固态电容替代铝电解电容[za]

为何要被替换?--一个理由不够给你5个

固体电解电容和传统液态铝电容的差异,在于采用了不同的电解质材料,其材料为导电性高分子PEDT,因PEDT材料为固体,

耐热超过摄氏350℃,且其电导率高于普通电解液几个数量级

(如图1所示),具有优良的高频低阻抗性能,且高低温性能优良,完全消除了电容器的爆浆隐患,因此固体电解电容器成为近年来

电解电容发展最为快速的品种之一;

3,4亚乙基二氧噻吩

图1

理由1:使用温度范围更宽: (-55℃~ +125℃)

理由2:工作频率高: 最高可达1000kHz

理由3:温度特性好阻抗值极低(最低可到5 mΩ) (如江

海的HSN 系列)

理由4:承受纹波电流大(最大7A)

理由5:使用寿命长(每降20度寿命增加10倍)

由于固体铝电解电容器采用功能性导电高分子材

料,相比普通液体铝电解电容器的各项电性能更稳定,

主要优点为:

一、DC-DC电源中电容器的替换

使用固体电解电容器替换液体电解电容器,测试替

换前后,输出纹波情况。

试验线路板:某液晶电视开关电源板二款。

二、测试情况

1.A号板

输出电容器:35V/2200μF×2 + 35V/1000μF×1使用固体电容器替换,进行输出纹波对比(固体电容器规格:国产25V/100μF)。如下表:

A号板原样

液体35V/2200μF×2

+液体35V/1000μF×1

A号板用3颗固体电容替换国产25V/100μF×3A号板使用2颗固体电容替换国产25V/100μF×2纹波电压:24.8mV 纹波电压:6.20mV 纹波电压:8.20mV 测试线路输出电流:~3.80A,频率:~66kHz 替换容量比27:1(18:1),5.6%*C0=300

1) A号板未替换前示波器图形(波形尖剌部分由测试夹具引起)

2)A号板使用3 颗国产25V/100μF 替换(波形尖剌部分由测试夹具引起)

3) 1 号板使用2 颗25V/100μF 替换(波形尖剌部分由测试夹具引起)

2.B号板

输出电容器:35V/1000μF×2

使用固体电容器替换,进行输出纹波对比(固体电容器规格:国产25V/100μF)。如下表:

替换容量比22:1,4.6%*C0=200

B号板原图

液体35V/1000μF×2

B使用2颗固体电容替换国产25V/100μF×2纹波电压:256mV

纹波电压:104mV (有低频、高频2个波形)

输出电流:~4.16A,频率:~256kHz

1) B号板未替换前示波器图形(波形尖剌部分由测试夹具引起)

2)B号板使用2 颗国产25V/100μF 替换—(波形尖剌部分由测试夹具引起)

3 .某雷达特种电源

原液体电容器固体电容器替换替换容量比

6.3V/1800μF ×2

(5v输出)

6.3V/470μF ×1

7.6 : 1

16V/1000μF ×2

(12v输出)

16V/270μF ×17.4 : 1

50V/120μF ×2(24v输出)25V/68μF ×1 3.5 : 1

0.161*C0=46

00\740

≥0.285*C0=68

4.测试结果表明

A号板,可以使用2颗国产25V/100μF替换原来的3颗电容器。输出纹波电压由24.8mV下降为8.20mV;

B号板,可以使用2颗国产25V/100μF替换原来的2颗电容器。输出纹波电压由256mV下降为104mV,输出有2个频率的波形,使用固体电容器后应调整反

馈回路参数,消除低频部分波形,可进一步降低纹波电压。

C.某雷达特种电源,分别可以使用1颗国产6.3V/470μF替换原来的2颗6.3V/1800μF

电容器;使用1颗国产16V/270μF替换原来的2颗16V/1000μF电容器;使用1颗国产25V/68μF替换原来的2颗50V/120μF电容器;输出纹波电压大幅下降;

LC滤波,减少电容器个数或者只用POLYCAP替代L&C

E-CAP E-CAP L L

电路小型化

具有卓越的降噪能力

OR

LCD TV

LC 滤波固态电容替代电解电容

固态电容替代电解电容

固态电容替换主板普通铝电解电容

计算机产品的电压组别:12V、5V、3.3V、2.5V、 1.8V、及1.8V以下.

所以在5V电源供电电路中,10V的铝电解可以用6.3V 的固态电容替代。

耐压的选择:依母板实际电压选取即可,不必考滤太多裕量,因工厂电容设计时有充分考量了安全系数值;

容量的选择:在铝电解电容的标称容量的25%-40%以内即可,不是越大越好;

固态电容替代铝电解电容

更便捷的替换是:

【固态电容的容量选择】一般可选择为铝电解容量40%为宜,当然这

个值不是绝对的,略有偏差,无关要紧,主要结合电路的总汶波电流与ESR 值。

【固态电容的电压选择】以电解电容耐压只做为参考,选用电容耐压唯一的标准是电路的电压,只要电路实际电压低于固体电容额定耐压即可,不需要考虑余量(固态电容在设计时已留有较高裕量,不会低于1.25倍的额定电压)

依据长期替换应用经验,我们建议(此为最经济型如下表):

电容器容量C 0

柱型固体高分子电容器替换方型固体高分子电容器替换液体电解(主滤波)

1/20C 0 ~ 1/10C 01/30C 0 ~ 1/20C 0液体电解(主储能)

1/10C 0 ~ 1/5C 01/20C 0 ~ 1/10C 0钽电解(二氧化锰)

1/2C 0 ~ 1C 01/4C 0 ~ 1/2C 0钽电解(高分子)1C 01/2C 0 ~ 1C 0

可靠性估算寿命

固态电容器其寿命可以由下式计算

L x=L0x10(T0-Tx)/20

Lx-实际使用温度Tx时的估算寿命(小时);

0-最高温度T

时的保证寿命(小时);

T0-最高额定工作温度(℃);

Tx-实际使用温度(环境温度)(℃)

寿命估算演示

计算一款105℃产品2000H,在环境温度65℃时的寿命L x=L0x10(T0-Tx)/20

已知:

-最高温度105℃时的保证寿命2000(小时);L

T0-最高额定工作温度105(℃);

Tx-实际使用温度(环境温度)65(℃)

Lx-实际使用温度Tx时的估算寿命(小时)=L0x10(T0-Tx)/20=2000x10(105-65)/20=

2000x102=2000*100=200000H

深圳市青佺电子有限公司 电容器基本知识试卷 單位﹕ 姓名﹕ 分數﹕ 一﹑选择题(请把正确答案之序号填在前面之括号内)(答案每题不一定为一个/每题2.5分) ( )1.本公司生产之电容器为﹕ A.铝质电容器 B.铝质电解电容器 C.电容 D.电解电容器 ( )2.电容器能贮存( ) A.电荷 B.能量 C.质量 D.负荷 ( )3.表征电容器贮存电量之能力﹐称为此电容器之 A.容量 B.能量 C.质量 D.电荷 ( )其一般表示单位为﹕ A. 法拉第(F ) B. 法拉(F ) C.安培 D.伏特 ( )4.电路中表征电解电容器之组件符号﹕ A. B. C. D. ( )5.本公司生产之电容器﹐其正箔由( )组成 A.铝箔且表面有一曾致密的氧化膜 B.铁箔 C.两者皆可 ( )6.电容器真正之负极为﹕( ) A.导针 B.铝箔 C.电解液 D.电解纸 ( )7.本公司生产之电容器之构造: A.电解液 电解纸 正负导针 正负铝箔 B.电解液 电解纸 铝壳 胶盖 胶管 C. E/L 电解液 铝壳 胶盖 胶管 D. E/L 胶盖 胶管 铝壳 ( )8.正箔表面有一层氧化膜﹐它的作用是﹕ A.绝缘 B.非绝缘 C.导体 ( ) 9.电解纸之作用﹕ A.吸收电解液避免正负箔直接接触 B.隔绝正负箔 C.导电 ( ) 10.法拉第定律为﹕ A.d s C ∑= B. s d C ∑= C. s d c C ??= ( ) 11.电容器之电容量与两极间的相对面积成﹕ A.反比 B.正比 C.比例 ( )13.电解电容器中两极间的距离指﹕ A.电解纸之厚度 B.氧化皮膜之厚度 C.电解纸与氧化皮膜厚度之和 ( )14.电解电容器之三大特性分别为﹕ A.静电容量 损失角 泄漏电流 B.阻抗 静电容量 泄漏电流 C.静电容量 损失角 阻抗 ( )15. 计算损失角之公式为(低频下)﹕ A.DF=fCR π2 B.DF=fCV π2 C.DF= CR π2 ( )16.漏电流之单位﹕ A.V B. μA C.?

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

陶瓷电容器简介及使用注意事项 1.分类 1类多层瓷介电容器,温度稳定性好,材料C0G或NP0(注意C0G里面的0是代表零,NP0里面的0也是代表零,不是英文字母O),随温度变化是0,偏差是±30ppm/℃、±0.3%或±0.05pF,这类电容量较小,耐压较低,主要用于滤波器线路的谐振回路中,但其中损耗小,绝缘电阻较高,制造误差J=±5% G=±2% F=±1%,执行标准:GB/T20141-2007 2类多层瓷介电容器,温度稳定性差,但容量大、耐压高, 例如:X7R 在-55℃~到+125℃内温度偏移±15%,X5R在-55℃~到+85℃内温度偏移也是±15%,Y5V在-30℃~到+85℃内温度偏移+22%~-82%,Z5U在+10℃~+85℃内温度偏移+22%~-56%,生产误差:K=±10%、M=±20%。 注意:生产电容器时产生的误差与温度偏差是不同的概念。 2类多层瓷介电容器主要用于旁路、滤波、低频耦合电路或对损耗和电容量稳定性要求不高的电路中,执行标准:GB/T20142-2007 2.在使用贴片电容器的PCB设计中,用于波峰焊的焊盘尺寸与用于回流焊的 焊盘尺寸不同,因为焊料的量的大小会影响零件的机械应力,从而导致电容器破碎或开裂。 3.在PCB设计时巧用适当多的阻焊层将2个或以上电容器焊盘隔开。 4.在靠近分板线附近,电容器要平行排列,即长边与分板线平行,减少分板 时的裂缝。 5.自动贴片机装配SMD时,适当的部位支撑PCB是完全必要的,单面板时和 双面板时支撑都要考虑两面SMD的裂缝。

6.在波峰焊工艺中,粘着胶的选用和点胶位置及份量直接影响SMD焊接后的 性能稳定性,胶的份量以不能接触PCB中焊盘为准。 7.焊接中使用助焊剂: 7.1如果助焊剂中有卤化物多或使用了高酸性的助焊剂,那么焊接后过多 的残留物会腐蚀电容器端头电极或降解电容器表面的绝缘。 7.2回流焊中如果使用了过多的助焊剂,助焊剂大量的雾气会射到电容器 上,可能影响电容器的可焊性。 7.3水溶助焊剂的残留物容易吸收空气中的水,在高湿条件下电容器表面 的残留物会导致电容器绝缘性能下降,并影响电容器的可靠性,所以,当选用了水溶性助焊剂时,要特别注意清洗方法和所使用的机器的清洗力。 7.4处理贴好电容器的板时,过程中温差不能超过100℃,否则会引起裂缝。 8. 焊料的使用量为电容器厚度的1/2或1/3. 9. 使用烙铁焊接时,烙铁头的顶尖直径最大为1.0mm,烙铁头尖顶不能直接 碰到电容器上,要接触在线路板上,加锡在线路板与电容器之间。 10. 在搬运和生产过程中,电容器包装箱应避免激烈碰撞,从0.5米或以上 高度落下的单个电容器可能会产生电容器瓷体破损或微裂,应不能在使用。 11. 储存条件: 温度范围:-10℃~+40℃ 湿度范围:小于70%(相对湿度) 存储期:半年 如果超过了6个月(从电容器发货之日算起),在使用电容器之前要对其进行可焊性检验,同时高介电常数的电容器的容量也会随时间的推移

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

薄膜电容器选型与行业应用 ————光伏逆变器行业 变频器行业 风电行业 交流滤波电容 其他场合 一、光伏行业DC-link电容 DC-link电容(大功率27μF-30μF/KW 薄膜电容) 二、变频器行业DC-link电容 输入电压等级 DC-Link 电容 吸收电容 LC 交流滤波电容 220V.AC-440V.AC 薄膜电容电压 Un=700V.DC 0.1-2μF/1200V.DC Un=450V.AC 660V.AC-690V.AC 薄膜电容电压 Un=1100V.DC 0.47-2.5μF/1600V.DC Un=850V.AC 1140V.AC 薄膜电容电压 Un=2000V.DC 0.47-3μF/3000V.DC Un=1140V.AC 2000μF/1200VDC SVG客户的选型 420/470 uf –1100/1200V .DC 500/1200/2000/3000 uf –1200V .DC 功率P DC-Link 电容 吸收电容 交流滤波电容 500KW 园柱SCREW 型 400μF-500μF/1100V .DC 27-30只并联 采用6只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 250KW 园柱SCREW 型 200-420 多只并联总容量在6000uf 采用3只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 100K 园柱SCREW 型 420uf 6只并联 方块铜片型 1μF/1200V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 50K 方块导针型 10μF-50μF 多只并联 方块铜片型 0.47μF/1200V .DC 20μF/450V .AC (自己采用三角接法),会选园柱SCREW 型的 备注 采用容量小,多只并联,这样同等容量流过DC-LINK 电容有效电流大, I 总rms≥nI 输出电流 容量选取不是容量越大越好,主要通过IGBT 开关频率和功率选取容量 选择交流电容设计电容的有效电流多少,这主要载波频率有关系

43 Features ? 3 ~ 16φ, 85℃, 2,000 hours assured ? C hip type large capacitance capacitors ? D esigned for surface mounting on high density PC board. ? R oHS Compliance DIAGRAM OF DIMENSIONS Fig. 1 LEAD SPACING AND DIAMETER Unit: mm φD L A B C W P ± 0.2 Fig. No. 3 5.3 ± 0.2 3.3 3.3 1.5 0.45 ~ 0.75 0.8 1 4 5.3 ± 0.2 4.3 4.3 2.0 0.5 ~ 0.8 1.0 1 5 5.3 ± 0.2 5.3 5.3 2.3 0.5 ~ 0.8 1.5 1 6.3 5.3 ± 0.2 6.6 6.6 2.7 0.5 ~ 0.8 2.0 1 6.3 7.7 ± 0.3 6.6 6.6 2.7 0.5 ~ 0.8 2.0 1 8 10 ± 0.5 8.4 8.4 3.0 0.7 ~ 1.1 3.1 1 Fig. 2 8 10.3 ± 0.5 8.4 8.4 3.0 0.7 ~ 1.1 3.1 1 10 10 ± 0.5 10.4 10.4 3.3 0.7 ~ 1.1 4.7 1 10 10.3 ± 0.5 10.4 10.4 3.3 0.7 ~ 1.1 4.7 1 12.5 13.5 ± 0.5 13.0 13.0 4.8 1.1 ~ 1.4 4.4 2 12.5 16 ± 0.5 13.0 13.0 4.8 1.1 ~ 1.4 4.4 2 16 16.5 ± 0.5 17.0 17.0 5.8 1.1 ~ 1.4 6.4 2

铝电解电容器与无极性电容器的比较 单元串联多电平型变频器的功率模块,与普通的低压变频器一样,采用交直交的电压源型结构,需要在二极管整流桥和IGBT逆变桥之间使用电容器稳定直流母线的电压,并吸收交流异步电机的无功分量。这里的电容器可以有两种选择,一种是选择通用的铝电解电容器,一种是选择无极性的薄膜电容器。 铝电解电容器有两个缺点,一是运行时环境温度不能太低,应该在-25度以上,由于一般工业现场这个条件还是能够满足的,所以问题还不算太大。另外一个是寿命问题。铝电解电容器的寿命一般为2000-10000小时之间,这个寿命到了以后,电解电容并不是立即失效,而是电容量逐步变小,漏电流逐步增大,最后趋于损坏。铝电解的寿命和环境温度、纹波电流、电容上承受的电压大小等因素有关。一般当纹波电流(即充放电的电流)减小,环境温度降低,则电容器本体的温度降低;电容本体温度每降低7度(有的厂家说10度),寿命增加一倍。另外,在设计时,电容上承受的电压也低于电容器的额定电压,这也导致电容的寿命延长。电解电容器的标称寿命是按照额定的纹波电流、额定的电压、85度的温度下的值,而一般的变频器,电容的温度最高也就50度左右,由于很少运行到50Hz,纹波电流就低于最大值,即使是在最大值运行,纹波电流的设计值也低于电容器的额定纹波电流。所以,按照一般的常规设计和通用变频器的运行经验,电解电容器的正常使用寿命通常在8-10年以上。如果加强散热、改善运行环境温度,负载又比较轻,这个时间就比较长。 电解电容器的最大优点是容量/体积比,即在相同的体积内,别的电容制作工艺很难做到与电解电容相同的容量。另外,在相同的容量下,电解电容的性价比也是最高的。 无极性的薄膜电容器最大的优点是几乎没有寿命限制,可以达到15-20年。另外,无极性电容的电压可以定制,几乎没有限制,所以在电路中不需要串联运行。无极性电容相比电解电容,相同容量时,体积要大一倍到两倍。 一般的变频器,只在特殊的场合使用无极性电容,比如机车牵引等。大量的通用变频器均使用铝电解电容器。对于单元串联的高压变频器,目前似乎只有国内一个厂家在使用无极性电容器,其它的几十个厂家全部采用铝电解电容器。另外一种结构的变频器:西门子、ABB的三电平型的中压变频器,由于直流母线电压很高,达到3000V以上,而铝电解电容器的额定电压一般在500V以下,需要多只串联,成本上升,所以有时会选择无极性电容器。 使用铝电解电容器,一般的变频器在寿命期内不需要更换电容。但是,变频器如果负载较重,或电容量选择得偏小,在整个寿命期内,也许要更换一次电容,这个成本大约是变频器售价的5-10%。

用于风车发电的高压薄膜电容器 技术分类: 电源技术 | 2007-05-15 风力是全球范围内快速发展的一个市场。矿物燃料的高价和对环境影响的关注是其两大推动因素。此外,风车发电的效率也不断提高。原因之一在于发电系统内的高电压,其中电容器实际位于变流器的内部(见图1)。 直流电滤波功能在于修匀电压波形并限制波纹电压的量级。具备最高至48000mF 的超高电容值的薄膜电容器确实能够对风力发电站有所助益。以前的许多风力系统都使用电压在500VDC 左右的电容器,但今天电压范围却在600VDC~1800VDC。在这一范围内,非气体浸渍的薄膜电容器比之前采用的电解电容器更具技术优势。 薄膜电容器的一大优点在于克服内部缺陷的能力。用于直流电滤波电容器的最新介电薄膜覆有很薄的金属层。如果存在缺陷,金属会升华并由此将缺陷隔离,有效地自行恢复电容器。鉴于风力系统通常位于偏远区域,这一功能可以大大降低维护成本,确保在安装的系统中获得更高的使用效率。 薄膜与铝技术比较 基于现有的干膜技术,电压梯度在放电应用和直流电滤波应用中分别可达500V/mm 以上和250V/mm。这些薄膜电容器的设计符合CEI 1071标准。也就是说,它们可以应付最高相当于额定 电压两倍的多重电压浪涌而不会大幅减低产品使用寿命。与此同时,设计师在具体确定系统时只需说明标称电压要求。 通过比较,由于加工技术的原因,电解电容器中使用的铝箔厚度是达到高电压的关键因素。但是,出于平衡,电压越高,可用电容就越低。此外,相比低电压的150kΩ/cm,高电压(500V)电解质导电率可达5kΩ/cm 。同时,较之薄膜电容器的1A/mF,这也将均方电流值限制在约20mA/mF。对直流电连接电容器的一大要求是其处理波纹电流的能力。在这一方面,薄膜电容器优势明显。采用铝电解需要使用多个电容器。原因不在于电容值,而仅仅是为了处理电流。运用薄膜电容器意味着设计师只需考虑系统所需的最小电容值。由此,采用薄膜技术的设计通常更节省空间。为达到目前设计和使用的系统所需的高电压,有必要将多个电解电容器串联连接,由此还需平衡电压。这需要在每个电容器上连接一个电阻器,原因在于每个装置的绝缘电阻各不相同。 U n R e g i s t e r e d

编号:SY-AQ-05814 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电解电容漏电流测试仪安全管 理规定 Safety management regulations of electrolytic capacitor leakage current tester

电解电容漏电流测试仪安全管理规 定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一、目的:为指导和规范电解电容漏电流测试仪的安全使用。 二、范围:仅适用于本公司电解电容漏电流测试仪。 三、安全操作使用规程 1.在对仪器进行操作前,应首先详细阅读说明书,或在对本仪器熟悉的人员指导下进行操作,以免产生不必要的疑问。 2.仪器使用必须符合额定使用条件:环境温度:0-40℃;相对湿度20-80%PH;大气压强:86-106Kpa。 3.仪器应在技术指标规定的环境中工作,仪器特别是联接测试件的测试导线应远离强电磁场,以免对测量产生干扰。 4.应选择合适的电压量程档,在测量过程中不允许调节测量电压。 5.被测电容器的正负数一定要正确联接。

6.对食品通电检查和校准时,注意调整管BUS13A(BU508A)的外壳是带电的,高压大电容两极上也是带电的,应注意以防触电。 7.仪器切断电源后,高压在电容上的高电压需几分钟放完。 8.对仪器进行更换元件时,注意将电源插头拔下,以防止触及电源开关而触电。 9.仪器在接通电源之前,应将电压调节旋钮向左旋至最小,工作选择按钮置于放电位置,否则电压输出接线柱与外壳间有极化电源输出,会使连接测试夹具时触电。 10.在使用仪器过程中,转换电压量开关时,注意要将电压调节旋钮左旋至最小,以免电压受冲击而损坏。 11.严禁各类腐蚀性物品接触设备,关机后必须切断电源。 这里填写您的公司名字 Fill In Your Business Name Here

贴片电容使用中的注意事项 (1)电容的工作电压必须低于额定电压,不得超过额定电压使用。例如工作电压为12V时,可选额定电压16~25V;工作电压为5V时,可选6~10V。另外电容器的电容量还与耐压值有关。例如片状钽电容耐压4~50V,0.1~4.7uF小容量电容有额定功率为50V的,而10uF以上,耐压至高于25V的就很少见到,因此,在进行电路设计时应引起注意。 (2)应合理的选择电容器精度及材料类别。市售的片状电容器的精度在103以下的,其精度可达J级(±5%);在103以上则J级较少,以K级(±10%)居多;在104以上则以M级(±20%)为主。例如,在谐振回路中,为保证性能稳定,要采用C0G Ⅰ类材料及J级片状多层陶瓷电容器;如在IC的电源正端往往要连接一个0.1PF的旁路电容,则可选Ⅲ类材料,M级精度的片状多层陶瓷电容器。这样既能保证产品精度要求,又能降低产品成本。 (3)市场上尺寸代码为0805片状电容器的容量规格(系列)最齐全,而0603一些偏僻的容量可能会缺货。在生产批量不太大的时候,为防止市场缺货而影响生产,可以将焊盘稍作延伸,使它能适用于0603及0805,避免造成因缺件而停产。 (4)片状多层陶瓷电容器都是卷装的,型号在带盘上,而电容器上无任何标志。虽然可以用测量的方法知道其容量,但是很难区别材料类别的精度等级,因此在使用过程中,尤其是手工装配时务必小心。 (5)敞开式片状微调电容器不能用波峰焊,而封闭式片状微调电容器可用波峰焊。 (6)在国外的不少电路图中,往往可见“OS——CON”商标的电容器,它就是日本SANYO(三洋)公司生产的有机半导体铝固体电解电容器。它最大的特点是虽然是电解电容,但却有与薄膜电容器相同的高频特性;其次是等效串联电阻小,并且对温度不敏感;第三是可通过更大的纹波电流。例如,用30uH及1500uF/10v铝电解电容器组成LC滤波器时,若采用OS-CON电解电容(L不变),只要22uF/20V的电容就可以达到效果。 另外,有可能看到一个大容量的普通铝电解电容器并联一个小容量的OS-CON电解电容。这是因为OS-CON的ESR低,并联后其ESR更低,但小容量的OS-CON电解电容却可通过大部分的纹波电容电流,从而获得极好的滤波效果,使输出纹波电压减小很多,并且可减少损耗。 (7)片状电容器普遍采用多层结构,在使用时有些人采用烙铁手工焊接,此时一定要注意焊接速度,避免过热,造成基化端头因温差大而断裂,使容量下降。 (8)片状电容器使用的是陶瓷基片,薄而脆。有些电路板较薄,安装时受力不均匀会变形,很容易造成电容器折断。解决的方法除了改进设计工艺外,还可在容易造成折断的地方改用管状电容,因为管状电容强度高,不易折损。

替代电解电容的薄膜电容技术 DC-Link电容器应用 在过去多年的发展中,使用金属化膜以及膜上金属分割技术的DC滤波电容得到了长足的发展,现在薄膜生产商开发出更薄的膜,同时改进了金属化的分割技术极大的帮助了这种电容的发展,聚丙烯薄膜电容能够比电解电容更加经济地覆盖600VDC 到2200VDC的电压范围。薄膜电容具有的许多优势,使它替代电解电容成为工业和电力电子功率变换市场的趋势。 这些优点包括了: 承受高的有效电流的能力 能承受两倍于额定电压的过压 能承受反向电压 承受高峰值电流的能力 长寿命,可长时间存储 但是,只种替代并非“微法对微法”的替代,而是功能上的替代. 当然,尽管膜电容技术有了长足的进展,但不是所有的应用领域都能替代电解电容。 电解电容技术 典型的电解电容的最大标称电压为500 到600V。所以在要求更高电压的情况下,使用者必须将多只电容串联使用。同时,由于各电容的绝缘电阻不同,使用者必须在每个电容上连接电阻以平衡电压。 此外,如果超过额定电压1.5倍的反向电压被加在电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。为了避免这种危险,使用者必须给每个电容并联一个二极管。在特定应用中电容的抗浪涌能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是VnDC的1.15或1.2倍(更好的电解电容)。这种情况迫使使用者不得不考虑浪涌电压而非标称电压。 直流支撑滤波:高电流设计和电容值设计 a) 使用电池供电的情况 应用为电车或电叉车 在这种情况下,电容被用来退耦。膜电容特别适合这种应用。因为直流支撑电容的主要标准是有效值电流的承受能力。这意味着直流支撑电容能够以有效值电流来设计 以电车为例,要求的数据 工作电压: 120VDC 允许的纹波电压: 4V RMS 有效值电流: 80 A RMS @ 20 kHz 最小容值为

输入滤波铝电解电容上并联薄膜电容的选取 1.概述 在众多开关电源设计当中,无论是单相电还是三相电输入整流后端都有容量较大的电解电容用于储能与滤波,当然我们熊谷公司生产的电焊机电源也如此,与一般小功率开关电源不同的是我们使用的电解电容是耐压更高,电流更大。所以采用的是螺栓式铝电解电容。铝电解电容按引出方式分:引线式、焊针式、焊片式、螺栓式。按结构分:有固定剂(延伸纸)、无固定剂(延伸负极)。本文中重点讨论的不是该铝电解电容的内容,而是并联在铝电解电容两端薄膜的选型。 2.薄膜电容特性及应用场合 并联在铝电解电容两端薄膜电容的作用是吸收网压的谐波高频成分和吸收直流母线上的电压尖峰。可是这个薄膜电容的容量和薄膜电容的材质该到底选择,没有一个理论支撑更多都是凭借经验取值或者更是拿来主义,没有深入研究该电容的选取跟整个系统那些参数有关。 首先介绍薄膜电容的薄膜介质,主要分为聚丙烯薄膜或者聚酯薄膜。 聚丙烯膜的特点:高频损耗极低,电容量稳定性很高,负温度系数较小,绝缘电阻极高,介质吸收系数极低,频率特性极好,自愈性极好,稳定性很好。 聚酯膜的特点:工作温度范围宽,介电常数大,电容量稳定性很高,正温度系数高,自愈性好,容积比大。 聚酯膜电容典型应用: 1)隔直和耦合; 2)旁路; 3)退耦; 4)滤波; 5)定时; 6)低脉冲电路; 7)振荡电路。 聚丙烯膜电容典型应用: 1)高频脉冲应用; 2)大电流应用场合; 3)交流应用场合; 4)高稳定的定时场合;

5)开关电源系统; 6)工控行业; 7)高Q 滤波。 3. 薄膜电容具体计算 图1. 输入滤波铝电解电容并联薄膜电容 在图1中C1、C2、C3、C4、C5、C6中就是薄膜电容在具体电路的使用,这个薄膜电容主要是吸收的作用。吸收电容的定义:吸收电容在电路中起的作用类似于低通滤波器,可以吸收掉尖峰电压。通常用在有绝缘栅双极型晶体管(IGBT ),消除由于母排的杂散电感引起的尖峰电压,避免绝缘栅双极型晶体管的损坏。 因为是吸收功率管的尖峰电压,吸收电容需要跟着拓扑走。由于线路的寄生电感作用,当功率管工作在大电流导通状态切换到关断时,寄生电感上残余能量需要释放,此时会出现电压尖峰: dt di L V ?= 聚丙烯薄膜电容具有低感抗特性,能瞬间通过较大电流,以便吸收此残余能量,控制母线电压在合理范围,从而保护了保护晶体管。 具体的选型需要根据切断电流,允许母线上升的最高电压,寄生电感量来定义。 这个公式可参考 : )01(2 121222Vbus Vbus C I L E lk lk -??=??= Llk 为线路电感; I 为开关切换时的电流; C 为吸收电容容值;

常见电容器如薄膜电容器、电解电容器等的优点与缺点 钽电解电容器 用烧结的钽块作正极,电解质使用固体二氧化锰。 优点:温度特性、频率特性和可靠性均优于普通电解电容器特别是漏电流极小、贮存性良好、寿命长、容量误差小、而且体积小、单位体积下能得到最大的电容电压乘积。 缺点:对脉动电流的耐受能力差,若损坏易呈短路状态。 应用:超小型高可靠机件中。 铝电解电容器 用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的氧化膜作介质的电容器。因为氧化膜有单向导电性质,所以电解电容器具有极性。 优点:容量大约0.47μF--10000μF,额定电压6.3--450V,能耐受大的脉动电流。 缺点:容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz 以上频率。 应用:低频旁路、信号耦合、电源滤波。 薄膜电容器 结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质。 优点:频率特性好,介电损耗小。 缺点:不能做成大的容量,耐热能力差。 应用:滤波器、积分、振荡、定时电路。 瓷介电容器 穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝引线电感极小。 优点:频率特性好,介电损耗小,有温度补偿作用。 缺点:不能做成大的容量,受振动会引起容量变化。 应用:特别适于高频旁路。 独石电容器(多层陶瓷电容器) 在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成。 优点:小体积、大容量、高可靠和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q值高。 缺点:容量误差较大。 应用:噪声旁路、滤波器、积分、振荡电路。 纸介电容器 一般是用两条铝箔作为电极,中间以厚度为0.008~0.012mm的电容器纸隔开重叠卷绕而成。优点:制造工艺简单,价格便宜,能得到较大的电容量。 缺点:一般在低频电路内,通常不能在高于3~4MHz的频率上运用。 应用:油浸电容器的耐压比普通纸质电容器高,稳定性也好,适用于高压电路。 云母电容器 就结构而言,可分为箔片式及被银式。被银式电极为直接在云母片上用真空蒸发法或烧渗法

RUBYCON CORPORATION 12 6. SERIES CAPACITOR CONNECTION C1/C2 = 0.95 – 1.05 I WV R = (k ?) --------- 5.4 WV : Rated voltage (V) I : Leakage current (mA) Fig. 5.3 C 1: Capacitance of Capacitor A C 2: Capacitance of Capacitor B V 1: Terminal voltage of Capacitor A V 2: Terminal voltage of Capacitor B E: Voltage of Power Supply When two capacitors are connected in series, voltage at terminals of each capacitor on charging is applied in reverse proportion to the capacitance of each capacitor as shown below. 2 12 1 C C C E +× =V ------- 5.1 2 11 2C C C E +× =V ------- 5.2 21V V E += ------- 5.3 This means that voltage applied to either capacitor may be over the rated capacitor to cause safety vent operation if capacitance values of them are much different. After the completion of charging, terminal voltage on each capacitor varies with the level of leakage current. Then over voltage may be applied to the terminals on either capacitor if another capacitor has high leakage current, which possibly causes safety vent operation. To prevent difference in terminal voltage values, it is useful to put Voltage Distribution Resistors as shown in Fig. 5.4 or to select two capacitors having capacitance difference within 5%. Follow the formula 5.4 to use Voltage Distribution Resistors. Fig. 5.3 https://www.360docs.net/doc/ef17943347.html, 风华直接授权代理/片式无源器件整合供应商 【南京南山】

电解电容漏电流测试仪操作规程 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电

流数据,并一直处于测试状态。 6.如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1.严禁将带电的电容接入仪器,以防损坏电流检测部份。 2.仪器在使用过程中,应定期对工作特性进行检验和校准。正常情况下,本仪器半年进行一次检定。 四、安全注意事项 1.仪器在通电后主板上两只调整管(BU508A)上始终带有较高的电压或者仪器切断电源后,高压滤波电容器需3分钟以上才能将电荷放尽,只要电容上带电,调整管上也带电。因此在实际测试操作时应该戴上绝缘手套,以防不注意在测试过程中触摸到带有较高电压的测试夹具。

文件编号:RHD-QB-K1323 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 电解电容漏电流测试仪操作规程标准版本

电解电容漏电流测试仪操作规程标 准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。

3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电

流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1. 严禁将带电的电容接入仪器,以防损坏电流检测部份。 2. 仪器在使用过程中,应定期对工作特性进行检验和校准。正常情况下,本仪器半年进行一次检定。 四、安全注意事项 1.仪器在通电后主板上两只调整管(BU508A)上始终带有较高的电压或者仪器切断电源后,高压滤波电容器需3 分钟以上才能将电荷放尽,只要电容

安规电容器的作用及注意事项 安规电容器包括X电容和Y电容两种类型,X电容是跨接在电力线两线(L-N)之间的电容,一般选用金属薄膜电容;Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现。 首先我们知道电容(electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容,有机固体介质电解电容。按极性分为:有极性电容和无极性电容。

电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐。 安规电容根据安全等级的不同可以分为: X1 >2.5kV ≤4.0kV X2 ≤2.5kV X3 ≤1.2kV 安规电容安全等级绝缘类型额定电压范围 Y1 双重绝缘或加强绝缘≥250V Y2 基本绝缘或附加绝缘≥150V ≤250V Y3 基本绝缘或附加绝缘≥150V ≤250V Y4 基本绝缘或附加绝缘<150V 注意事项: 抑制电源电磁干扰用的电容器 当在电源跨线电路中使用电容器来消除噪音时,不仅仅只有正常电压,还必须考虑到异常的脉冲电压(如闪电)的产生,这可能会导致电容器冒烟或者起火。所以,跨线电容器的安全标准对于在不同国家有严格规定,故必须使用经过安全认证的电容器。 不允许将直流电容器用作跨线电容器作用

对于X2类抑制电源电磁干扰用电容器应适用于在电容器失效时不会导致电击危险的场合,如电源跨线路连接,可承受2.5KV的脉冲电压。 对于Y2类抑制电源电磁干扰用电容器应适用于在电容器失效时不会导致电击危险的场合,用于电源跨线路连接时,能承受5KV的脉冲电压冲击,不致发生击穿现象。

7343 7227 (

“钽贴片电解电容有黑色或灰色标志的一头是正极,另外一头是负极。对于铝贴片电解电容就和普通直插电解电容一样,有杠杠的那端为负极。” 在网上查到这么一句话,可算是把板子上的钽电解全部平反了! 之前在复位电路总是不正常,查来查去,是复位的钽电解极性接反了! 以往用贴片电解大都就是对付钽电解电容,隐约在意识里知道画杠的一边是接高电位,就没有太注意其极性的表示方法。给医疗组的一哥们问起来:“它不跟普通电解电容一样么?普通电解画白道子的一端是‘负’极啊?再或者它应该和贴片二极管一样吧?二极管也是画白道子的那头是‘负’极诶!”——歪着头一想也是!极性的标识方法也应该有个‘统一’的原则吧?于是在此后焊的板子里所有的钽电解都掉了个头…… 终究是以有电容的地方电平被拉得特别低这一现象,标志着我对电解电容极性的表示方法完全混乱。 真服了这种‘下贱’的表示方法,同样是电解电容,钽电解虽然昂贵一点,也不能搞特殊啊! 无极性电容以0805、0603两类封装最为常见; 0805具体尺寸:×× 1206具体尺寸:×× 贴片电容以钽电容为多,根据其耐压不同,又可分为A、B、C、D四个系列,具体分类如下: 类型封装形式耐压 A 3216 10V B 3528 16V C 6032 25V

D 7343 35V 贴片钽电容的封装是分为A型(3216),B型(3528), C型(6032), D型(7343),E型(7845)。 ------------------------------------- 贴片电容正负极区分 一种是常见的钽电容,为长方体形状,有“-”标记的一端为正; 另外还有一种银色的表贴电容,想来应该是铝电解。上面为圆形,下面为方形,在光驱电路板上很常见。这种电容则是有“-”标记的一端为负。 发光二极管:颜色有红、黄、绿、蓝之分,亮度分普亮、高亮、超亮三个等级,常用的封装形式有三类:0805、1206、1210 二极管:根据所承受电流的的限度,封装形式大致分为两类,小电流型(如1N4148)封装为1206,大电流型(如IN4007)暂没有具体封装形式,只能给出具体尺寸: X 3 X 电容:可分为无极性和有极性两类: 无极性电容下述两类封装最为常见,即0805、0603; 有极性电容也就是我们平时所称的电解电容,一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D四个系列,具体分类如下: 类型封装形式耐压 A 3216 10V B 3528 16V C 6032 25V D 7343 35V

相关文档
最新文档