穿心莲内酯的提取及纯化工艺研究进展

穿心莲内酯的提取及纯化工艺研究进展
穿心莲内酯的提取及纯化工艺研究进展

穿心莲内酯提取纯化工艺研究进展

生命科学与技术学院刘曼丽(2010001320)

摘要:穿心莲内酯是中药穿心莲的主要有效成分, 其提取方法除醇提法与水提取法外,超声、微波、酶解等方法的应用, 既提高了收率, 又降低了成本。穿心莲内酯的纯化方法主要有打孔树脂吸附法、超临界二氧化碳梯度结晶法等。

关键词:穿心莲内醋;提取;纯化;研究进展

The Extraetion and Purifieation of Andrographolide Abstract:Andrographolide is the main active ingredients of Andrographis, the extraction methods except ethanol extraction and water extraction, the application of ultrasonic, microwave, hydrolysis and other methods, both improving the yield and reducing costs. The purification methods of andrographolide are macroporous resin adsorption and supercritical carbon dioxide gradient crystallization method.

Key words: Andrographolide; Extraction; Purification; Research

穿心莲内酯(Andrographolide)为爵床科植物穿心莲Andrographis paniculata (Burm.f.)Ness的主要活性成分,现代药理研究表明其具有消炎、抗病毒、抗肿瘤、提高免疫力、保肝利胆、抗生育等药理作用。穿心莲内酯为酯类结构,在水溶液中易水解、开环、异构化,故影响药物稳定性。在对穿心莲内酯的稳定性研究中发现[1],在不同温度、不同pH值环境、不同的生物样品及不同有机溶剂中,穿心莲内酯稳定性都有较明显的差异。温度越低,穿心莲内酯的稳定性越好;该成分在碱性条件下不稳定,且随着碱性强度的增加,其不稳定性增强;在酸性条件下较稳定,但并非酸性越强,稳定性就越好。其最稳定的pH值为3-5;低于 pH值3时,其稳定性反而降低。穿心莲内酯在氯仿中较为稳定,而在质子性溶剂中稳定性较差;穿心莲内酯在小牛血清中最稳定,在小鼠肝匀浆中稳定性最差。

1 提取工艺

提取穿心莲内酯的方法很多, 常用方法有水提法、醇提法。近年来, 不少新技术和工艺也应用于穿心莲内酯的提取过程中, 现分述如下。

1.1乙醇直接提取法

张玲[2]等将药材粉碎为粗粉后装入渗流桶中,用85%的乙醇浸渍48h后,以1-3ml/min的速度渗辘,结果收率高,克服了穿心莲内酯不耐热、不溶于水的缺点。聂凌云[3]等考察了不同浓度乙醇渗流提取内酯类成分的动态变化以及温度对穿心莲内酯类成分的影响,结果是乙醇浓度对穿心莲内酯类成分的提取有影响,低温浓缩以及减少加热时间可减少内酯类成分的变化。渗流法由于保持一定的浓度差,所以提取效率较高,浸液杂质较少;但费时较长,溶剂用量大,操作麻烦。徐家敏[4]等采用90%的乙醇浸渍提取穿心莲内酯,考察了浸泡、浸渍温度对穿心莲内酯的影响。结果表明,提取温度低,穿心莲内酯成分损失小,而且叶绿素、胶质等杂质少,不容易产生粘锅、结块等现象。该方法相对来说收率比较高,提取工艺科学、合理。

1.2水提法

吴俊伟[5]等将药材加水浸泡,加1mo1/1稀硫酸调节PH至4后,加入5%亚硫酸氢钠浸泡24小时,结果收率高,可以节约大量乙醇和能源,降低了生产成本。郭彬[6]等采用碱水法提取穿心莲内酯,还考察了不同浓度的碱水对穿心莲内酯的影响,结果选用0.01%的碱水提取的穿心莲内酯含量最高,成本最低。酸、碱水法的最大缺点是PH不好控制而容易造成有效成分的损失。

1.3超声提取法

金海英[7]等将药材制成粗粉,加乙醇超声提取2次,加正己烷萃取后用中性氧化铝柱出去杂质。结果加快了溶出速率,提高了穿心莲内酯的浸出率,同时也保证了其稳定性。鹿萍[8]等考察了超声波振荡时间、原料与溶剂体积比、溶剂对穿心莲内酯提取的影响,通过比色法测定提取液的光吸收值, 并进行比较, 选出最佳的提取方法. 实验结果表明最理想溶剂是75%乙醇, 固体粉末与溶剂比为1: 20, 超声时间控制在40 分钟的提取效果最佳.结果超声波的介人显著缩短了浸提时间, 明显加快了溶出效率, 提高了穿心莲内酷的浸出率, 同时也保证了其稳定性。超声波提取具有高效、节能、降低工艺成本, 且安全性大的特点。

1.4微波辅助提取

马芝玉[9]等用正交法对微波和超声波辅助提取穿心莲内酯的工艺条件进行

优化, 采用高效液相色谱法测穿心莲内酯含量。微波辅助法提取穿心莲内酯的最佳工艺条件为温度40℃、提取溶剂为体积分数75%的乙醇、提取时间8 min;超声波辅助法提取穿心莲内酯的最佳工艺条件是提取溶剂为体积分数75%的乙醇,超声效率40%、超声时间50 min。微波提取法的平均回收率为99.9%,RSD为0.31%;超声波提取法的平均回收率为100.5%,RSD为0.21%。与超声波提取法相比,微波提取法提取时间较短,提取得率较高。

1.4酶解前处理法

此方法是将酶作为浸提辅助剂,破坏植物细胞壁结构,提高提取效率。马桔云[10]等将传统的乙醇浸提工艺与纤维素酶解相结合对穿心莲进行提取,结果加酶组穿心莲内酯收率明显高于未加酶组,而且纤维素酶的加入对所提有效成分没有影响。

1.5微切助互作技术辅助提取

微切助互作技术,是利用高强度研磨产生的机械化学效应[11],将植物原料与化学助剂共同研磨,选用水提取有效成分的一项技术。由该技术获得的水溶性植物提取物,有效成分种类多、含量高。其基本原理是在粉碎过程中,固体植物原料颗粒团经过微切变,细胞壁破碎,细胞表面产生新鲜切面,化学助剂与有效成分之间发生基团或分子间的相互吸附或作用,改变植物有效成分的微观性能,表面能增加,比表面积增大,吸附性、极性增加,改变其溶解性而易溶于水。因此,微切助互作技术是机械化学(mechano-chemistry)领域一项新的应用。研究表明,晶体物质通过超细磨过程中的机械力作用可激活其化学活性,使通常需在高温下进行的反应能在较低温度下进行[12]。因此,机械化学作用可代替一般化学反应的加热过程甚至可以完成一般加热方法所不能达到的反应[13]。研究表明,高强度研磨在破碎植物细胞的同时还能促进暴露出的有效成分与助剂接触、反应,改变成分溶解性[14-17],宋春娜[18]等研究微切助互作技术辅助提取穿心莲内酯的最佳工艺。以穿心莲内酯提取率为考察指标,通过单因素及正交实验考察微切助互作技术辅助提取穿心莲内酯的主要影响因素,确定最佳工艺条件;采用高效液相色谱法测穿心莲内酯含量。结果最佳工艺条件为:Na2CO3,助剂用量3%(W /W),研磨时间为45 min(物料粒度D95≤44 um),水作溶剂,料液比为1:60(g:m1)。该工艺条件下,穿心莲内酯提取率比热回流法提高23.2%。微切助互作技术辅助提取具有提取率高、时间短、无需加热、乙醇用量少等特点,是提取穿心莲内酯的一种有效方法。

2 纯化工艺

2.1 打孔树脂吸附法

大孔树脂是以苯大孔吸附树脂主要以苯乙烯、a-甲基苯乙烯、甲基丙烯酸甲酯、丙睛等为原料加入一定量致孔剂二乙烯苯聚合而成,多为球状颗粒,直径一般在0.3-1.25mm之间,通常分为非极性、弱极性和中极性,在溶剂中可溶胀,室温下对稀酸、稀碱稳定。从显微结构上看,大孔吸附树脂包含有许多具有微观小球的网状孔穴结构,颗粒的总表面积很大,具有一定的极性基团,使大孔树脂

具有较大的吸附能力;另一方面,这些网状孔穴的孔径有一定的范围,使得它们对通过孔径的化合物根据其分子量的不同而具有一定的选择性。通过吸附性和分子筛原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而达到分离的目的。徐靓[19]采用DA201一B型大孔树脂为纯化穿心莲内酯的最佳树脂,通过树脂动态吸附实验考察了吸附流速、解吸流速、上柱液pH、洗脱液浓度等因素对吸附效果的影响,最终确定最佳的吸附工艺条件为:吸附流速为1BV/h,上柱液不调节pH,在最佳吸附工艺条件下,树脂对穿心莲提取液的处理量大约达到树脂体积的21倍,22BV流出液内酷泄漏率达到9.77%,所以从22BV开始停止对上柱液进行吸附,此时树脂有效吸附量为13.42mg/ml湿树脂,内酯得率为90.25%。最佳解吸工艺条件为:60%pH=5的乙醇,解吸流速为3BV/h,解吸率为84.95%。提取液的干膏收率由纯化前的8.91%降低到3%,而穿心莲内酯的纯度由纯化前24.98%提高到了65%,本纯化工艺的内酯保留率为85%以上。

2.2 超临界二氧化碳梯度结晶法

超临界流体萃取结晶技术[20],是以SCF为萃取剂和展开剂,在一定压力和温度下,SCF与多组分溶液混合,在萃取的同时进行结晶分离,由于萃取、层析、吸附和重力沉降等作用使各溶质结晶析出,并在结晶器上呈梯度分布。其特点是动态的SCF与静态的天然产物活性成分接触,形成的SCF溶液遇到外界障碍物—结晶器的扰动、表面场效应,使各组分在其上结晶析出,并形成梯度分布;产生类似于以SCF为展开剂的薄层层析效果,在结晶器的上部或下部可得到较高纯度的组分;同时缩短了分离纯化时间。张文成、潘见[21]等采用单因素试验法探讨超临界CO2梯度结晶压力、温度、时间对穿心莲内酷纯度的影响,并利用高效液相色谱进行纯度检测。结果表明,超临界CO2在萃取穿心莲内酷时,出现同步结晶,且在结晶板上呈梯度分布;选择较佳纯化工艺参数为压力20MPa,温度55℃,时间90min,CO2流量15L/min时,得到穿心莲内酷的纯度达到80%以上。该技术的主要特点是提取率高、产品不含有害物质、无污染。但是由于超临界提取所需设备价格昂贵生产成本高,因此目前仍不能进行规模化生产。

综上所述, 对穿心莲内酯的提取及纯化方法很多, 大家可以根据自身的实

验条件及目的来选择合适的方法。穿心莲内酯的含量, 与其产地、收期、部位和提取工艺均有很大的关系。与茎、果相比, 穿心莲叶中含穿心莲内酯最高;对于不同生长期的穿心莲药材, 穿心莲内酝的含量在每年8, 9月份最高, 即每年的花蕊期至开花前期;对子一不同产地的穿心莲药材, 穿心莲内醋含量最高的是广东阳春产和安徽临泉产药材。

参考文献

[1] 聂凌云,罗兴平.穿心莲提取工艺的研究及热稳定性考察[J].解放军药学学报,2005,21(1):32-34.

[2] 张玲,尚立霞,单卫华等.穿心莲的提取工艺研究[J].时珍国医国药,2003,14(8):458.

[3] 徐家敏,沈海泉,胡旦燕.穿心莲注射液提取工艺研究[J].黑龙江商学院学报,1998,14.(1):15.

[4] 聂凌云,罗兴平.穿心莲提取工艺的研究及热稳定性考察[J].解放军药学学报,2005,21(1):32-34.

[5] 吴俊伟,古淑英,曾忠良.酸水法提取穿心莲总内酷[J].四川畜牧兽医学院学报,1999,13(3):7.

[6] 郭彬,娄勇,蒋琼等.穿心莲浸膏的提取工艺研究[J].安徽医药,2002,

6(3):7.

[7] 金海英,徐慧,郭艳民等.穿心莲药材中穿心莲内酷的含量测定[J].中医药信息,2002,8(6):27

[8] 鹿萍, 丁琤, 盛敏丽.穿心莲内酯的超声波提取法研究[J].赤峰学院学报( 自然科学版),2008,24(2):28-30.

[9] 马芝玉,林翠梧,廖森等.微波和超声波辅助提取穿心莲内酯[J].精细化工,2007,24(8):758-760.

[10] 马桔云,吕芳,于喜水等.纤维素酶用于中药穿心莲提取的初步研究[J].黑龙江医药,2000,13(1):16-17.

[11] Boldyrev V V.Tkacova K.Mechanochemistry of Solids:Past,Present,and Prospects[J].J Mater Synth Process,2000,8(3-4):121.

[12] Kaupp G.Organic solid—state reactions with 100%yield.Topics in Current Chemistry[M].Springer Berlin/Heidelberg,2005:95.

[13] 刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报,2002,14(4):32.

[14] Ying Liu,Liji Jin,Xiaoyu Li,et a1.Application of Mechano-chemical Pretreatment(MCPT)to Aqueous Extraction of Isofraxidin from Eleutherococcus senticosus[J].Ind Eng Chem Res,2007,46(20):6584.

[15] 刘莹,金礼吉,宋春娜等.机械化学法辅助提取刺五加总黄酮的工艺研究[J].时珍国医国药,2007,18(12):2889.

[16] Korolev K G.Lomovskii O I.Rozhanskaya O A,et a1.Mechanochemieal preparation of water—soluble forms of triterpene acids[J].Chem Nat Compd,2003,39(4):366.

[17] Lomovsky O.Korolyov K。Kwon Y S.Mechaochemical solubization and mechanochemically assisted extraction of plant bioactive substancesf [M].Korea:Proc Of the 7th Kroea-Russia Int Symp on Science and Technology,KORUS 2003,1(1):7.

[18] 宋春娜,王洋,金礼吉等.微切助互作技术辅助提取穿心莲内酯的工艺研究.时珍国医国药,2008,19(11):2638-2641.

[19] 徐靓,安莲英.穿心莲内酷的提取及纯化工艺研究.成都理工大学硕士学

位论文.

[20] 潘见,朱剑中.物质成分的超临界流体结晶分离方法,CN1220906A.1999,6(30):12一14.

[21] 张文成,潘见,谢慧明等.超临界二氧化碳梯度结晶穿心莲内酷的纯化工艺研究[J].中国农业科学,2004,37(12):2047一2050.

22.5 D 穿心莲内酯提取 陈树美 张慧莹 蒙倩倩 武秋贤 尚兴宇 广西医科大学药学院药学专业09级18班 广西南宁 530021 【摘要】目的:探讨穿心连内酯的提取工艺。方法:以穿心莲内酯为检测指标,测定其含量。结果:穿心莲粗粉提取穿心莲内酯产率为0.53% 【关键词】穿心莲;穿心莲内酯;提取 穿心莲为爵床科植物穿心莲Andrographis paniculata (Burm.f.) Nees 的全草。穿心莲中含有多种二萜类化合物,主要为穿心莲内酯、新穿心莲内酯、脱氧穿心莲内酯等【1】 1.穿心莲内酯(andrographolide) 又称穿心莲乙素。分子式C20H30O5,分子量350.44。无色方形或长方形结晶,味极苦。mp.230~231℃,易溶于甲醇、乙醇、丙酮、吡啶中,微溶于氯仿、乙醚、难溶于水、石油醚、苯。 2.新穿心莲内酯(neoandrographolide) 又称穿心莲丙素、穿心莲新苷。分子式C26H40O8,分子量480.58。无色柱状结晶,无苦味。mp.167~168℃,易溶于甲醇、乙醇、丙酮、吡啶中,微溶于水,较难溶于苯、乙醚、氯仿及石油醚。 3.去氧穿心莲内酯(deoxyandrographolide) 又称穿心莲甲素。分子式C20H30O4,分子量334.44。无色片状(丙酮、乙醇或氯仿)或无色针状结晶(醋酸乙酯),味稍苦。mp.174~175℃,[α] -40°(C=1,无水乙醇)。易溶于甲醇、乙醇、 丙酮、吡啶、氯仿,可溶于乙醚、苯中,微溶于水。 4.脱水穿心莲内酯(dehydroandrographolide) 分子式C20H28O4,分子量332.42。无色针状结晶(30%或50%乙醇),mp.204℃。易溶于乙醇、丙酮,可溶于氯仿,微溶于苯,几不溶于水【2】。 O HO O CH 2 CH 2OH HO 16131511171820 1910O O CH 2CH 2OH HO O O CH 2CH 2O glc O O H CH 2OH HO 1 仪器与设备 1.1 仪器 旋转蒸发仪 冷凝管 圆底烧瓶 电热套 铁架台 真空抽滤泵 烧杯等 1.2 试药 穿心莲对照品 穿心莲药材 95%乙醇 乙酸乙酯等 2. 提取工艺 穿心莲叶粗粉30g ↓95%乙醇提取;合并提取液 提取液 ↓回收乙醇至300ml 总浓缩液 ↓活性炭脱色 滤液 ↓浓缩 穿心莲内酯 去氧穿心莲内酯 新穿心莲内酯 脱水穿心莲内酯

穿心莲内酯的提取 分离及鉴定 2011级16班 摘要:穿心莲为解毒消炎类临床常用药,穿心莲内酯是中药穿心莲的主要有效成分,分子式C20H30O5,白色方形或长方形结晶,味极苦,难溶于水易溶于乙醇、甲醇等。利用乙醇提取方法、超声、回流、旋转蒸发浓缩方法对穿心莲内酯进行提取分离以及纯化,使用TLC法对其鉴别,可得到纯度较高的穿心莲内酯。 关键词:穿心莲、穿心莲内酯、超声提取法、乙醇提取法、TLC鉴别 Isolation & Identification of Andrographolide ABSTRACT:Clinical commonly used medicines, creat for detoxification counter Andrographolide is the main effective component, Traditional Chinese medicine (TCM) andrographis formula C20H30O5, white square or rectangle crystal, taste bitter, soluble in water, soluble in ethanol,methanol, https://www.360docs.net/doc/ec17658378.html,ing the ethanol extract method, ultrasound, reflux, rotary evaporation enrichment method to extraction separation and purification of Andrographolide, using TLC method for the identification, can get high purity Andrographolide. KEY WORDS:Andrographis paniculata;Ultrasonic extraction;Andrographolide;alcohol extraction;Thin layer chromatography (TLC) 穿心莲为常用中药,来源于爵床科植物穿心莲Andrographis paniculata(Burm. f.)Nees.的干燥地上部分。收载于《中国药典》2000 年版一部。具有清热解毒,凉血,消肿的功能,临床用于感冒发热、咽喉肿痛、口舌生疮、顿咳劳嗽、泄泻痢疾、热淋涩痛、痈肿疮疡、毒蛇咬伤等。其主要活性成分为穿心莲内酯(andrographoiide)、新穿心莲内酯(neoandrographoiide)脱水穿心莲内酯(dehydroandrographoiide)[4]。 穿心莲内酯为天然植物穿心莲的主要有效成份,具有祛热解毒,消炎止痛之功效,对细菌性与病毒性上呼吸道感染及痢疾有特殊疗效,被誉为天然抗生素药物。本品为二萜类内酯化合物,均难溶于水,通常仅能口服给药。主要药理作用:抗菌作用、抗病毒作用、利胆保

综述 中药提取工艺研究发展 临床药学2008-1班 百合提努尔·胡达拜地 学号:200807100801131 摘要:中药提取工艺路线设计直接影响到中药制剂的有效安全。本文综合分析了当前中药提取工艺设计思路,并经通塞脉微丸中间提取物制备工艺的比较研究,提出中药提取工艺设计应以复方整体作为研究对象,按照传统汤剂制备方法制备提取物,进而针对复方组成药物所含有的活性成分类型,选择性采用适宜的分离精制方法,逐步排除无效物质、非疗效相关物质,最终获得能够保持原方疗效和安全性的中间提取物。[1] 关键词: 中药;提取工艺,研究发展 前言:提取是从药材原料中分离有效成分的单元操作,直接关系到产品有效成分的含量,影响内在质,量、临床疗效、经济效益及GMP的实施。中药制剂的研究和生产从传统制剂原粉成型的丸、散到浸提型制剂如颗粒剂、浸膏片、胶囊、口服液、注射液等的兴起和发展,是半个世纪来中药制剂进步的特征,应属于从传统制剂进入改进制剂的时期[2]。本文对近年来传统与现代中药提取工艺进行归纳概述。 基本内容: 1.传统工艺 传统工艺包括浸渍法, 水提醇沉工艺,水煎煮法, 渗漉法, 回流法, 水蒸汽蒸馏法。下面我们简单的介绍一下几个传统工艺: 1.1 浸渍法 浸渍法按提取的温度和浸渍次数可分为:冷浸渍法、热浸渍法、重浸渍法。浸渍法适用于粘性药物、无组织结构的药材、新鲜及易于膨胀的药材、价格低廉

的芳香性药材。不适于贵重药材、毒性药材及高浓度的制剂。 1.2 水提醇沉工艺 中药水提液经浓缩后在常温或低温下加入乙醇进行醇沉,乙醇既作为溶剂来溶解浓缩液中的有效成分,又作为沉淀剂来沉淀某些杂质。 1.3 水煎煮法是在草本植物中加入适量的水,然后加热至一定温度并保持一定时间后滤出煮液的方法。该方法不仅简便易行,而且能煎出大部分有效成分,是最常用的提取草本植物中活性成分的方法之一[3]。 煎药机优于传统煎煮法。杨璐璐等[4]发现用GNG 中药抽出机比直火加热法和蒸气煎药法制备汤剂的总固体含量高出2倍以上, 且保质时间长。张晓燕[5]等发现中药抽出机制备的槐花散汤中芦丁含量明显大于常压直火煎煮法。梁文能[6]等发现煎药机煎煮的黄连解毒汤中黄芩苷的含量高于传统煎煮法。 2.新工艺 新工艺包括:微波萃取, 超临界流体萃取(SFE), 酶法提取, 超声提技术, 罐组式动态逆流提取工艺, 半仿生提取法 2.1 超滤 超滤(Ultrafiltration)技术是一种膜滤法,也有错流过滤(Cross Filtration)之称。它能从周围含有微粒的介质中分离出10~100A的微粒,这个尺寸范围内的微粒,通常是指液体内的溶质。其基本原理是在常温下以一定压力和流量,利用不对称微孔结构和半透膜介质,依靠膜两侧的压力差作为推动力,以错流方式进行过滤,使溶剂及小分子物质通过,大分子物质和微粒子如蛋白质、水溶性高聚物、细菌等被滤膜阻留,从而达到分离、分级、纯化、浓缩目的的一种新型膜分离技术[7]。 2.2 超临界流体萃取 超临界流体萃取( supercr itical fluid ex traction, SFE )技术是以超临界流体CO2 、NH 3 、H 2O、C2H 5OH 、C2H6等代替常规有机溶剂, 在超临界状态下, 将超临界流体与待分离的物质接触, 通过控制不同的温度、压力以及不同种类及含量的夹带剂, 使超临界流体有选择性的把极性大小、沸点高低和分子

穿心莲内酯类注射剂市场浅析 陈莹、李德馨 (天津天士力集团有限公司) 摘要:穿心莲内酯是中药穿心莲的主要有效成分,具有抗感染、抗炎、解热等多种功能,对目前应用于临床的穿心莲内酯类注射剂进行了综述,并对市场前景进行了分析。 关键词:穿心莲内酯注射剂应用市场分析 穿心莲内酯(Andrographolide)是由爵床科植物穿心莲Andrographolispanieuafa(burm.f.)nees经提取制得的中药植物单体,具有清热解毒、抗菌消炎功能.是治疗上呼吸道感染、急性菌痢、病毒性感冒等常用中成药穿琥宁制剂的主要原料。[1]穿心莲具有抗感染、抗炎、解热等多种功能。20世纪70年代初,国内开始将穿心莲的茎叶或全草提取后,制成了穿心莲片等普通口服制剂。普通制剂对细菌、病毒虽然具有一定的抑制作用,但其威力不足。 穿心莲内酯是从穿心莲中提取的有效成分,单体纯度高,产品质量和药理作用较穿心莲更具有优势。目前SFDA已批准生产穿心莲内酯片剂、胶囊、软胶囊、滴丸等口服剂型。其缺点是穿心莲内酯为二萜类内酯化合物,难溶于水,通常仅能口服给药。针对临床上病毒感染急症的需求,将其结构中引入不同的亲水基团,增强其水溶性,提高疗效。在我国,自七十年代开始对穿心莲内酯水溶性衍生物进行研究,开发了一系列注射剂,其中穿琥宁、炎琥宁、莲必治、喜炎平占据市场主导地位。 1.穿心莲内酯类注射剂品种 穿琥宁是穿心莲内酯经酯化、脱水、成盐而制成的脱水穿心莲内酯琥珀酸半酯单钾盐;炎琥宁是穿琥宁与氢氧化钠的简单反应而得的脱水穿心莲内酯琥珀酸半酯钠钾盐;莲必治是穿心莲内酯和亚硫酸氢钠发生加成反应制得的水溶性磺酸盐;喜炎平是穿心莲总内酯通过磺化得到的磺酸盐,喜炎平具有国家专利,属于江西青峰制药厂独家产品。 这4个品种的母体均为穿心莲内酯,只是引入的亲水基团或盐不同。客观分析有关这四个品种性能比较的文献资料,结构上的细微变化并没有对药理作用、药代动力学以及不良反应等方面带来质的改变,因此当前市场上穿琥宁、炎琥宁、莲必治和喜炎平“四驾马车并驱”。 穿心莲内酯注射剂具有较好的疗效,临床广泛用于治疗高热[2]、呼吸道感染[3]、儿童秋季腹泻[4]、流行性腮腺炎[5]等病毒性疾病,为中医院急诊科(室)必备纯中药制剂之一,打破

穿心莲内酯的提取、分离、鉴定及亚硫酸氢钠加成物的制备 穿心莲为爵床科植物穿心莲(Andjrographis panicalata (Burmf)Ness)的全草或叶。具清热解毒,凉血消肿作用,用于治疗急性菌痢、胃肠炎、咽喉炎、尿路感染等。穿心莲中含有多种苦味素,属二萜类化合物,主要为穿心莲内酯、脱氧穿心莲内酯、高穿心莲内酯、新穿心莲内酯、穿心莲烷、穿心莲酮等。其中穿心莲内酯、新穿心莲内酯是穿心莲抗菌消炎的主要有效成分。 鉴于穿心莲内酯在水中的难溶性,将穿心莲内酯进行磺化、亚硫酸氢钠加成和琥珀酸酐酯化等水溶性衍生物合成研究,克服了穿心莲内酯不溶于水的特性。 穿心莲中主要成分的结构及其性质 1.穿心莲内酯(andrographolide):C 20H 30O 6,又称穿心莲乙素,为无色方型或 长方型结晶,mp 230~232℃,[α]D 20 -126。 。味极苦,可溶于甲醇、乙醇、丙酮、吡啶,微溶于氯仿、乙醚,难溶于水及石油醚。 2.脱氧穿心莲内酯(14-deoxy-andrographolide):C 20H 30O 4,又称穿心莲甲素,为无色片状或长方型结晶, mp l75~176.5℃,[α]D -36(1%,氯仿)。味稍苦,可溶于甲醇、乙醇,丙酮、吡啶、氯仿、乙醚、苯、微溶水。 3.新穿心莲内酯(neo-andrographolide ):C 26H 40O 8,又称穿心莲丙素、穿心莲新苷,为无色柱状结晶,mp l67~168℃。无苦味,可溶于甲醇、乙醇、丙酮、吡啶,微溶于氯仿和水,不溶于石油醚。 O O CH 2OH HO HO O O CH 2OH HO O O CH 2O-Glu 穿心莲内酯 脱氧穿心莲内酯 新穿心莲内酯 O O CH 2OH HO HO Na 一、实验目的 1. 掌握穿心莲内酯类二萜化合物的理化性质和提取分离方法。 2. 学习氧化铝柱色谱的原理和操作方法。 3. 通过穿心莲内酯亚硫酸氢钠加成,掌握使脂溶性产物转化为水溶性产物的一种方法。 二、实验原理(综合性实验) 穿心莲中的内酯类化合物易溶于甲醇、乙醇.丙酮等溶剂,故利用此性质选用乙醇提取之,穿心莲中含有大量叶绿素,可用活性炭脱色法除去叶绿素类杂质;利用穿心莲内酯与脱氧穿心莲内酯在氯仿中溶解度不同,初步将二者分离;利用穿心莲内酯与脱氧穿心莲内酯结构上的差异,用氧化铝柱分离二者,将穿心莲内酯制成亚硫酸氢钠加成物以增加其在水中的溶解性。 三、实验内容 1.仪器和试剂 玻璃色谱柱(2×30cm )及配套分液漏斗,滤纸,50ml 三角瓶数个, 恒温水浴锅,蒸发皿,玻璃板(5×20cm ),色谱缸,玻璃漏斗,铁架台,500ml 园底烧瓶,抽滤瓶,布氏漏斗,冷凝器,旋转蒸发仪,硅胶薄层板,显色试剂喷瓶,电吹风,锥形瓶(50m1)等。 穿心莲粗粉,95%乙醇,活性炭,丙酮,氯仿,甲醇,正丁醇,亚硫酸氢钠,无水乙醇,0.3%亚硝酰铁氰化钠,10%的正丁醇氢氧化钠溶液,3,5-二硝基苯甲酸碱性溶液,50%氢氧化钾甲醇试液。

年产8吨脂肪酸提取纯化生产工艺的设计 1.概述 1.1脂肪酶的来源 脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油 料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。在动物体内,各类脂肪酶控制着消化、吸收、脂肪重建和脂蛋白代谢等过程;细菌、真菌和酵母中的脂肪酶含量更为丰富(Pandey等)。由于微生物种类多、繁殖快、易发生遗传变异,具有比动植物更广的作用pH、作用温度范围以及底物专一性,且微生 物来源的脂肪酶一般都是分泌性的胞外酶,适合于工业化大生产和获得高纯度样品,因此微生物脂肪酶是工业用脂肪酶的重要来源,并且在理论研究方面也具有重要的意义。 1.2脂肪酸的性质 脂肪酶,又称甘油三酷水解酶,是一类特殊的酯键水解酶,它广泛地存在于动物组织、植物种子和微生物体中。脂肪酶能催化天然底物油脂(甘油三酯)水解, 产生脂肪酸和甘油,在水解过程中会产生中间产物甘油单酯和甘油二酯。脂肪酶 可以催化酯类化合物的分解、合成和酯的交换,它具有化学选择性和高度的立体异构专一性,且反应不需要辅酶,反应条件温和,副产物少。脂肪酶的另一显著特点是:它只能在异相系统(即油一水界面)或有机相中作用,这不仅发展了“界面酶学”,也促进了“非水酶学”的研究和深入。脂肪酶属于丝氨酸水解酶,且它含有相同的结构序列,G- XI —S-X2 —G(G为甘氨酸,S为丝氨酸,X伪组氨酸, X2为天冬氨酸),它的三维结构对酶的催化作用影响很大。微生物脂肪酶的温度适应范围很

超高压提取技术在中药提取中的研究进展 宁娜,周晶* (天津医科大学药学院,天津,300070) 摘要:超高压可以使蛋白质变性、淀粉糊化、酶失活、细菌等微生物灭活,因此该技术主要应用于食品业,目的是为了防止食物的微生物污染、延长食品储藏时间。近年来,人们开始将该技术应用到中药提取。本文就超高压提取技术的原理、特点以及在中药提取中的应用等方面进行阐述。 关键词:超高压;提取;黄酮类;皂苷类;多糖类 超高压技术的研究始于1914年[1]。在超高压条件下,生物大分子的非共价键发生变化,使蛋白质变性、酶失活等,而维生素、香精等小分子化合物是共价键结合,得以完整保留。因此,该技术在国内外主要应用于食品业,目的是为了防止食物的微生物污染、延长食品储藏时间[2]。2004年吉林工业大学张守勤等[3]率先将该技术应用于中药提取。本文将对超高压提取的原理、特点以及在中药提取中的应用等方面进行阐述。 1超高压提取的原理[4] 超高压提取(ultrahigh-pressure extraction, UHPE ),也称超高冷等静压提取,是指在常温下用100~1000 MPa的流体静压力作用于提取溶剂和中药的混合液上,并在预定压力下保持一段时间,使植物细胞内外压力达到平衡后迅速卸压,由于细胞内外渗透压力忽然增大,细胞膜的结构发生变化使得细胞内的有效成分能够穿过细胞的各种膜而转移到细胞外的提取液中,达到提取中药有效成分的目的。 2超高压提取的特点 2.1提取效率高 由于压力较高,溶剂能在极短时间渗透到细胞内,使有效成分迅速达溶解平衡。且超高压法的提取液澄清度、稳定性较传统工艺高,杂质含量少,简化了后续的分离纯化工作。 2.2保留提取物生理活性 超高压提取过程中压力每升高100 MPa,温度大约升高3 ℃。由于高压容

茶多酚的提取纯化工艺研究 一、实验目的:研究茶多酚在茶叶中的大致含量,并分析比较现有的醇提和水提工艺,结合不同的纯化方法,通过具体的实验数据,比较得出其优缺点,为工业化生产提供指导。 二、实验原理:1.,(粗提部分)茶多酚易溶于热水,含水乙醇和乙酸乙酯等溶液中,而不溶于氯仿,苯等试剂,利用茶多酚在上述溶剂中具有具有不同分配系数等特性,经过多次萃取进进行提取分离纯化。 2.,(纯化部分)未氧化的茶多酚及其初级氧化产物易溶于乙酸乙酯 3,(纯化部分)茶多酚能与无机盐中的金属离子(如Ca2+、Mg2+ 、Zn2+ 等)配位生成沉淀而对茶多酚进行分离 4,在一定PH值条件下,酒石酸能与多酚类物质反应形成蓝紫色络合物,该络合物在540nm波长下具有最大吸光度。在适当范围内,茶多酚的含量与络合物的吸光度成正比,符合朗柏-比尔定律,因此可用分光光度法对茶多酚定量分析。 三、实验仪器:干茶,真空干燥箱,分液漏斗,旋转蒸发仪,乙醇,氯仿,乙酸乙酯,纱布,烧杯,玻棒,漏斗,电子天平,水浴锅,95%乙醇,氯化钙(无水),氯化镁,硫酸,氨水均为分析纯。索氏抽提器;PHS一3C数字酸度计;800型离心沉淀器;GSP一805型圆盘搅拌器;79—1磁力加热搅拌器;UV-9100紫外可见分光光度计;微波炉;LD4—800大容量低速离心机。 四、实验步骤: (一):茶多酚乙醇提取和有机溶剂纯化实验(3次平行实验) 1、乙醇提取:称茶叶磨碎样3g于烧杯中,加入5倍量(15ml)85%乙醇,将烧杯置于30-40℃水浴锅中,浸提20min,浸提过程不断搅拌,然后滤出滤液,剩下的茶渣再加2-3倍量(约6~9 ml)85%乙醇,再浸提20min,过滤。合并两次滤液。(取3ml留样分析) 2、减压浓缩:将滤液装入旋转蒸发仪中,在40-50度水浴温度下减压浓缩至基本除去乙醇为止。 3、氯仿除去杂质:将浓缩液装入分液漏斗中,将同等体积的氯仿加入,摇匀后混合液分为两层。除去下层液即氯仿层(含有脂溶色素,树脂,咖啡碱等杂质)。上层液再加氯仿萃取3次,直至氯仿层基本无色为止。最后倒出上层液即茶多酚层,用热气驱去残余氯仿及乙醇,冷却。 4、乙酸乙酯萃取茶多酚:由于未氧化的茶多酚及其初级氧化产物易溶于乙酸乙酯,故用乙酸乙酯把茶多酚从水相中萃取出来,乙酸乙酯:水=1:1,乙酸乙酯的密度小于水。放出下层水相,再加乙酸乙酯重复萃取3次。 5、浓缩干燥:上述乙酸乙酯萃取液装入旋转蒸发仪中,在40-50水浴温度下减压浓缩到较小体积,基本除尽乙酸乙酯,剩下的即为纯化后的茶多酚。

中药提取工艺研究进展 中药提取工艺研究进展 近几十年来,中草药的生产实现了一定程度的机械化和半机械化。传统中药往往被认为有效成分含量低、杂质多、质量不稳定,因此用药多建立在经验的基础上,不能与现代医学接轨。为解决这个问题,中药必须走提取和纯化的道路。中药的提取包括浸出、澄清、过滤和蒸发等许多的单元操作。浸出是其中很重要的单元操作,是大多数中药生产的起点。浸出工艺的好坏,直接关系到中药材的利用率和后续加工的难易。浸出工艺可以视为中药生产现代化的重要环节,因此,研究并优化中药浸出工艺十分必要。 1 基本原理及影响因素 中药的浸取是溶剂进入药材,将有效成分从固相转移到液相的过程。一般认为,有效成分在药材中的扩散是决定浸出速率的主要步骤。影响浸出的因素主要有溶剂、温度、压力、固体药材粒度与液体的流动状态等。 溶剂的极性、粘度等物性影响到植物组织中不同物质的浸出速度和溶出度。水和乙醇是最常用的溶剂,两者的不同配比混合溶液对中药材的浸出影响很大。 温度和压力升高,扩散速度加快,浸出速度也加快。但温度

过高可能会破坏热敏成分。传统中药生产采用的煎煮是在常压沸点下进行的。但也有报道认为,减压操作有利于提高药材吃水量,使组织疏松,有利于浸出。 药材粒度越小,比表面积越大,浸取速度越快。但粒度过小会使杂质浸出量增加,分离提纯困难。固液相对运动速率越高,溶液的湍动越强烈,会导致边界层变薄,更新加快,提高浸出速度。 2 研究现状及成果 传统工艺及设备的优化革新 针对中药提取工艺中能耗、物耗大,杂质多,效率低的状况,近年来,许多学者从不同角度对中药提取工艺进行了摸索与优化,在保持“中药特色”的前提下,逐步实现中成药生产的科学化、规范化和标准化。 传统工艺是经过大量生产与临床实践检验的,与中医理论联系极为紧密。对传统工艺的优化可得到最直接的效益,已有的工作多集中在这一方面。吴盛贵等以提取时PH值、提取时间、酸化时PH为变量,对穿心莲碱水提取工艺进行了优化。发现提取时的pH值对提取效果的影响最大,提取时间和酸化时PH值的影响则不明显。谢阳等对甘草酸粗品的制备工艺条件进行优选,给出了出汁量和酸化酸度均比老工艺高的新工艺,而浸渍时间仅为原工艺的1/12,收率也有显著提高。 林缎嫦等对水提、水提醇沉、稀醇提取和水提石灰乳沉淀的

穿心莲中穿心莲内酯的提取 摘要:从药用植物穿心莲中提取穿心莲内酯。150克穿心莲粗粉甲醇回流提取,水沉去杂质,二氯甲烷脱酯,活性碳脱色,结晶得穿心莲内酯精品1.5克,收 率为1%,其含量为98.5%。 关键词:穿心莲;穿心莲内酯;提取工艺 Abstract:Withdraws the Andrographis Paniculta lactone from themedicinal plant Andrographis Paniculta.Uses the methyl alcoholbackflow to withdraw,the water sinks ,the methylenechloride escapes the ester,the activated carbon decolorizes,thecrystallization results in the Andrographis Paniculta lactonehigh-quality goods 1.5 grams,the returns-ratio is 1%, its content is98.5%.Key word:Common Andrographis Herb ,Andrographolide ,Extract method 1.前言 穿心莲为爵床科穿心莲属植物,药用叶或全草,秋初茎叶盛时采割,晒干。在中药里归为凉性药物。穿心莲在亚洲,几个世纪以前就用于治疗胃肠道和呼吸道感染、发热、疱疹、咽喉痛和各种细菌性感染。在中医里,穿心莲是一种治疗感冒的重要草药,它用于退热、驱毒[1]。穿心莲不仅能抑HIV-1,还能抑制HIV-1对细胞的毒性和在细胞间的传播,从多途径抑制HIV-1,因而能防止HIV-1抗药性突变的形成。穿心莲价格低廉,且经过修饰的穿心莲内酯衍生物具有更强的抗HIV-1活性[2]。因而穿心莲及其衍生物用于艾滋病的治疗具有广阔的前景。 由于穿心莲内酯是穿心莲的主要有效成分,穿心莲内酯的含量,与其产地、收期、部位和提取工艺有很大的关系。与茎、果相比,穿心莲叶中含穿心莲内酯最高;穿心莲内酯为酯类结构,在水溶液中易水解、开环、异构化,故影响药物稳定性。在对穿心莲内酯的稳定性研究中发现,在不同温度、不同pH值环境、不同的生物样品及不同有机溶剂中,穿心莲内酯稳定性都有较明显的差异。温度越低,穿心莲内酯的稳定性越好;在碱性条件下不稳定,且随着碱性强度的增加,其不稳定性增强;在pH值为7的条件下,该药并不稳定,其最稳定的pH值为3~5;在酸性条件下,该药较稳定,但并非酸性越强,稳定性就越好。目前已经发现穿心莲内酯具有以下药理作用:抗菌消炎、解热作用;抗癌和免疫调节作用;病毒和免疫增强作用;心血管作用;保护肝脏。[3-7] 正由于穿心莲内酯具有这样广泛的药理作用,也使得人们对穿心莲内酯的提取工作发

论文题目中药有效成分提取工艺研究进展学生姓名彭炳益 学号040840534 班级0408405班 专业化工与制药 指导老师李国祥 湖北民族学院 化学与环境工程学院 2011年5月17日

中药有效成分提取工艺研究进展 彭炳益化学与环境工程学院 摘要中药提取的传统方法有浸渍法、渗漉法、煎煮法、回流提取法、连续回流提取法、水蒸气蒸馏法等。传统方法往往各自存在较多的缺点,如高温操作引起热敏性有效成分的大量分解,提取液中除有效成分外杂质较多等等。随着技术的进步和发展,近年来中药提取过程不断从环境、化工、食品等行业引入新方法,并结合自身特点发展了一些新的技术,如、超临界流体提取、、超声强化提取、微波提取、大孔树脂吸附法以及半仿生提取等。本文将对近年来几种新方法在中药提取过程中的应用进行简单概述 关键词中药提取分离方法。 近年来,随着现代工业的飞速发展,中药工程技术也不断发展,我国中药生产状况大有改进,截止2000年,中药产值比1979年翻了五番,约占医药工业产值的30%以上[1]。中药制剂工业生产中的重要步骤是中药有效成分的提取和分离,它直接关系到中药制剂的质量、疗效和产量。传统的中药有效成分提取方法包括热水浸提法和乙醇浸提法,随着“中药现代化”进程的加快,许多现代高新技术不断地被应用到中药有效成分的提取和分离中来[2]。随着我国正式加入WTO,中国医药市场融人国际医药大市场的广度和深度也进步加剧。尤其我国传统中医药面临着前所未有的发展机遇和挑战。一方面,做为世界优秀传统医药文化,中医药以其系统的理论、独特的方法和显著的疗效正被世界上越来越多的国家和人民所接受。而另一方面,我国中医药又面对着日、韩和欧美对传统医药积极开发研究的挑战。如何在新形势下抓住机遇、迎接挑战呢?在继承和发扬中医药优势和特色的基础上,充分利用现代科学技术,借鉴国际通行的医药标准规范,提高中药的质量,研究开发进入国际中药市场的中药产品,实现中药的现代化、国际化。而提高中药的质量,让中药进入国际市场,这就对中药的制备加工工艺提出了更高的要求,其中中药有效成分的提取分离过程是其重要的关键环节。根据近些年发表的文献,将中药有效成分提取和分离方法研究进展分几个方面做如下简单介绍[3]。 1、超临界流体提取 超临界流体兼具气体的高度扩散性和低粘度液体的良好溶解性能, 可以防止各种组分逸散和氧化,具有效率高, 速度快等优点。超临界萃取过程通常在略高于萃取剂临界温度的条件下进行, 减压分离产品, 十分简便和安全, 中药中易挥发组分或生理活性物质极少损失或破坏, 没有溶剂残留, 产品质量高。超临界流体已被广泛地应用于香料和油料的生产, 在药物提取中的应用也开始为人们所重视。上海中药工程中心已经成功地将其应用于生物

开题报告 应用化学 绿茶中茶多酚的提取及纯化工艺 一、选题的背景和意义 21世纪,人们越来越追求安全、优质、营养、健康的食品,而抗氧化剂在食品工业,尤其是油脂工业中所起的作用也日益突出。现在,油脂工业中广泛使用的丁基羟基茴香醚(BHA)、二丁基甲苯(BHT)等都是化学合成的抗氧化剂。大量研究结果表明,这些物质使用超过一定剂量时,有制畸和制癌的可能性危险。目前,越来越多的国家开始限制或禁止使用某些合成的抗氧化剂。现有的抗氧化剂已不能满足我国日益增长的食品工业发展的需要,寻找和开发绿色无毒的新型抗氧化剂迫在眉睫。 一直以来,绿茶及其活性成分的研究备受人们的关注,其中无毒害残留的茶多酚产品的研发已经成为茶叶加工领域的一个大热点。茶多酚(Tea polyphenols,简称TP)是形成茶叶品质的重要组成成分之一,它是存在于茶叶中的多羟基性化合物组成的混合物,其中以儿茶素为主,俗称茶单宁、茶鞣质。茶多酚是茶叶中所含的多酚类物质,其含量占干物质质量的18%~35%,无毒,且具有较好的抗氧化性能,其抗氧化能力比维生素E的抗氧化效果高10~20倍,因此是一种理想的天然食品抗氧化剂。茶多酚许多其他的功能也被陆续发现,据大量实验研究表明,茶多酚除了是一种天然无毒的抗氧化剂外,它还是一种理想的天然药物,具有清除自由基和抗氧化等生物活性,在抗病毒、抑菌、抑制肿瘤、防治心血管疾病、防癌抗癌等生物及医疗方面都具有良好的功效。此外,茶多糖因其降血糖、提高免疫力等特有的生理活性,也得到了人们越来越多的重视。茶多酚的这种药理功能及保健功效已经引起了人们广泛的兴趣,它已成为健康食品、含油脂食品的抗氧化保鲜剂以及天然化妆品的原材料,在各个领域中的应用非常广泛。如医药、食品与油脂工业、日用化工等。 但在目前,茶多酚的提取工艺还不够成熟和稳定,产品产率和纯度都不够高,完善茶多酚的提取工艺,提高产品的产率和纯度,具有十分重要的实际意义。因此,需要优化现有的生产方法,研究开发新的生产工艺,提高茶多酚产品的质量,以增加我国茶多酚产品在国内外市场竞争力。

中药颗粒剂生产工艺研究进展 罗仕伟1周丽萍1陈军2 刘汉儒 3 (1.华南农业大学兽医学院,广州天河 510642 2.重庆市饲料兽药监察所,重庆渝北 401147 3.西南大学动物科技学院,重庆北碚 400716 ) 摘要:中药颗粒剂是一类常用的中药剂型,是以单味中药为原料,经现代工艺提取、浓缩、干燥、制粒等工序精制而成的一种颗粒状制剂。颗粒剂型携带方便,便于运输、保存和临床投药的方便,能更好的满足现代规模化养殖的需要,发挥中药的治疗效果。本文将就近年来中药颗粒剂的生产工艺研究现状做简单综述。 关键词:颗粒剂;生产工艺;中药 中药颗粒剂是指中药材的提取物与适宜辅料或与部分药材细粉混匀,制成的干颗粒状剂型。中药颗粒剂按溶解性能和溶解状态分可溶性颗粒剂、混悬性颗粒剂和泡腾性颗粒剂。中药颗粒剂是结合汤剂、酒剂和糖浆剂的特点而发展起的一种中药剂型,既保持了汤剂吸收快、显效迅速的特点,又克服了汤剂服用前临时煎煮,久置易霉败变质的特点,不便携带的缺点,具备了易溶解、易吸收,生物利用度优于片剂,制备工艺又比片剂、针剂少,所以颗粒剂发展很快,深受临床使用的一类新剂型[1]。也可以说中药颗粒剂是中药饮片加工炮制工艺及剂型改革研究的进展,是依据中医药理论临床应用需要,而对中药材及中药材饮片进行特殊加工的一种便于携带和服用的疗效显著增高的新剂型。开始出现于上世纪70年代,由于其携带服用方便,在上世纪80年代的中药生产工业中曾以年递增41.9%的速度发展。中药颗粒剂最初多含药材细粉,工艺凭经验而定。随着制剂质量要求的提高,各种新辅料和新设备、新技术的应用,中药颗粒剂的工艺有了很大的发展,现已向中药配方颗粒的方向发展,同时也对中药颗粒的有效成分的含量也有更加明确的规定,更能保证质量和用药安全。 1 提取工艺 中药颗粒剂的制备关键的问题是对原药材的进行提取和浓缩,中药传统的提取方法主要是煎煮法、浸渍法、渗漉法、回流提取法、水蒸气蒸馏法等。目前,煎煮法仍然是最常用的提取工艺。煎煮法最明显的缺点是效率较低,只适用于一些水溶性较强的中药有效成分的提取,有人对煎煮法提取效率进行了研究,测定发现其浸出率仅为55.5%左右[2-3]。

穿心莲提取工艺研究 【摘要】目的对穿心莲的水提和醇提工艺进行对比研究,对穿心莲的叶、茎两个有效部位进行提取研究,尝试摸索出使用合格药材就能达到提取效果的提取工艺,并对药材的含量限度 进行研究。结果加水16倍,短时间加热回流水提含量损失最少,随温度升高,减少率呈现 增加的趋势。结论穿心莲药材45%乙醇提取工艺下,对药材限度要求低,提取率较高,可以 尝试应用到生产中。 【关键词】穿心莲;水提;醇提;提取工艺 【中图分类号】R284.2【文献标识码】A【文章编号】2096-0867(2016)-07-434-03 本品为爵床科植物穿心莲Andrographis paniculata(Burm.f.)Nees的干燥地上部分。秋初茎 叶茂盛时采割,晒干。本实验采用水加热回流提取法[3]对穿心莲的不同药用部位进行提取[4],并对其提取工艺进行优化[1]。 1.仪器与试药 SatiousCPA224电子天平(赛多利斯);回流提取装置五套,电加热套(上海精密科学仪器 有限公司)。穿心莲产自安徽,亳州市永刚饮片厂有限公司,批号为20160102,经鉴定为爵 床科植物穿心莲的干燥地上部分。 2.水提方法与结果 2.1穿心莲水提取液热稳定性研究 用大锅煎煮穿心莲药材适量,煎煮两次,每次10分钟,合并煎液,冷却后留用做热稳定性 试验。取1000ml穿心莲提取液置于1000ml三角瓶中,用橡胶塞打孔插入温度计封口,放入 水浴中,分别在60℃、65℃、70℃、80℃、90℃进行穿心莲内酯和脱水穿心莲内酯含量变化 的检测,见图表1。 根据图表1中数据比较可知,穿心莲内酯含量、脱水穿心莲内酯含量和其总量随着温度的升高,其减少率也在逐渐增加,由于90℃只进行了2小时的测量,所以减少率要低于部分进行 了5个小时监测的温度条件。(预测在受热初期,穿心莲内酯存在分解和转化两个过程,一 部分分解掉,另一部分转化为脱水穿心莲内酯,故在受热初期,脱水穿心莲内酯的含量减少 不明显,而后面随着穿心莲内酯的含量减少量,脱水穿心莲的转化量下降,显示的减少量就 增加了。) 由于高温下穿心莲内酯和脱水穿心莲内酯的含量减少率随着温度增高而变大,那么在浓缩过 程中只需要根据最高温度,通过计算最大减少量来计算最低药材含量限度。 2.2水浸泡提取研究 根据热稳定性试验结果发现,在受热时穿心莲内酯和脱水穿心莲内酯含量减少损失较大,故 尝试采用浸泡的方法替代加热回流的方法,使在损失较小的情况下尽可能的提取出有效成分。 取各部位药材适量,按照药材质量倍数进行加水,加水后保证水能完全没过药材,开始进行 浸泡提取。提取的温度为常温下,40℃和80℃的水浴锅中,间隔取样时间和记录情况如下表2。 根据图表2的三组数据可知,常温和40℃时浸泡提取4H后含量不再增加,而80℃含量在浸泡提取3H时最大,4H时反而开始下降。记录提取的最大量。

植物蛋白酶提取纯化工艺 生物工程09-2班陈福泉学号:3090343214 一、实验目的 1、了解植物蛋白酶常用的提取纯化方法的基本原理和基本操作; 2、掌握双水相和反胶束萃取的原理和操作步骤; 3、掌握蛋白质含量和蛋白酶酶活的检测方法 二、实验原理 植物蛋白酶常用的提取纯化方法有缓冲盐溶液提取、初步纯化的方法有有机溶剂法、乙醇粉法、丙酮粉法、盐析法、双水相法、反胶束萃取法等 以pH6.0的磷酸氢二钠-磷酸二氢钠缓冲液为提取溶剂所得酶活力较高,最佳工艺为:以pH6.0磷酸氢二钠-磷酸二氢钠缓冲液25℃提取2次,料液比1∶1;应用硫酸铵盐析及透析袋透析对粗酶液进行纯化,粗酶液再以60%硫酸铵盐析24h,透析袋(14000)低温透析12h,冻干;酶学性质研究表明:生姜蛋白酶以酪蛋白为底物其最适pH值为 6.0,30℃保温30min,酶活稳定。 三、实验材料 材料与试剂 新鲜生姜、酪蛋白(化学纯)、考马斯亮蓝G-250、磷酸氢二钠、磷酸二氢钠、无水碳酸钠、碳酸氢钠、柠檬酸、硫酸铵、丙酮等试剂均为分析纯。 0.01%(w/v)考马斯亮蓝G-250溶液:将100mg考马斯亮蓝G-250溶于50mL 90%vol乙醇中,加入85%正磷酸100mL,蒸馏水定容至1000mL。 0.5%酪蛋白溶液:称取0.5g酪蛋白,先用少量0.55mol/L碳酸钠溶液润湿,再加少量 0.02 mol/L pH7.5的磷酸缓冲液稀释,水浴中煮沸溶解,定容至100mL。 四、实验步骤 方法一:生姜蛋白酶提取液制备: 取定量新鲜生姜,切成小块后加入10 倍体积的pH 6. 0, 0. 2 mol/ L 磷酸缓冲液( 4 e ) , 于粉碎机中匀桨, 8 层纱布过滤后于4000 rpm 离心10 min, 吸取上清液, 加入高饱和度的( NH4) 2SO4 液使盐析体系中( NH4) 2SO4 终饱和度为60% , 4000 rpm 离心15 min。收集上层不溶物, 用少量pH 7. 50 的柠檬酸缓冲液溶解, 在4 e 下对同种缓冲液透析8 h。透析液定容, 即为生姜蛋白酶提取液。 方法二:生姜蛋白酶的提取取外形完好、无机械损伤和腐烂、富含纤维的生姜,切成小块,与磷酸缓冲液(0.03mol/L,pH7.5,内含1 mmol/L EDTA和5mmol/L L-半胱氨酸)按料液比1:2打浆,所得浆液低速搅拌20m i n,搅拌过程中缓慢加入20%(m/v)固体硫酸铵,四层纱布过滤后,将姜汁4℃下静置2h,离心(4 800rpm,5min)去除沉

中药提取分离新技术研究进展 41366055 黄婷 摘要:提取是中药制药过程的关键环节,直接影响着药品的质量,提取新技术的发展是中药制造工业技术转型升级的关键,关系着中药现代化的进程。本篇综述主要介绍了广泛使用的几种中药提取分离新技术,超临界流体分离技术、生物酶解提取技术、大孔树脂分离技术及半仿生提取等分离提取技术的现状及研究进展。 关键字:中药提取分离新技术进展 中药是中华民族几千年文明中灿烂的瑰宝,对中华民族的繁衍昌盛有着不可磨灭的作用。但是由于中药成分十分复杂且很多贵重有效成分含量很低,为微量甚至痕量,因此,有效成分的提取与分离纯化是中药开发中的关键工序。但传统的提取分离方法(如煎煮法、浸渍法、渗滤法、回流法等)存在有效成分提取率不高、杂质清除率低等问题,这些根本问题制约着中药开发的进程。近年来,一些新的技术,如超声场强化、超临界流体萃取以及微波辅助提取技术等被广泛应用于中药有效成分的提取过程中。研究结果表明,应用这些新技术提取中药有效成份的方法具有产率高、纯度高、提取速度快等优点,有着广阔的应用前景。本文就目前中药提取分离新技术做简单的综述。 1.提取分离与纯化技术在中药制剂中的重要作用 固液分离是中药制剂常用并重要的工艺过程,现代化中药制剂工艺中的第一步操作多用液体浸取法,然后将液体与固体分离[1]。分离与纯化技术的效能直接影响中药制剂的纯度、收率、效率、安全、节能和环保。提取、分离和纯化中药中的化学成分,是进一步测定其化学结构、研究其药理作用和毒性的首要条件,也是进行化学结构改造、化学合成、研究化学结构与疗效关系的前提[2]。因此,中药研究的水平及中药制剂质量的保障在很大程度上依赖于中药有效成分提取分离和纯化的结果。 中药分离与纯化工艺包括两个方面:一是应根据粗提取药物性质,选择相应的分离方法与条件,提取药用物质;二是除去无效和有害组分,尽量保留有效成分或有效部位,可采用各种净化、纯化、精制的方法[3]。下面结合典型的中药液体制剂和中药固体制剂工艺阐明提取、分离与纯化技术在中药制剂中的重要作用。 1.1中药液体制剂关键工艺过程 液体药剂主要剂型有针剂、水剂、醑剂、酏剂、胶剂和浮剂等。中药液体制剂的常用工艺是萃取、浓缩、超滤等。超滤技术用于制取中药注射液(如:复方单参、五味消毒饮注射液)、中药口服液等[4]。 为了防止药液析出胶体使药汁变浑,常用“絮凝-精密微孔过滤”净化技术,清除 药汁中的胶体成分。为了消除药液中的细菌,常用微孔膜过滤或带正电荷的过滤介质等。为了消除药液中的热原(内毒素),常用蒸馏法、吸附法、膜过滤法、超滤膜分离技术等[5]。 1.2中药固体制剂关键工艺过程 固体药剂主要剂型有片剂、膏剂、丹剂、栓剂、散剂、锭剂、茶剂和颗粒剂等。在中药 固体制剂的原料药生产中,大部分产品都是结晶体。结晶体必须先通过过滤机脱水,然后干燥,最后获得最终原料药品[6]。 综上所述,提取分离与纯化技术在中药制剂过程中的地位显赫和作用显著。 2.中药提取分离新技术现状

穿心莲内酯 穿心莲内酯,分子式C20H30O5,天然植物穿心莲的主要有效成份,具有祛热解毒,消炎止痛之功效,对细菌性与病毒性上呼吸道感染及痢疾有特殊疗效,被誉为天然抗生素药物。本品为二萜类内酯化合物,均难溶于水,通常仅能口服给药。 基本信息 【产品名称】穿心莲内酯 【英文名称】Andrographolide 【别名】穿心莲乙素,雄茸内脂 【C A S 号】5508-58-7 【化学名称】293H)-Furanone,3-[2-[decahydro-6-hydroxy-5- (hydroxy-methyl)-5,8a-dimethyl-2-methylene-1-naphthalenyl] ethylidene]dihydro-4-hydroxy- 【植物来源】爵床科植物穿心莲Andrographis Paniculata(Burm.f) Ness的全草或叶。 【分子式】C20H30O5; 【结构式】 【分子量】350.44 【成分分类】二萜内酯类 【执行标准】WS-10001-(HD-0971)-2002 【规格】穿心莲内酯含量99% 2物理性质 白色方棱形或片状结晶(乙醇或甲醇),无臭,味苦。在沸乙醇中溶解,在甲醇或乙醇中略溶,极微溶于氯仿,在水或乙醚中几乎不溶。熔点230~231℃,(α)17D -126.6±2°(冰醋酸),[α]D –112.7 (c,0.53,MeOH),与碱性2% 3,5-二硝基苯甲酸试剂,显紫红色,异羟肟酸铁反应呈阳性。密度(21℃)1.2317g/cm3。UVλEtOHmax nm (ε),223(12300); IRvKBrmax cm-1: 3448,3390~?279(OH),1828,1647,906 (C=CH2),1727 (α,β-不饱和γ-内酯),1672 (共的C=C);13CNMR。

穿心莲提取工艺研究 发表时间:2016-06-24T14:52:45.340Z 来源:《系统医学》2016年第2卷第7期作者:朱金会1 李雨辰2 [导读] 对穿心莲的水提和醇提工艺进行对比研究,对穿心莲的叶、茎两个有效部位进行提取研究. 1.青岛华仁太医药业有限公司山东青岛 266111 【摘要】目的对穿心莲的水提和醇提工艺进行对比研究,对穿心莲的叶、茎两个有效部位进行提取研究,尝试摸索出使用合格药材就能达到提取效果的提取工艺,并对药材的含量限度进行研究。结果加水16倍,短时间加热回流水提含量损失最少,随温度升高,减少率呈现增加的趋势。结论穿心莲药材45%乙醇提取工艺下,对药材限度要求低,提取率较高,可以尝试应用到生产中。 【关键词】穿心莲;水提;醇提;提取工艺 【中图分类号】R284.2【文献标识码】A【文章编号】2096-0867(2016)-07-434-03 本品为爵床科植物穿心莲Andrographis paniculata(Burm.f.)Nees的干燥地上部分。秋初茎叶茂盛时采割,晒干。本实验采用水加热回流提取法[3]对穿心莲的不同药用部位进行提取[4],并对其提取工艺进行优化[1]。 1.仪器与试药 SatiousCPA224电子天平(赛多利斯);回流提取装置五套,电加热套(上海精密科学仪器有限公司)。穿心莲产自安徽,亳州市永刚饮片厂有限公司,批号为20160102,经鉴定为爵床科植物穿心莲的干燥地上部分。 2.水提方法与结果 2.1穿心莲水提取液热稳定性研究 用大锅煎煮穿心莲药材适量,煎煮两次,每次10分钟,合并煎液,冷却后留用做热稳定性试验。取1000ml穿心莲提取液置于1000ml 三角瓶中,用橡胶塞打孔插入温度计封口,放入水浴中,分别在60℃、65℃、70℃、80℃、90℃进行穿心莲内酯和脱水穿心莲内酯含量变化的检测,见图表1。 根据图表1中数据比较可知,穿心莲内酯含量、脱水穿心莲内酯含量和其总量随着温度的升高,其减少率也在逐渐增加,由于90℃只进行了2小时的测量,所以减少率要低于部分进行了5个小时监测的温度条件。(预测在受热初期,穿心莲内酯存在分解和转化两个过程,一部分分解掉,另一部分转化为脱水穿心莲内酯,故在受热初期,脱水穿心莲内酯的含量减少不明显,而后面随着穿心莲内酯的含量减少量,脱水穿心莲的转化量下降,显示的减少量就增加了。) 由于高温下穿心莲内酯和脱水穿心莲内酯的含量减少率随着温度增高而变大,那么在浓缩过程中只需要根据最高温度,通过计算最大减少量来计算最低药材含量限度。 2.2水浸泡提取研究 根据热稳定性试验结果发现,在受热时穿心莲内酯和脱水穿心莲内酯含量减少损失较大,故尝试采用浸泡的方法替代加热回流的方法,使在损失较小的情况下尽可能的提取出有效成分。 取各部位药材适量,按照药材质量倍数进行加水,加水后保证水能完全没过药材,开始进行浸泡提取。提取的温度为常温下,40℃和80℃的水浴锅中,间隔取样时间和记录情况如下表2。 根据图表2的三组数据可知,常温和40℃时浸泡提取4H后含量不再增加,而80℃含量在浸泡提取3H时最大,4H时反而开始下降。记录提取的最大量。 40℃下茎提取的试验,是早期试验,药材与常温与80℃的药材不同,含叶量的不同致使结果无可比性,但是脱水穿心莲内酯提取量仍然较低,试验结果发现,在80℃下,虽然会有受热损失,但是提取量仍然大于没有受热损失的常温浸泡提取。但是浸泡提取的脱水穿心莲含量较低,即使全用叶子提取也不能达到限度要求。 2.3水提提取时间研究 根据浸泡提取试验可以发现,温度仍然对穿心莲提取的效率影响较大,高温可以破坏药材内部结构,提取更多的有效成分,但是高温也能破坏有效成分,故尝试寻找加热过程中的含量峰值,来确定加热时间。实验结果见图表3。 根据趋势发现,当加热回流提取穿心莲,时间大于0.5H时,穿心莲内酯和脱水穿心莲内酯的含量随着提取时间增长而减少,所以提取量的最大值应出现在0.5H以内。 根据图表4、图表5、图表6所示,穿心莲的叶提取量要大于茎的提取量,叶的提取量变化更为显著,茎的提取量在前30min的变化不显著,叶的提取量在100℃后10min达到最大值,故穿心莲提取应采用短时加热回流来保存提取出来的有效成分。 2.4水提加水量研究 早时间研究实验发现,穿心莲水提加热回流提取的最佳时间是在到达100℃后提取10min,按照这个提取时间,进行两次提取,最终确定总加水量。 根据之前的提取经验,加水20倍之后提取总量不再增加,所以进行了8倍到20倍水的单次提取试验,根据试验结果所示,提取添加20倍水时,提取量最大,故第一次提取为了尽可能多的提取出穿心莲中有效成分,防止已提取出的成分受到损失,采用20倍的一半进行加水,即10倍水提取。 根据图表7可知,在加水量为10+6倍水时,提取量已经达到最大,再次进行试验,结果有重复性,故确定+加水倍数为10+6倍。 3.醇提方法和结果 3.1 由于穿心莲内酯和脱水穿心莲内酯在水中溶解度有限,水的提取能力也有限,造成提取效率较低,所以在穿心莲的提取方法选择上,大部分采用的是醇提[5],所以我们对穿心莲的醇提工艺进行了研究。在醇提时由于醇溶液的沸点低,首先降低了穿心莲的有效成分损失,其次是醇的提取能力强于水[6],我们选取了30%、45%、85%的乙醇浓度进行试验[7],由于30%乙醇的沸点是最高的,醇含量最低,所以我们用30%的乙醇进行提取时间试验,可以保证在相同提取时间内,45%和85%的乙醇提取过程中有效成分损失少于35%乙醇提取。 根据图表8所示,30%乙醇在提取过程中的含量在10分钟时达到顶峰,并在20分钟内无显著变化,30分钟时开始降低,所以提取时间定在10分钟。

相关文档
最新文档