磁磁场计算题

磁磁场计算题
磁磁场计算题

1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。已知粒子的电荷量为q ,质量为m (重力不计)。

(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;

(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。

1、解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图5可知:O 1为轨道圆心,由于对称性,速度的偏转角θ1=60°,故轨道半径12

L

r =

据2001m υq υB r =, 则102qBr qBL

υm m

==

(2)当0υ最大时,轨道与cd 相切:

11cos602

L

R R -?=

,得R 1=L 则1max

qBR qBL

υm m

==

当0υ最小时,轨道与ab 相切:22sin 302L R R +?=,得23

L

R = 则2min 3qBR qBL υm m =

=03qBL qBL υm m

∴<≤

带电粒子从ab 边射出磁场,当速度为max υ时,运动时间最短。min 15053606m

t T Bq

π=

= 速度为min υ时,运动时间最长max 24043603m

t T Bq

π== ∴粒子运动时间t 的范围5463m m t Bq Bq

ππ≤<

图4

图5

O 3

O 2

O 1

60°

2、如图24所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:

(1)中间磁场区域的宽度d; (2)带电粒子从O点开始运动到第一次回到O点所用时间t。

2、解析:(1)带电粒子在电场中加速,由动能定理,可得:

2

2

1

mV

qEL=

带电粒子在磁场中偏转,由牛顿第二定律,可得:

R

V

m

BqV

2

=

由以上两式,可得q

mEL

B

R

2

1

=

可见在两磁场区粒子运动半径相同,如图25所示,三段圆弧的圆心组成的三角形ΔO1O2O3是等边三角形,其边长为2R。所以中间磁场区域的宽度为

q

mEL

B

R

d

6

2

1

60

sin0=

=

B B

L d

O

(2)在电场中

qE

mL qE mV a V t 22

221===,

在中间磁场中运动时间

qB m

T t 3232π=

=

在右侧磁场中运动时间

qB m T t 35653π=

=,

则粒子第一次回到O 点的所用时间为

qB m

qE mL t t t t 3722321π+

=++=

3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。为了

使该粒子能在AC边上的N点(CM=CN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。试求:(1)粒子在磁场里运动的轨道半径r及周期T;

(2)该粒子在磁场里运动的时间t;

(3)该正三角形区域磁场的最小边长;

3解析:(1)由和,

得:,

(2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N 点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,

粒子的运动轨迹为弧GDEF,圆弧在G点与初速度方向相切,在F点与出射速度相切。画出三角形,其与

圆弧在D、E两点相切,并与圆O交于F、G两点,此为符合题意的最小磁场区域。由数学知识可知∠FOG=600所以粒子偏转的圆心角为3000,运动的时间

(3)连接并延长与交与H点,由图可知,,

点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC 边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆

4、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图3所示,求O 'P 的长度和电子通过磁场所用的时间。

5、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图7所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为

R 1=0.5m ,外半径R 2=1.0m ,磁场的磁感强度B =1.0T ,若被束缚带电粒子的荷质比为q/m =4×710C/㎏,中空区

M N O , L A O 图3

P

域内带电粒子具有各个方向的速度。试计算

(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。 (2)所有粒子不能穿越磁场的最大速度。

6、如图所示,直角坐标系Oxy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的

匀强磁场和竖直向上的匀强电场.质量为m 2=7×10-3

kg 的不带电小物块静止在原点O ,A 点距O 点l =0.045m ,

质量m 1=1×10-3

kg 的带电小物块以初速度v 0=0.5m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为0.1m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E=40N/C ,小

物块m 1与水平面的动摩擦因数为μ=0.1,取g=10m/s 2

,求: (1)碰后m 1的速度;

(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l op =0.4m ,求磁感应强度B 的大小;

(3)其它条件不变,若改变磁场磁感应强度的大小为B /使m 2离开第一象限后落地时能与m 1再次相碰,求B /

的大小?

1、解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图5可知:O 1为轨道圆心,由于对称性,速度的偏转角

x

y P

O θ

A

m 1 m 2

v 0 l B

E O 3

O 2

图7

θ1=60°,故轨道半径12

L r =

据2001m υq υB r =, 则102qBr qBL

υm m

==

(2)当0υ最大时,轨道与cd 相切:

11cos602

L

R R -?=

,得R 1=L 则1max

qBR qBL

υm m

==

当0υ最小时,轨道与ab 相切:22sin 302L R R +?=,得23

L

R = 则2min 3qBR qBL υm m =

=03qBL qBL

υm m

∴<≤

带电粒子从ab 边射出磁场,当速度为max υ时,运动时间最短。

t 速度为min υ时,运动时间最长max 24043603m

t T Bq

π== ∴粒子运动时间t 的范围

5463m m t Bq Bq

ππ≤< 2、解析:(1)带电粒子在电场中加速,由动能定理,可得: 2

2

1mV qEL =

带电粒子在磁场中偏转,由牛顿第二定律,可得:

R

V

m

BqV 2

=

由以上两式,可得

q mEL B R 21=

可见在两磁场区粒子运动半径相同,如图25所示,三段圆弧的圆心组成的三角形ΔO 1O 2O 3是等边三角形,

其边长为2R 。所以中间磁场区域的宽度为

O

q mEL

B R d 62160sin 0

=

=

(2)在电场中

qE

mL

qE mV a V t 22

221===,

在中间磁场中运动时间

qB m

T t 3232π=

=

在右侧磁场中运动时间

qB m T t 35653π=

=,

则粒子第一次回到O 点的所用时间为

qB m

qE mL t t t t 3722321π+

=++=

3解析:(1)由

得: ,

(2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M 点作圆周运动到N

点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O ,粒子的运动轨迹为弧GDEF ,圆弧在G点与初速度方向相切,在F 点与出射速度相切。画出三角形

,其与

圆弧在D 、E 两点相切,并与圆O交于F 、G 两点,此为符合题意的最小磁场区域。由数学知识可知∠FOG =600

所以粒子偏转的圆心角为3000

,运动的时间

(3)连接并延长与交与H点,由图可知,,

点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC 边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆

4解析 :电子所受重力不计。它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图4所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直

角三角形OO'P 中,O 'P =(L +r )tan θ,而)

2

(tan 1)

2tan(2tan 2θθ

θ-=

,R

r =)2tan(θ,所以求得R 后就可以求出O 'P 了,电子经过磁场的时间可用t =V

R

V AB θ=

来求得。 由R V m BeV 2=得R=θtan )(.r L OP eB

mV

+=

22)2

(tan 1)

2tan(2tan m =-=

θθ

θmV

eBr

R r =

=)2tan(θ,

2

2222,

)(2tan )(r B e V m eBrmV r L r L P O -+=+=θ,

)2arctan(2

2222r

B e V m eBrmV

-=θ )2arctan(2

2222r

B e V m eBrmV eB m V R t -==θ

5、解析:(1)要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切

M

N

O ,

L

A

O

图4

R

θ/2 θ θ/2 B

P

O //

图8

r 1

,轨迹如图8所示。

由图中知2

122

12

1)(r R R r -=+,解得m r 375.01=

由1

2

11r V m BqV =得s m m Bqr V /105.1711?==

所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为s m V /105.17

1?=。 (2)当粒子以V 2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以V 1速度沿各

方向射入磁场区的粒子都不能穿出磁场边界,如图9所示。

由图中知m R R r 25.02

1

22=-=

由2

2

22r V m BqV =得s m m Bqr V /100.1722?== 所以所有粒子不能穿越磁场的最大速度s m V /100.17

2?= 6、解:(1)m 1与m 2碰前速度为v 1,由动能定理

2

0121112

121v m v m gl m -=-μ (1分)

代入数据解得:4.01=v m/s (1分)

设v 2=0.1m/s ,m 1、m 2正碰,由动量守恒有:221

111v m v m v m +'=(2分) 代入数据得:s m v /3.0/

1-=,水平向左(1分) (2)m 2恰好做匀速圆周运动,所以g m qE 2=(1分) 得:q=1.75×10-3

C (1分)

粒子受洛仑兹力提供向心力,设圆周的半径为R 则

R

v

m B qv 2

222=(1分)

轨迹如图,由几何关系有:OP l R =(1分)

解得:B=1T (1分)

(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动. m 1匀减速运动至停,其平均速度为:s m v s m v v /1.0/5.12

12/

1_

=?==,所以m 2在m 1停止后与其相碰(1分)

由牛顿第二定律有:a m g m f 11==μ(1分)

m 1停止后离O 点距离:a

v x 22

1'

=(1分)

图9

则m 2平抛的时间:2

v x

t =

(1分) 平抛的高度:2

2

1gt h =

(1分) 设m 2做匀速圆周运动的半径为R /

,由几何关系有:h R 2

1

=

'(1分) 由R v

m B qv '

='2

222(1分)

联立得:T B 8.0='(1分)

(素材和资料部分来自网络,供参考。可复制、编制,期待您的好评与关注)

磁场练习题 (3)

稳恒磁场 一.选择题: 1.边长为L 的一个导体方框上通有电流I,则此框中心的磁感应强度[ ]. (1)与L 有关 (2)正比于L 2 (3)正比于L (4)反比于L (5)与I 2有关 2.一载有电流I 的细导线分别均匀密绕成半径为R 和r (R=2r)的螺线管,两螺线管单位长度上的匝数相等,?两螺线管中的磁感应强度的大小B R 和B r 应满足:[ ] (1)B R =2B r (2)B R =B r (3)2B R =2B r (4)B R =4B r 3.均匀磁场的磁感应强度B 垂直于半径为r 的圆面.今以该圆周为边线作一半球面s,则通过s 面的磁通量的大小为:[ ] (1) 2B r 2π (2)B r 2 π. (3) 0 . (4) 无法确定. 4.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭和回路L,则由安培环路定理可知:[ ] (1) 0=??L l B d 且环路上任意一点B=0, (2) 0=??L l B d 且环路上任意一点B ≠0, (3) 0≠??L l B d 且环路上任意一点B ≠0, (4) 0≠??L l B d 且环路上任意一点B=常数。 5.一半导体样品通过的电流为I, 放在磁场中,如图,实验测的霍耳电压U ba <0, 此半导体是[ ] (1) N 型 (2)P 型 6. 反,这两圆柱面之间距轴线为r 处的磁感应强度大小为[ ] (1) 0 (2)r I πμ20 (3)r I πμ0 (4)πμ20Ir 7.可以用安培环路定理求磁场的是 [ ] (1)通电螺绕环 (2)圆电流 (3)半圆电流 (4)一段直电流

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

2015高中物理磁场经典计算题-(一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球和挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子和三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在 匀强磁场,磁场方向垂直于圆面 指向纸外.一电荷量为q ,质量 为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向和AC 成α.若 此粒子恰好能打在磁场区域圆 周上D 点,AD 和AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. 4.如图所示,真空中有一半径为R 的圆形磁场区域,圆心为O ,磁场的方向垂直纸面向内, 磁感强度为B ,距离O 为2R 处有一光屏MN ,MN 垂直于纸面放置,AO 过半径垂直于屏,延 长线交于C .一个带负电粒子以初速度v 0沿AC 方向进入圆形磁场区域,最后打在屏上D 点,DC 相距23R ,不计粒子的重力.若该粒子仍以初速v 0从A 点进入圆形磁场区域, 但方向和AC 成600 角向右上方,粒子最后打在屏上E 5.如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L ,ab bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 2B 。质量为m ,带电量为q 的粒子沿垂直于界面a 的方向射入磁场区域,不计重力,为使粒子能从界面c 射出磁场, 粒子的初速度大小应满足什么条件? a b c d B P v C D α β v 0 L B v E S F D (a ) a O E S F D L v (b )

电磁场综合计算题

电磁场综合计算题 1、(磁场与运动学综合)如图18所示,质量m=0.1g的小物块,带有 5×10-4C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于 B=0.5T的匀强磁场中,磁场方向垂直纸面指向纸里,物块由静止开始下滑,滑到某一位置时,开始离开斜面,求:(中等) 图18 (1)物块带什么电? (2)物块离开斜面时速度多大? (3)斜面至少有多长? 2.(电磁场与运动学综合)一个质量为m,电量为+q的金属球套在绝缘长杆上,球与杆间的动摩擦因数为μ,整个装置放在匀强电场与匀强磁场互相垂直的复合场中,如图19所示。若已知电场强度为E,磁感应强度为B,由静止开始释放小球,求:(中等) (1)小球最大加速度是多少? (2)小球最大速度是多少? 图19 3、(电磁场与运动学综合)电磁炮是一种理想的兵 器,它的主要原理如图所示。1982年澳大利亚国立大 学制成了能把m=2.2g的弹体(包括金属杆EF的质 量)加速到v=10km/s的电磁炮(常规炮弹的速度约为 2km/s),若轨道宽L=2m,长为x=100m,通过的电流为I=10A,试问轨道间所加匀强磁场的磁感应强度和磁场的最大功率P m有多大(轨道摩擦不计)?(中等) 4、(电磁场与运动学综合)如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁

感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2) (简单) 5.(回旋加速器)有一回旋加速器,加在D形盒内两极的 交变电压的频率为1.5×107Hz,D形盒的半径为0.56m,求:(中等)(1)加速α粒子所需的磁感应强度B。 (2)α粒子所达到的最大速率。(α粒子质量为质子质量的4倍,质子质量为1.67×10-27Kg) 6.(磁场与运动学综合)有一匀强磁场,磁感应强度为1.0T,放一根与磁场方向垂直、长度为0.6m的通电直导线,导线中的电流为1.2A。这根导线在与磁场方向垂直的平面内沿安培力的方向移动了0.3m,求安培力对导线所做的功。(简单) 7.(磁场与运动学综合)在竖直向下的匀强磁场中,两根相距L的平行金属导轨与水平方向的夹角为θ,如图所示,电池、滑线可变电阻、电流表按图示方法与两导轨相连,当质量为m的直导线ab横跨于两根导轨之上时,电路闭合,有电流由a到b通过直导线,在导轨光滑的情况下,调节可变电阻,当电流表示数为I0时,ab恰好沿水平方向静止在导轨上,求匀强磁场的磁感强度B多大?(中等) )θ A )θ B a b

磁场,感应计算题有详细(答案)(快考试了,希望对同学们有所帮助)

稳恒磁场计算题 144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流 I ,求O 点的磁感应强度. 解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中: DC 产生 )21(4)2sin 4(sin 45cos 400 01-=-= R I R I B πμπ π πμ 方向向里 CB 产生 R I R I B 16224002 μμππ == 方向向里 BA 产生 03=B R I R I B B B B O 16)12(400321μπμ+-=++= 方向向里 145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。若导线的流过电流I ,求圆心O 处的磁感应强度。 解:两段直电流部分在O 点产生的磁场 01=B 弧线电流在O 点产生的磁场 R I B 2202μπα= R I R I B B B O πα μπαμ42220 021== +=∴ 146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B 大半圆 产生 1 024R I B μ= 方向向里 小半圆 产生 2 034R I B μ= 方向向里 竖直直电流产生 2 044R I B πμ= 方向向外 4321B B B B B O +++=∴ )1 11(44442 210202 01 0R R R I R I R I R I B O πμπμμμ-+=- + = 方向向里 147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空 、解:取垂直纸面向里为正,如图设X 轴。 ) 1.0(102102)(2272010x x x x d I x I B --?=-+= -πμπμ 在电流1I 左侧,B 方向垂直纸面向外 在电流1I 、2I 之间,B 方向垂直纸面向里 在电流2I 右侧,当m x 2.0<时,B 方向垂直纸面向外

高中物理磁场12个基础计算题专练

磁场12个计算题 参考答案与试题解析 一.解答题(共12小题) 1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用. (1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径; (2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值. 【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有: 得: (2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的 两个粒子的轨道,圆心和直径分别为O 1、O 2 和OO 1 Q 1 、OO 2 Q 2 ,在O处两个圆的切 线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知: ∠PO 1Q 1 =∠PO 2 Q 2 =θ 从O点射入到相遇,粒子1的路程为半个圆周加弧长Q 1 P Q 1 P=Rθ 粒子2的路程为半个圆周减弧长PQ 2 PQ 2 =Rθ 粒子1运动的时间: 粒子2运动的时间: 两粒子射入的时间间隔:

因 得 解得: 答:(1)所考察的粒子在磁场中的轨道半径是. (2)这两个粒子从O点射入磁场的时间间隔是. 【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型. 2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为Ω,其余部分电阻忽略不计,g=10m/s2.求: (1)通过导体棒MN的电流大小; (2)电源的电动势. 【分析】根据平衡条件求出安培力大小,进而电流大小; 闭合电路欧姆定律求电动势的大小; 【解答】解:(1)根据竖直方向受力平衡:mg=BIL 得:I===4A (2)根据闭合电路欧姆定律:E=I(R+r) 得:E=4×=10V 答:(1)通过导体棒MN的电流大小为4A; (2)电源的电动势为10V. 【点评】本题是电路知识、力学知识的综合,掌握闭合电路欧姆定律、安培力公式是解题的关键,常规题,不容有失.

高中物理计算题提升含答案-磁场综合

高考压轴题突破策略 大题小做,妙用“得分三步曲” 实践和理论以及大量事实均表明,综合大题的解题能力和得分能力都可以通过“大题小做”的解题策略有效提高.“大题小做”的策略应体现在整个解题过程的规范化中,具体来讲可以分三步来完成:审题规范化,思维规范化,答题规范化. 第一步:审题规范化 审题流程:通读→细读→选读. 技法1 第一遍读题——通读 读后头脑中要出现物理图景的轮廓.由头脑中的图景(物理现象、物理过程)与某些物理模型找关系,初步确定研究对象,猜想所对应的物理模型. 技法2 第二遍读题——细读 读后头脑中要出现较清晰的物理图景.由题设条件,进行分析、判断、确定物理图景(物理现象、物理过程)的变化趋势.基本确定研究对象所对应的物理模型. 技法3 第三遍读题——选读 通过对关键词语的理解、隐含条件的挖掘、干扰因素的排除之后,对题目要有清楚的认识.最终确定本题的研究对象、物理模型及要解决的核心问题. 同时,还要注意常见的审题错误: (1)没有明确研究对象; (2)没注意物理量是矢量还是标量; (3)没搞清哪些量是已知量,哪些量是未知量; (4)没注意括号里的文字; (5)没抓住图象上的关键点; (6)没看清物体是在哪个面内运动,是竖直面还是水平面; (7)没注意是否需要考虑重力,有些题目明确说明不需要考虑重力,有些题目需要自己分析判断; (8)读错或没看清文字,如位移(或位置)、时间(或时刻)、直径(或半径)、轻绳(或轻杆)、物体在圆环的内侧(或外侧或圆管内或套在圆环上)等; (9)没看清关键词,如”缓慢”、”匀速”、”足够长”、”至少”、”至多”、”刚好”、”最大”、”最小”、接触面”粗糙(或光滑)”、”物体与弹簧”连接(或接触)等; (10)没有挖掘出题目中关键词汇的隐含条件,如:”刚好不相撞”表示物体最终速度相等或者接触时速度相等;”刚好不分离”表示两物体仍然接触,弹力为零,且速度和加速度相等;”刚好不滑动”表示静摩擦力达到最大静摩擦力;”绳端物体刚好通过最高点”表示绳子拉力为零,仅由重力提供向心力. 特别提醒: 读题的同时应将题目关键信息(所有已知物理量,尤其注意哪些地方光滑、哪些地方有质量、哪些地方计电阻等)标示在图示中相应位置,同时将细节在题干中圈出。没有图示的一般要自己做出草图。 第二步:思维规范化

最新高中物理磁场经典计算题专题

1、弹性挡板围成边长为L= 100cm的正方形abcd,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T,如图所示. 质量为m=2×10-4kg、带电量为q=4×10-3C的小球,从cd边中点的小孔P处以某一速度v垂直于cd边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P点垂直于dc射出来,小球入射的速度v1是多少? (2)若小球以v2 = 1 m/s的速度入射,则需经过多少时间才能由P点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L的等边三角形框架DEF, DE中点S处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE边向下,如图(a)所示.发射粒子的电量为+q,质量为m,但速度v有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v为多大时,能够打到E点? (2)为使S点发出的粒子最终又回到S点,且运动时间最短,v应为多大?最短时间为多少? (3)若磁场是半径为a的圆柱形区域,如图(b)所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O,且 a= ) 10 1 3 3 ( L.要使S点发出的粒子最终又回到S点,带电粒子速度v的大小应取哪些数值? 3、在直径为d的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q,质量为m的粒子,从磁场区域的一条直径AC上的A点射入磁场,其速度大小为v0,方向与AC成α.若此粒子恰好能打在磁场区域圆周上D点,AD与AC的夹角为β,如图所示.求该匀强磁场的磁感强度B的大小? 4、如图所示,真空中有一半径为R的圆形磁场区域,圆心为O,磁场的方向垂直纸面向内,磁感强度为B,距离O为2R处有一光屏MN,MN垂直于纸面放置,AO过半径垂直于屏,延长线交于C.一个带负电粒子以初速度v0沿AC方向进入圆形磁场 区域,最后打在屏上D点,DC相距23R,不计粒子的重力.若该粒子仍以初速v 0从A点进入圆形磁场区域,但方向与AC 成600角向右上方,粒子最后打在屏上E点,求粒子从A到E所用时间? a b c d A F D (a) (b)

带电粒子在磁场中运动综合计算题

如图所示,跟水平面成370 角且连接电源的光滑金属框架宽为20cm ,一根重为G 的金属棒ab 水 平放在金属框架,磁感应强度B =0.6T ,方向垂直斜面向上,当通过金属棒的电流为5A 时,它刚好处于静止状态, 试求:(1)金属棒的重力G 的大小 (2)电流方向? 如图所示,两平行光滑导轨相距为0.2m ,处于一匀强磁场中.金属棒MN 的质量为m =10—2 ㎏,电阻R =8Ω,水平放置在导轨上并与导轨接触良好.匀强磁场的磁感应强度B 大小为0.8T ,方向竖直向下.电源电动势E 为10V ,内阻r =1Ω.当开关S 闭合时,MN 处于静止状态.(设 θ=45°,g = 10m/s 2 ) 求:(1)金属棒MN 受到的安培力多大? (2)变阻器R 1此时的电阻值为多少?

将倾角为θ的光滑绝缘斜面放在一个足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度为B,一个质量为m,带电量为q的小物体在斜面上静止开始下滑(设斜面足够长)如图所示,滑到某一位置离开斜面则: (1)、物块带何种电荷? (2)、物块离开斜面时的速度是多少? 如图所示,在光滑的水平地面上,有一质量为m A=2.0 kg的长木板,以v0=14 m/s的速度向右运动.若再在A板右端轻放一个带正电荷电荷量为0.20 C、质量为0.10 kg的物块B,A、B处在B=0.50 T的匀强磁场中,A、B间动摩擦因数为μ,相互绝缘,A板足够长,g取10 m/s2. 试求:(1)B物块的最大速度; (2)A板的最小速度; ×××× (3)此过程中A、B系统增加的总内能.

如图所示,矩形区域宽度为l,其内有磁感应强度为B、垂直纸面向外的匀强磁场.一带电粒子以初速度v0垂直左边界射入,飞出磁场时偏离原方向300.若撤去原来的磁场,在此区域内加一个电场强度为E、方向竖直向下的匀强电场(图中未画出),带电粒子仍以原来的初速度入射.不计粒子的重力,求: (1)带电粒子在磁场中的运动半径; (2)带电粒子在磁场中运动的时间; (3)带电粒子飞出电场后的偏转角. 一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。 求匀强磁场的磁感应强度B和射出点的坐标。 电子自静止开始经M、N板间(两板间的电压为u)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=,(小车不带电,货柜及货物体积大小不计,g 取10m/s 2)求: ⑴第二次电场作用的时间; ⑵小车的长度; ⑶小车右端到达目的地的距离. ] 16(8分)如图所示,水平轨道与直径为d=0.8m 的半圆轨道相接,半圆轨道的两端点A 、B 连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m 的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C 电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A 为L ,它恰能到达轨道最高点B ,求小球在B 点的速度和L 的值. (2)若它运动起点离A 为L=2.6m ,且它运动到B 点时电场消失,它继续运动直到落地,求落地点与起点的距离. 、 A B

! 6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即UAB =300V 。一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远 (2)点电荷的电量。 ! 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E ,y 轴为磁场和电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1) 求磁感应强度大小和方向; (2) " (3) 求质子从A 点运动至B 点时间 B A v 0 R M N L P S O E F l

磁场综合测试题

磁场综合测试题 一、单项选择题:本大题共6小题,每小题3分,共18分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.指南针静止时,其位置如图中虚线所示.若在其上方放置一水平方向的导线,并通以恒定电流,则指南针转向图中实线所示位置.据此可能是(B ) A.导线南北放置,通有向北的电流 B.导线南北放置,通有向南的电流 C.导线东西放置,通有向西的电流 D.导线东西放置,通有向东的电流 2.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN ,电流I 方向从M 到N ,绳子的拉力均为F ,为使F =0,可能达到要求的方法是 ( C ) A .加水平向右的磁场 B .加水平向左的磁场 C .加垂直纸面向里的磁场 D .加垂直纸面向外的磁场 3.如图所示,铜质导电板置于匀强磁场中,通电时铜板中电流方向向上.由于磁场的作用,则(A ) A.板左侧聚集较多电子,使b 点电势高于a 点电势 B.板左侧聚集较多电子,使a 点电势高于b 点电势 C.板右侧聚集较多电子,使a 点电势高于b 点电势 D.板右侧聚集较多电子,使b 点电势高于a 点电势 4.如图所示,三根通电直导线P 、Q 、R 互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流;通电直导线产生磁场的磁感应强度B=kI/r ,I 为通电导线的电流强度,r 为距通电导线的距离的垂直距离,K 为常数;则R 受到的磁场力的方向 是(A ) A.垂直R ,指向y 轴负方向 B.垂直R ,指向y 轴正方向 C.垂直R ,指向x 轴正方向 D.垂直R ,指向x 轴负方向 5.图中的D 为置于电磁铁两极间的一段通电 直导线,电流方向垂直于纸面向里.在开关S 接通后,导线D 所受磁场力的方向是( A ) A .向上 B .向下 C .向左 D .向右 6.如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响。下列图中阴影部分表示带电粒子可能经过的区域,其中Bq mv R .哪个 图是正确的?(A ) b

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

磁场综合计算题

高三物理带电粒子的运动综合计算题 2011.4 1.(2011 XOY 内,第I 大小设为B 1e ,不计重力) v 0垂直于Y 进入第IV 场,OQ =OP (1(2 (3)求B 1与B 2.(2007年山东高考)飞行时间质谱仪可以对气体分子进行分析。如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器。已知元电荷电量为e ,a 、b 板间距为d ,极板M 、N 的长度和间距均为L 。不计离子重力及进入a 板时的初速度。 (1)当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2,使离子到达探测器。请导出离子的全部飞行时 间与比荷K (K =ne m )的关系式。 (2)去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁场,磁感应强度为B ,若进入a 、b 间的所有离子质量均为m ,要使所有的离子均能通过控制区从右侧飞出,a 、b 间的加速电压U 1至少为多少? X

3. (2010德州一模)(18分)在如图所示的直角坐标中,x 轴 的上方存在与x 轴正方向成45°角斜向右下方的匀强电场,场强的大小为E = 2×104 V/m 。x 轴的下方有垂直于xOy 面向外的匀强磁场,磁感应强度的大小为B =2×10-2T 。把 一个比荷为m q =2×108C/㎏的正点电荷从坐标为(0,1) 的A 点处由静止释放。电荷所受的重力忽略不计。求: (1)电荷从释放到第一次进入磁场时所用的时间; (2)电荷在磁场中做圆周运动的半径(保留两位有效数字) (3)当电荷第二次到达x 轴上时,电场立即反向,而场强大小不变,试确定电荷到达y 轴时的位置坐标。 5.(2010济宁一模)(18分)如图所示,在xoy 坐标平面的第一象限内有一沿y 轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场.现有一质量为m 、电量为+q 的粒子(重力不计)从坐标原点O 射入磁场,其入射方向与y 轴的负方向成45°角.当粒子第一次进入电场后,运动到电场中坐标为(3L ,L )的P 点处时,测得其速度大小为v 0,方向与x 轴正方向相同.求: (1)粒子从o 点射入磁场时的速度执v 。 (2)匀强电场的电场强度E 和匀强磁场的磁感应强度B . (3)粒子从O 点运动到P 点所用的时间t 。

物理磁场练习题(含答案)

物理高二磁场练习题 一、 单选题 1.关于电场强度和磁感应强度,下列说法正确的是 A .电场强度的定义式q F E =适用于任何电场 B .由真空中点电荷的电场强度公式2 Q E k r =可知,当r →0时,E →无穷大 C .由公式IL F B =可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场 D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向 2.如图所示,条形磁铁放在水平粗糙桌面上,它的正中间上方固定一根长直导线,导线中通过方向垂直纸面向里(即与条形磁铁垂直)的电流,和原来没有电流通过时相比较,磁铁受到的支持力N 和摩擦力f 将 A 、N 减小,f=0 B 、N 减小,f ≠0 C 、N 增大,f=0 D 、N 增大,f ≠0 3、有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是 A .氘核 B .氚核 C .电子 D .质子 4.一带正电荷的小球沿光滑、水平、绝缘的桌面向右运动,如图所示,速度方向垂直于一匀强磁场,飞离桌面后,最终落在地面上. 设飞行时间为t 1、水平射程为s 1、着地速率为v 1;现撤去磁场其它条件不变,小球飞行时间为t 2、水平射程为s 2、着地速率为v 2.则有: A 、 v 1=v 2 B 、 v 1>v 2 C 、 s 1=s 2 D 、 t 1E K ',W =0 C 、E K =E K ',W =0 D 、E K >E K ',W >0 6.图是质谱仪的工作原理示意图。带电粒子被加速电场加速后,进入速度选择器。速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2。平板S 下方有强度为B 0的匀强磁场。下列表述错误的是 A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过的狭缝P 的带电粒子的速率等于E/B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小 二、双选题 7.下列关于磁场中的通电导线和运动电荷的说法中,正确的是 A 、磁场对通电导线的作用力方向一定与磁场方向垂直 B 、有固定转动轴的通电线框在磁场中一定会转动 C 、带电粒子只受洛伦兹力作用时,其动能不变,速度一直在变 D 、电荷在磁场中不可能做匀速直线运动 v

磁场计算题

B E A 1.如图所示,在与水平方向成60°角的光滑金属导轨间连一电源,在相距1m 的平行导轨上放一重力为3N 的金属棒ab ,棒上通过3A 的电流,磁场方向竖直向上,这时金属棒恰好静止,求: (1)匀强磁场的磁感强度为多大? (2)ab 棒对导轨的压力为多大? 1.解:(1)tan 60B IL G ?= tan 6031 G B IL ? == ?(T ) =(T ) (2)cos 60G N ?= 3cos 600.5 G N = = ? (N )=6(N ) ( N'=N =6(N ) 2. 如图所示,在水平正交的匀强电场和匀强磁场区域内,有一个带正电小球A ,已知电场强度为E ,磁感应强度为B ,小球在场区中受到电场力的大小恰与它的重力大小相等,要使小球在磁场中匀速运动,小球的速度必须一定,请求出小球的速度大小和方向。 2.(8分)粒子所受重力、电场力及洛伦兹力三力合力为零, 且满足: qvB =2 2 )()(Eq mg + (2分) 又有: mg =Eq (2分) 解得:v =2E /B , (2分) 方向成45°角斜向上 2分) 3.如图所示,x 轴上方有垂直纸面向里的匀强磁场.有两个质量相同,电荷量也相同的带正、负电的离子(不计重力),以相同速度从O 点射入磁场中,射入方向与x 轴均夹θ角.则正、负离子在磁场中 A.运动时间相同 B.运动轨道半径相同 C.重新回到x 轴时速度大小和方向均相同 D.重新回到x 轴时距O 点的距离相同 4.如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与MN

成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少? 解:由公式知,它们的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。答案为射出点相距 Be mv s 2= ,时间差为Bq m t 34π=?。关键是找圆心、找半径和用对称。 5.如图所示,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场时速度方向与电子原来入射方向的夹角为30°,则电子的质量是多少?穿过磁场的时间是多少? [方法指导]一定要先画好辅助线(半径、速度及延长线)。偏转角由sin θ=L /R 求出。侧移由R 2 =L 2 -(R-y )2 解出。经历时间由Bq m t θ=得出。 m=2dBe/v 0 t =d π/3v 0 6.长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是: A .使粒子的速度v 5BqL /4m ; C .使粒子的速度v >BqL /m ; D .使粒子速度BqL /4m 5BqL /4m 时粒子能从右边穿出。 粒子擦着上板从左边穿出时,圆心在O '点,有r 2=L /4,又由r 2=mv 2/Bq =L /4得v 2=BqL /4m M

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求: ⑴第二次电场作用的时间; B ⑵小车的长度; A ⑶小车右端到达目的地的距离. 16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值. (2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到 落地,求落地点与起点的距离.

6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。求(静电力常数k=9×109N·m2/C2) (1)粒子穿过界面PS时偏离中心线 RO的距离多远? (2)点电荷的电量。 B A R E F

磁场经典计算题

高中物理磁场经典计算题训练 1.如图所示,一个质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为300.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积. (2)粒子在磁场中运动的时间. (3)b 到O 的距离. 2.纸平面内一带电粒子以某一速度做直线运动,一段时间后进入一垂直于纸面向里的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后从上板边缘平行于板面进入两面平行的金属板间,两金属板带等量异种电荷,粒子在两板间经偏转后恰从下板右边缘飞出。已知带电粒子的质量为m ,电量为q ,重力不计。粒子进入磁场前的速度方向与带电板成θ= 60°角,匀强磁场的磁感应强度为B ,带电板板长为l ,板距为d ,板间电压为U ,试解答:?上金属板带什么电??粒子刚进入金属板时速度为多大??圆形磁场区域的最小面积为多大? 3.如图所示,在y >0的区域内有沿y 轴正方向的匀强电场,在y <0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m 、电量为e )从y 轴上A 点以沿x 轴正方向的初速度v 0开始运动。当电子第一次穿越x 轴时,恰好到达C 点;当电子第二次穿越x 轴时,恰好到 θ b x y O m ,q v 0 30°

达坐标原点;当电子第三次穿越x 轴时,恰好到达D 点。C 、D 两点均未在图中标出。已知A 、C 点到坐标原点的距离分别为d 、2d 。不计电子的重力。求 (1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)电子从A 运动到D 经历的时间t . 4.如图所示,在半径为R 的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C 与平行金 属板M 、N 相通。两板间距离为d ,两板与电动势为E 的电源连接,一带电量为-q 、质量为m 的带电粒子(重力忽略不计),开始时静止于C 点正下方紧靠N 板的A 点,经电场加速后从C 点进入磁场,并以最短的时间从C 点射出。已知带电粒子与筒壁的 碰撞无电荷量的损失,且碰撞后以原速率返回。求: ?筒内磁场的磁感应强度大小; ?带电粒子从A 点出发至重新回到A 点射出所经 历的时间。 5.如图所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域和右侧匀强磁场的磁感应强度大小均为B ,方向分别垂直纸面向外和向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 E y x v 0 O × × × × × × × × × × × × × × × × × × × × × A B A B C M N E d -q ,m R B B E L d O

相关文档
最新文档