导体或金属薄膜电阻率 一.实验目的 1.熟悉四探针测量半导体或金属薄膜电阻率的原理 2.掌握四探针测量材料电阻率的方法 二.实验原理 薄膜材料是支持现代高新技术不断发展的重要材料之一,已经被广泛地应用在微电子器件、微驱动器/ 微执行器、微型传感器中。金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常要测量的物理特性,对金属薄膜电阻率的测量也是四端法测量低电阻材料电阻率的一个实际的应用,它比传统的四端子法测量金属丝电阻率的实验更贴近现代高新技术的发展。 直流四探针法也称为四电极法,主要用于半导体材料或超导体等的低电阻率的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见,测试时四根金属探针与样品表面接触,外侧两根1、4为通电流探针,内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23(伏)。 (a)仪器接线(b)点电流源(c)四探针排列 图3-1 四探针法测试原理示意图 若一块电阻率为ρ的均匀半导体样品,其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I,由于均匀导体内恒定电场的等位面为球面,则在半径为r处等位面的面积为2πr2,电流密度为 j=I/2πr2(3-1)

根据电导率与电流密度的关系可得 E =2222r I r I j πρσπσ== (3-2) 则距点电荷r 处的电势为 r I V πρ2= (3-3) 半导体内各点的电势应为四个探针在该点形成电势的矢量和。通过数学推导可得四探针法测量电阻率的公式为: I V C r r r r I V 2313413241223)1111(2=+--?=-πρ (3-4) 式中,134 132412)1111(2-+--=r r r r C π为探针系数,单位为cm ;r 12、r 24、r 13、r 34分别为相应探针间的距离,见图3-1c 。若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则 S I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=- (3-5) 这就是常见的直流等间距四探针法测电阻率的公式。 为了减小测量区域,以观察电阻率的不均匀性,四根探针不—定都排成—直线,而可排成正方形或矩形,此时,只需改变计算电阻率公式中的探针系数C 。 四探针法的优点是探针与半导体样品之间不要求制备合金结电极,这给测量带来了方便。四探针法可以测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀情况。由于这种方法可迅速、方便、无破坏地测量任意形状的样品且精度较高,适合于大批生产中使用。但由于该方法受针距的限制,很难发现小于0.5mm 两点电阻的变化。 根据样品在不同电流(I )下的电压值(V )计算出该样品的电阻值及电阻率,例如某一种薄膜样品,在薄膜的面积为无限大或远大于四探针中相邻探针间距的时候,金属薄膜的电阻率ρ可以由以下式算出。

物理实验金属薄膜电阻率的测量

银薄膜电阻率测量数据记录表 膜厚:44.4nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.151 0.162 0.163 0.163 0.172 0.186 0.185 0.186 0.193 0.207 0.208 0.208 0.223 0.241 0.240 0.241 0.281 0.301 0.302 0.302 0.316 0.340 0.339 0.340 0.356 0.383 0.384 0.384 0.402 0.433 0.434 0.434 0.448 0.482 0.483 0.483 电阻率为216.879(Ω/nm) 膜厚:88.8nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.532 0.121 0.126 0.124 1.743 0.404 0.409 0.407 3.264 0.759 0.764 0.762 4.744 1.105 1.110 1.108 5.642 1.314 1.320 1.317 7.539 1.758 1.763 1.761 9.163 2.138 2.143 2.141 10.679 2.492 2.497 2.495 12.221 2.854 2.859 2.857 电阻率为94.11(Ω/nm) 膜厚:133.2nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.794 0.107 0.112 0.110 2.372 0.327 0.332 0.330 3.988 0.553 0.558 0.556 5.235 0.727 0.732 0.730 6.904 0.960 0.965 0.963 8.488 1.181 1.187 1.184 9.785 1.362 1.368 1.365 13.193 1.839 1.844 1.842 14.871 2.073 2.079 2.076 电阻率为84.35(Ω/nm) 膜厚:222nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 3.970 0.376 0.382 0.379 10.090 0.962 0.967 0.965 14.480 1.382 1.387 1.385

一种预测地层水电阻率的新方法

一种预测地层水电阻率的新方法Ξ 黄文英 (中国石化胜利油田分公司地质科学研究院,山东东营 257015) 摘 要:地层水电阻率是测井解释储层含油饱和度所必需的一个重要参数。在没有实测资料时,该参数的取值显得较为困难,提出一种运用泥岩电阻率资料及少量的地层水分析资料(这些资料可以是目的层位的也可以不是目的层位的)来预测及求取目的层地层水电阻率的新方法。 关键词:沉积体系;地层水电阻率;测井解释;含油饱和度 地层水电阻率是测井解释储层含油饱和度所必需的一个重要参数。一般情况下该参数的取得并不困难,可由试水资料的实验室分析求得或通过自然电位测井资料计算或通过地区的经验公式求得。然而,当在一个新的探区或新的层系内没有或很难找到明显的水层自然电位资料本身为一条直线而不能用来计算之、本地区地层水本身的变化规律不同与常规的情况使得其用常规思路难以预测时,该参数的准确求取便变得复杂起来,这对准确的计算含油饱和度是十分不利的。本文提出一种运用泥岩电阻率资料、少量的地层水分析资料或可用的自然电位资料(当然这些资料可以是目的层位的也可以不是目的层位的)来预测及求取目的层地层水电阻率的新方法,实践表明,该种方法有较好的应用效果。 1 原理 陆相沉积盆地地层水分布于泥岩与砂岩储集体中。其性质取决于沉积环境及后期的成岩过程。它的来源有两种,一类为原生水,另一类为外来水,原生水为大气雨水、海水(相当于海相沉积环境)、湖水(相当于湖相沉积环境)、河水(相当于河流相沉积环境),外来水可以是地面水或深部地层的水。当有断层与地表相通,则大气雨水、泉水等均可沿着断层运移到储层中;深部地层的地层水也可沿着输导层或断裂带运移至其中而赋存下来[1]。目前地层中地层水的化学特性是地理、地质环境变迁导致的地下水动力场和化学场经漫长、复杂演化的结果。 泥岩的渗透性极差,一般情况下泥岩中仅赋存有同期沉积水,外来水难以渗入其中。 砂层中水的成分就比较复杂,可有外来水又可有原生水。砂岩地层总的孔隙体积由两类渗流特性完全不同的孔隙所组成,①完全由束缚水占据的微孔隙:流体在这个孔隙中不能渗流,②有效渗流孔隙。该类孔隙中充满油、气、水[2]。由于砂岩地层的这种渗流特性,使得其微孔隙中充满了原生水,它的性质近似于邻近泥岩中地层水的性质。 在仅有油层而没有水层的层系及地区,储层中的水同样等同于邻近泥岩中地层水的性质。泥岩的导电性主要取决于所含水的化学性质。当人们知道了泥岩电阻率的变化规律后也就间接知道了砂岩储层中地层水的变化规律。 图1中上部为泥岩资料点,下部为该油田水分析资料。它们的变化规律十分相似。对于埕岛油田 为311℃,但本次试运行没有达到设计值,主要由于减底的温度不足,它直接影响减底油渣的软化点并制约减渣能否在成型机上成型,同时也影响液化生成油的拔出率。由于减底温度低使大部分重溶剂油没有拔出来,并使装置轻质油收率逐渐增大,溶剂无法平衡。此点是制约长周期运行保证油收率的重要因素,需要增加热源来保证减压塔底温度。 综上所述,影响常减压系统的平稳运行因素是多方面的,当系统出现波动时需要及时分析引起系统波动的原因,调整操作,对症下药解决问题。 4 结束语 首次工业化试生产的成功,为后续的再次开车及长周期平稳运行提供了宝贵的经验。通过对煤直接液化首次投煤试生产过程中引起常减压系统波动的主要因素进行分析并对相关问题进行探讨,对装置中存在的问题认识更加清晰,从而可以对症下药,准确地解决装置中存在的问题,从而从理论到实践见证了煤直接液化技术在逐渐走向成熟。 [参考文献] [1] 高晋生,张德祥.煤液化技术[M].北京:化学 工业出版社,2005. [2] 王洪记.国内洁净煤技术研究现状及开发动态 [M].化工技术经济,1998. 67内蒙古石油化工 2009年第19期  Ξ收稿日期:2009-06-17 作者简介:黄文英,毕业于石油大学(华东)资源勘查工程专业。主要从事油气勘探、地质综合研究工作。

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2

铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0

常见金属电阻率

常见金属电阻率 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

常用金属导体在20℃时的电阻率材料电阻率(Ωm) (1)1.65×10-8 (2)1.75×10-8 (3)2.40×10-8 (4)2.83×10-8 (55.48×10-8 (6)9.78×10-8 (7)2.22×10-7 (8)4.4×10-7 (9)9.6×10-7 (10)5.0×10-7 (11)镍铬1.0×10-6 (12)铁铬1.4×10-6 (13)铝镍铁合金1.6×10-6 可以看出金属的电阻率较小,合金的电阻率较大,非金属和一些更大,而的电阻率极大。锗、硅、硒、氧化铜、硼等的电阻率比绝缘体小而比金属大,我们把这类材料叫做(semiconductors)。 另外一些金属和非金属的电阻率 金属温度(0℃)ρ(×10-8Ωm),αo(×10-3)

锌20 5.94.2 铝(软)202.754.2 铝(软)–781.64 (8~13)×10-6 阿露美尔合金20331.2 锑038.75.4 铱206.53.9 铟08.25.1 殷钢0752 锇209.54.2 镉207.44.2 钾206.95.1① 钙204.63.3 金202.44.0 银201.624.1 铬(软)2017 镍铬合金(克露美尔)—70—110.11—.54钴a06.376.58 康铜—50–.04–1.01 锆30494.0 黄铜–5—71.4–2 水银094.080.99

水银2095.8 锡2011.44.5 锶030.33.5 青铜–13—180.5 铯20214.8 铋201204.5 铊20195 钨205.55.3 钨100035 钨3000123 钨–783.2 钽20153.5 金属温度(0℃)ραo,100杜拉铝(软)—3.4 铁(纯)209.86.6 铁(纯)–784.9 铁(钢)—10—201.5—5 铁(铸)—57—114 铜(软)201.724.3 铜(软)1002.28 铜(软)–781.03 铜(软)–1830.30

CIGS太阳能电池中薄膜材料电阻率的研究

传感器与微系统(Transducer and Microsystem Technologies)2011年第30卷第4期 CIGS太阳能电池中薄膜材料电阻率的研究 钱群,张丛春,杨春生,丁桂甫 (上海交通大学微纳科学技术研究院微米/纳米加工技术国家重点实验室, 薄膜与微细技术教育部重点实验室,上海200240) 摘要:研究了减小CIGS太阳能电池中Mo,CIGS,n-ZnO三层薄膜电阻率的溅射工艺方法,以达到减小 电池串联电阻的目的。改变工艺参数制备不同样品并对其进行测试分析,得到了溅射气压、衬底温度、退 火工艺对电阻率和薄膜微观形貌的影响。证明了采用双层溅射法制备的Mo、低气压、衬底加热、溅射后退 火得到的CIGS以及3 5Pa下制备的n-ZnO都有较好的薄膜质量和较低的电阻率。 关键词:太阳能电池;CIGS;溅射;电阻率 中图分类号:O472文献标识码:A文章编号:1000—9787(2011)04—0022—03 Study on electric resistivity of thin film materials for GIGS solar cell QIAN Qun,ZHANG Cong-chun,YANG Chun-sheng,DING Gui-fu (National Key Laboratory of Micro/Nano Fabrication Technology,Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education,Research Institute of Micro/Nano Science and Technology,Shanghai Jiao Tong University,Shanghai200240,China) Abstract:In order to reduce electric resistivity of three-layer thin film materials and finally reduce series resistance of CIGS solar cell,improvements of sputtering technics for Mo,CIGS and n-ZnO have been investigated.Different samples are prepared at different fabricating conditions.The influences of sputtering air pressure,substrate temperature and anneal technique on electric resistivity and microstructure are given by analyzing test results.It has been testified that Mo gained by double-layer sputtering,CIGS gained at low sputtering air pressure with substrate heated and then annealed,n-ZnO gained when sputtering pressure is around3 5Pa have relatively better quality and lower electric resistivity. Key words:solar cell;CuIn (1-x)Ga x Se 2 (CIGS);sputtering;electric resistivity 0引言 太阳能是最重要的可再生能源,只要在全球0.1%的面积铺上具有10%转换效率的太阳能电池,就能够满足全球的能量供应[1],由于能源危机和环境污染,近年来,光伏产品更是得到了高速发展。单晶硅太阳能电池在现阶段得到了大规模应用,在工业生产中占主导地位,但由于其成本过高,限制了它的进一步发展[2]。作为单晶硅电池的替代产品,薄膜太阳能电池得到了发展。太阳能电池CIGS (CuIn (1-x)Ga x Se 2 )是近年来发展最快的薄膜太阳能电池, 它具有与可见光匹配好、光的吸收效率和转化效率高、抗辐射能力强、弱光性能出色等优点。目前,小面积CIGS薄膜单体电池的最高转化效率为19.9%[3],大面积集成组件效率已超过13%。 由于太阳能电池中的半导体材料、2个电极以及各处连接处电阻的存在,流经负载的电流经过时,必然引起损耗,因此,在等效电路中可将它们的总效果用一个串联电阻R S 来表示。光电流在串联电阻上的电压降使得p-n结处于正向偏置,由正向偏置所引起的暗电流抵消了部分光电流,且串联电阻越大暗电流越大,这会导致电池的短路电流减小,因此,应尽量减小串联电阻。 可见CIGS电池的串联电阻主要包括各层薄膜的自身电阻和电流由n-ZnO流入最靠近的上电极这个过程中产生的横向电阻这两部分。后者可以通过优化上电极的图形化设计来减小,与材料自身的性质关系不大。而电池中CdS 和i-ZnO两层材料很薄,且都为弱n型半导体,电阻率可调整范围较小,因此,薄膜自身电阻的降低主要通过降低背电 收稿日期:2010—07—28 22

薄膜表面电阻率中文版

薄膜表面电阻率 玛丽亚.古铁雷斯 李海勇 杰弗里,巴顿 材料工程中部分实现210配对实验方法的课程要求 2002年秋 G. Selvaduray教授

什么是表面电阻率? 定义 表面电阻率可以被定义为材料的固有表面电阻乘以试样表面的尺寸比(电极宽度除以电极之间的距离),如果电极已形成了一个正方形的对立两边,表面电阻率则转换被测电阻 【1】换句话说,它是材料表面固有电阻的量度。表面电阻率不依赖于材料的物理尺寸。根据欧姆法律电路理论,材料的电阻是应用电压除以穿过材料两个电极之间的电流得到的。 R=V/I (1) 其中: R为电阻,单位欧姆 V为电压,单位伏特 I为电流,单位安培 这个电阻和样品的长度成正比和样品的横截面面积成反比。比例常数的电阻率 R=ρ l/A (2) 其中: Ρ为电阻率 A为横截面面积 l为长度 单位

表面电阻率的物理单位是欧姆/平方。在实际中,表面电阻率常常以欧姆/平方的单位给出。这个单位应该被看做是一种标志而不是表面电阻率的物理单位。尽管如此,理解欧姆/平方的意义还是很重要的,因为在绝大多数出版物中,表面电阻率的单位是以那种方式表达的。 [2]那些对这个术语不熟悉的人会问,每平方是什么?是英寸?英尺?还是码?答案是,只要量度与方形有关就是每平方。假设测试样品有一个长方形的形状与厚度(t)。那么等式2可以写成 ρ=R wt/l=Rw/l (3) 其中 w为宽度 l为长度 根据电路类推,方形式样的电阻可以认为是一个电路有个电阻值为R0的电阻,如图1所示。根据等式3,电阻率等于电阻,因为w=1. 图1:方形式样作为独立的电阻 对于长度是其宽度2倍的长方形式样,其电阻为2R0。这可以被认为

地层水电阻率与什么有关

地层水电阻率与什么有关?这些因素怎样影响? 答:1)地层水电阻率与溶液化学成分的关系:不同化学成分的溶液,其中盐类的电离度、离子价和离子移动速度是不同的。因此在相同浓度和温度的情况下地层水的电阻率也是不同的2)地层水电阻率与溶液浓度和温度的关系:如果溶液的浓度增加,溶液中的离子数就增多,溶液的导电能力就增强,电阻率降低。如温度升高,溶液中的盐类溶解度增加,离子数目增多;同时温度增加使溶液粘度降低,离子迁移率增大,结果使溶液电阻率降低。 电位电极系视电阻率的曲线特征? 答:1)对高阻厚层(h>l),高阻层对应高阻,低阻层对应低阻;上下围岩电阻率相同时,曲线对称,中间出现极大值。2)对于高阻薄层(hl),高阻层对应高阻,低阻层对应低阻;曲线中部不对称,底部梯度电极系地界面有极大值,顶界面有极小值,顶部梯度电极系相反。当h>3h时,中部有平直段,视电阻率接近真电阻率。2)对于高阻薄层(h

金属膜电阻规格书

文件修订记录 版本修订内容日期 文件汇签记录 版本签名日期版本签名日期

1、目的 确保本公司所生产的金属膜电阻都有一个统一的标准 2、范围 本规格仅适用于本厂所生产之金属膜固定电阻器成品规格。 3、定义 3.1 型号(type):具有相似的设计和制造工艺,在鉴定批准或质量一致性检验中可以将它们组合在一起的 一组电子元件 3.2 额定温度:在该温度的耐久性试验条件下,可连续施加额定功耗的最高环境温度,本规范指70℃。 3.3 额定功耗:在70℃环境温度下进行70℃耐久试验,而且阻值变化不超过该试验的允许值时所允许的 最大功耗。 3.4 额定电压:用标称阻值和额定功耗乘积的平方根计算出的直流电压或交流电压有效值。 3.5元件极限电压:可经连续施加在电阻器两个引出端上的最大直流电压或交流电压有效值。即本规范所 指的最高使用电压。 3.6 绝缘电压:在连续工作条件下,在电阻器的各个引出端与任何导电安装面之间可以施加的最大峰值电 压。 3.7 电阻温度系数:两个规定温度之间的阻值相对变化除以产生这个变化的温度之差。 4、职责 本规格书执行标准GB/T 5729—2003/IEC 60115-1:2001 5、程序内容 5.1 类型命名:类型依种类、 功率、标称电阻值及阻值容许差等,如下列符号之排列构成 种类 功率 标称电阻值 电阻值容许差 RN 1/4W 150KΩ F 5.2符号之意义 5.2.1种类:以大写英文字母RN表示为金属膜固定电阻器(或以商用通称MF代表,或以RJ来表示)。 5.2.2功率:以W代表额定电功率,如加一英文字母“S”即表示小型化,例1/4WS,即表示额定功率为 1/4W之小型化Size。 5.2.3 标称电阻值:标称电阻值之单位为欧姆,以符号Ω表示,其电阻值以Ω、KΩ(103Ω)、MΩ(106 Ω)、mΩ(10-3Ω)表示之。 5.2.4电阻值容许差:电阻值容许差符号如F(±1%)、G(±2%)、J(±5%)、D(±0.5%)、C(±0.25%) 及B(±0.1%)等表示之 5.2.5形状:大写英文母表示“P”表示外形构造(其外形如图四),或者加工成型如PU、PUG、PF等到, (如图五) 5.3涂装要求 5.3.1电阻器1/8W为焊点不涂漆,≧1/4W均为焊点涂漆(除非客户特殊要求)。 5.3.2 正常尺寸以蓝色漆表示,小型化尺寸以淡蓝色漆表示

高二物理测定金属的电阻率

实验 测定金属的电阻率 一、实验目的:学会用伏安法测量电阻的阻值,测定金属的电阻率。 二、实验原理:用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS/L=πd 2R/4L 三、实验器材:①金属丝②千分尺③安培表④伏特表⑤(3伏)电源⑥(20Ω)滑动变阻器⑦电键一个⑧导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 四、实验步骤 (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横截面积S=πD 2/4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 点拨:为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→ 安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 五、实验记录 图1

金属电阻应变片的种类、材料及粘贴

1.金属电阻应变片的种类金属电阻应变片种类繁多,形式多样,但常见的基本结构有金属丝式应变片、金属箔式应变片和薄膜式应变片。其中金属丝式应变片使用最早、最多,因其制作简单、性能稳定、价格低廉、易于粘贴而被广泛使用。 2.电阻应变片的结构金属丝式电阻应变片由敏感栅、基底、盖层、黏合层和引线等组成。图2-2为金属丝式应变片的典型结构图。其中敏感栅是应变片内实现应变——.电阻转换的最重要的传感元件,一般采用的栅丝直径为0. 015~ mm。敏感栅的纵向轴线称为应变片轴线,L为栅长,n为基宽。根据不同用途,栅长可为~200 mm。基底用以保持敏感栅及引线的几何形状和相对位置,并将被测件上的应变迅速、准确地传递到敏感栅上,因此基底做得很薄,一般为0. 02~ mm。盖层起防潮、防腐、防损的作用,用以保护敏感栅。用专门的薄纸制成的基底和盖层称为纸基,用各种黏合剂和有机树脂薄膜制成的称为胶基,现多采月后者。黏合剂将敏感栅、基底及盖层黏合在一起。在使用应变片时也采用黏合剂将应变片与被测件黏牢。引线常用直径为~ mm的镀锡铜线,并与敏感栅两输出端焊接。 金属箔式应变片的基本结构如图2-3所示,其敏感栅是由很薄的金属箔片制成的,厚度只有0. 01~ mm,用光刻、腐蚀等技术制作。箔式应变片的横向部分特别粗,可大大减少横向效应,且敏感栅的粘贴面积大,能更好地随同试件变形。此外与金属丝式应变片相比,金属箔式应变片还具有散热性能好、允许电流大、灵敏度高、寿命长、可制成任意形状、易加工、生产效率高等优点,所以其使用范围日益扩大,已逐渐取代丝式应变片而占主要的地位。 但需要注意,制造箔式应变片的电阻值的分散性要比丝式的大,有的能相差几十欧姆,故需要作阻值的调整。对金属电阻应变片敏感栅材料的基本要求如下。 ①灵敏系数K。值大,并且在较大应变范围内保持常数。 ②电阻温度系数小。 ③电阻率大。 ④机械强度高,且易于拉丝或辗薄。 ⑤与铜丝的焊接性好,与其他金属的接触热电势小。

金属电阻率

序号金属名称熔点(℃) 1铁1535铬1890 锰1244 备注 序号金属名称熔点(℃) 备注 1铝660纯金属30锆1852纯金属2镁651纯金属31铪2230纯金属3钾63纯金属32钒1890纯金属4钠98纯金属33铌2468纯金属5钙815纯金属34钽2996纯金属6锶769纯金属35钨3410纯金属7钡1285纯金属36钼2617纯金属8铜1083纯金属37镓30纯金属9铅328纯金属38铟157纯金属10锌419纯金属39铊304纯金属11锡232纯金属40锗937纯金属12钴1495纯金属41铼3180纯金属13镍1453纯金属42镧921纯金属14锑630纯金属43铈799纯金属15汞-39纯金属44镨931纯金属16镉321纯金属45钕1021纯金属17铋271纯金属46钐1072纯金属18金1062纯金属47铕822纯金属19银961纯金属48钆1313纯金属20铂1774纯金属49铽1356纯金属21钌231纯金属50镝1412纯金属22钯1555纯金属51钬1474纯金属23锇3054纯金属52铒1529纯金属24铱2454纯金属53铥1545纯金属25铍1284纯金属54镱819纯金属26锂180纯金属55镥1633纯金属27铷39纯金属56钪1541纯金属28铯29纯金属57钇1522纯金属29钛1675纯金属58钍1750纯金属 1硅14202 硼 2300 非金属 常用金属导体在20℃时的电阻率材料电阻率(Ωm) (1)银 1.65 ×10-8 (2)铜1.75 ×10-8 (3)金2.40×10-8 (4)铝2.83 ×10-8 (5钨5.48 ×10-8 (6)铁9.78 ×10-8 (7)铂2.22 ×10-7 (8)锰铜4.4 ×10-7 (9)汞9.6 ×10-7 (10)康铜5.0 ×10-7 (11)镍铬合金1.0 ×10-6 (12)铁铬铝合金1.4 ×10-6 (13) 铝镍铁合金1.6 ×10-6 (14) 镍(软)7.24X10-8

相关文档
最新文档