第二制冷剂量热器法测试压缩机性能

第二制冷剂量热器法测试压缩机性能
第二制冷剂量热器法测试压缩机性能

关于用第二制冷剂量热器法

进行制冷压缩机的性能测试

钱大馨

一. 概述

制冷压缩机性能试验要测试的参数是:在一定工况下的压缩机质量流量和压缩机的功耗,以及由此派生出的能效比EER(制冷)或性能系数COP(制热)。但通常不用压缩机的质量流量来表示压缩机的性能,而是用压缩机的制冷量来表示。制冷量的定义为:“由试验直接测得的流经压缩机的制冷剂的质量流量,乘以压缩机吸气口的制冷剂气体比焓与排气压力对应的膨胀阀前制冷剂液体比焓的差之值。”即:

()11f g h h G Q ??=

式中:Q :制冷量

G :试验直接测得的流经压缩机的制冷剂质量流量

h g1:规定工况下压缩机吸入的制冷剂气体比焓

h fl :规定工况下压缩机排气压力对应的膨胀阀前制冷剂液体比焓 上述的比焓差是根据理论工况来计算的,因此计算得到的制冷量是与“由试验直接测得的流经压缩机的制冷剂的制冷流量”成正比的,但使用制冷量来表达,就与压缩机的使用条件联系起来了,比较直观。

这里有两个问题需要讨论:

1.“排气压力对应的膨胀阀前制冷剂液体比焓”的制冷剂液体的温度没有规定,而是留给具体的压缩机标准或压缩机生产厂家去规定。房间空调压缩机将标准工况下的这个温度规定为46.1℃。

2.“试验直接测得的流经压缩机的制冷剂的制冷流量”,如果试验工况偏离了

理论上规定的工况,但偏差不大,则可以也需要作相应的修正。修正公式如下:

f

f V V Q Q

g 0110??= 式中:Q 0:规定工况下的制冷量

V 1:压缩机吸气口制冷剂气体实际比容

V g1:规定工况下压缩机吸入的制冷剂气体比容

f :试验频率

f 0:规定的工作频率

二.制冷压缩机的试验工况

以下工况唯一地确定了压缩机的性能,即确定了在该工况下的压缩机质量流量,除此以外,试验装置上其它参数对压缩机的性能均不产生影响,因而也无助于对压缩机性能的研究。

1.排气压力Pd ,为冷凝温度所对应的饱和压力。在试验过程中,每一测量值与规定值之间的最大允许偏差应小于±1%,与平均值的最大允许偏差应小于0.5%。房间空调压缩机标准工况的冷凝温度为54.4℃。

2.吸气压力Ps ,为蒸发温度所对应的饱和压力。在试验过程中,每一测量值与规定值之间的最大允许偏差应小于±1%,与平均值的最大允许偏差应小于0.5%。房间空调压缩机标准工况的蒸发温度为7.2℃。

3.吸气温度Ts 。吸气温度的规定应当是过热的。在试验过程中,每一测量值与规定值之间的最大允许偏差应小于±3℃,与平均值的最大允许偏差应小于1℃。房间空调压缩机标准工况的吸气温度为35℃。

吸气温度和吸气压力确定了压缩机的吸气状态,而排气压力确定了压缩机的效率点。

4.环境温度Ta 。规定为35℃±1℃。

5.周围空气流速,应在0.75±0.25m/s 的范围内,周围500mm 的距离内不应有影响试验的冷热源。

6.电源电压。在试验过程中,每一测量值与规定值之间的最大允许偏差应小于

±3%,与平均值的最大允许偏差应小于1%。

7.电源频率。在试验过程中,每一测量值与规定值之间的最大允许偏差应小于

±1%,与平均值的最大允许偏差应小于0.5%。

8.含油率。在试验过程中,应当保持实际系统的油循环率进行试验,但压缩机

试验方法标准又规定试验循环的制冷剂液体内含油量应不超过2%。如果被试验的压缩机工作时的油循环率在2%以下,上述两个要求就可同时达到。

但是,很多压缩机,特别是汽车空调用压缩机,其工作时的油循环率远远超过这个比例,所以目前的压缩机性能试验台只好在带油循环下工作,满足不了试验标准的要求,这实在是无奈之举。我们正在研究“制冷试验系统的油分离和回油装置”,试图解决这个问题。

三.试验系统及其对试验工况的控制

试验系统需要对上述工况进行控制,这是毫无疑问的。但是,为了保证工况控制的稳定,有时也需要对一些辅助参数进行控制,这是试验系统设计时必须要考虑的。辅助参数的控制只要达到所需的功能要求就可以了,在此前提下对其控制指标进行斟酌。

一种方案的试验系统图如下所示,此系统对工况的控制方法如下:

1.排气压力Pd的控制:用电动调节阀调节通过冷凝器的水流量来控制。为了

使调节回路工作稳定,以及为了使系统能适应在各种环境温度下工作,冷凝水的温度应当恒定,电动调节阀应置于回水管路上。为此,应配置一个恒温水箱,其中有冷却和加热装置,冷却水循环使用,水温Tw是可以调节的。

2.水箱中水温Tw的控制:在压缩机的能力不是很大的情况下,水箱中的冷却

盘管的能力是恒定的,或是分级的,然后通过SCR调节水箱中的电加热来调节温度。由于水是循环使用的,也节约了用水。

3.吸气压力Ps的控制:通过调节电动膨胀阀的开度来实现。

4.吸气温度Ts的控制:通过SCR调节量热器中的电加热量来实现。

5.膨胀阀前的液体制冷剂的温度Tex的控制:通过SCR调节过冷器中的电加

热量来实现,而通过过冷器的冷却水量是恒定的,但可用手动调节,以适应不同试验的需要。控制这个温度的目的,是保证膨胀阀前的液体制冷剂是过

冷的,且温度恒定,从而保证全系统的稳定。至于这个温度的高低对试验的结果是没有影响的,因为它不是压缩机的工况,而是试验系统中的参数。

6.压缩机箱中温度Ta 的控制:控制压缩机箱中的温度有冷却和加热两个手

段,有循环风流动。从水箱中引来冷却水通过一个盘管来冷却,除了配置一个手动阀来调节水流量外,其冷却能力是不可调的。通过SCR来调节压缩机箱中电加热的加热量来调节Ta。注意循环风量的控制应保证空气风速的要求。

7.电源电压的控制:注意控制点在试验压缩机的接线端子上。

四.关于第二制冷剂量热计

如第一节所述,测定压缩机的性能就是测定在一定工况下的压缩机排气的质量流量。在第二制冷剂量热计法中,第二制冷剂量热计就是一个质量流量计。

它的工作范围是:从膨胀阀进口的温度、压力测点以后,到量热计出口的温度、压力测点之前。其工作原理说明如下:

冷媒流经“1”点后经量热计再通过“2”点,由于从外部向量热计加入热量“Q ”,所以冷媒的比焓从h 1增大为h 2。h 1和h 2是根据测量该点冷媒的温度和压力计算得到的。由于计算的需要,在“1”点冷媒应当是过冷的,在“2”点冷媒应当是过热的。根据能量守恒原理,应有以下平衡式:

Q = G ×(h 2 - h 1)

式中G 即为流经量热计的冷媒流量。于是,冷媒流量可按下式计算:

以上的计算与量热计中能量如何交换毫无关系,也就是与量热计的具体结构毫无关系。

另外,前面已经说明,在压缩机的工况确定以后,压缩机的质量流量就已经确定了。所以,只要“1”点的温度是过冷的,“1”点温度设定的高低对所求得的结果是毫无影响的,这点我们已经用试验证明过。因此,在计算压缩机的制冷量时,计算h fl 时所用的温度应当用规定的工况理论值,而不是试验值,这点在第一节中已经说明了。在计算测量的冷媒质量流量时,计算“1”点冷媒比焓所用的温度,应当用试验测量值,而不能用理论值。如果试验时膨胀阀前的压力偏离了规定值,不必再进行修正。

从以上分析还可得知,量热计中的冷媒状态,与它作为流量计的宏观功能是毫无关系的。也就是说量热计可当作一个“黑匣子”来看待,它的具体结构可以是多种多样的,但效果都是一样,膨胀阀以后的量热计中的热力参数状况,与被试压缩机的性能没有什么联系。

还有,量热器尽管是隔热的,但总是有漏热存在,这部分热量也要计算在上述公式之内:

式中:t a :是量热器周围的环境温度

t s :是量热器中的温度,即第二制冷剂的压力所对应的饱和温度 K1:是漏热系数,确定的方法可查标准

上面计算量热计的漏热损失时,使用了第二制冷剂的压力所对应的饱和温度与环境温度之差。对于特定的量热计结构,漏热量只与这个温度差有关。因1

2h h Q

G ?=()

1

21h h t t K Q G s a ??+=

为,量热计中的第二制冷剂是处于二相状态,其中的温度就是第二制冷剂的压力所对应的饱和温度,因此使用第二制冷剂的压力所对应的饱和温度来代表其中的温度是准确的,再去研究量热计保温层中的温度分布,是得不到确定结果的。

五.试验过程中系统含油率的控制

在上面的所有讨论中,都未涉及系统含油率的问题,实际上是假定系统含油率为0。实际上这是不可能的。任何压缩机的运行都需要用油来润滑,都是带油运行的。不同类型的压缩机运行时带出的油量也是不同的,通常活塞式压缩机运行时的油循环量较少,而旋转式压缩机(柱塞式、旋叶式等)运行时的油循环量较多。压缩机性能试验方法标准规定“循环的制冷剂液体内含油量不应超过2%”,充其量只有活塞式压缩机才能满足。

对于运行时油循环量超过2%的压缩机类型,应当如何进行试验呢?

一条基本的原则是,使压缩机在接近实际工作时的油循环量下进行试验,否则,会引起压缩机故障,同时使试验偏离了实际的使用情况。

如何做到这一条呢?有2点操作注意事项:

1.对于新制的试验台或清洗后的试验台第一次试验前,应向试验台系

统中补充适量的油,以使得系统中油和冷媒的比例接近于实际使用

时的比例,或稍少一些。

2.试验压缩机每次上台前和下台后都要称重量,使得上台时压缩机中

的含油量等于上次下台时压缩机中的含油量,从而保持系统中的总

含油量不变。

3.每经过一定试验周期后,试验台要经过重新清洗,再按上述1、2两

点进行操作。

至于从压缩机中排出的油是不是可以不带到试验系统中去,这要看该试验台所采用的试验方法而定。如果是第二制冷剂量热计法,则带不带到试验系统中都可以。如果是气体流量计法,则一定要先将油从冷媒中分离出来,然后再进行测量,否则测量得到的质量流量中包含有油的份量。

至于分离油和测量油循环率的技术,将在另外的文章中讨论。

YUYJD55制冷压缩机性能测试实训装置

YUY-JD55制冷压缩机性能测试实训装置 实 验 指 书 导 上海育仰科教设备有限公司

一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1

2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。

第二制冷剂量热器法

.第二制冷剂量热器法 本实验采用国标(GB5773-04)提出的对容积式制冷压缩机性能测试的主要试验方法──第二制冷剂量热法,对制冷压缩机的制冷量和输入功率进行测定。根据标准,本试验方法适用于名义功率不小于0.75kW的容积式制冷压缩机的性能试验。 第二制冷剂量热器法是通过第二制冷剂量热器间接测定制冷量,是利用安置在第二制冷剂量热器内部的电加热管发出的热量来消耗蒸发器盘管所产生的制冷量。 本试验装置有二种制冷剂,其中第一制冷剂为R22,第二制冷剂为R11。第二制冷剂 量热器是一个密闭的受压的隔热容器,安置在该量热器内的蒸发器盘管悬挂在容器的上部,电加热管安装在容器的底部并被容器内的第二制冷剂浸没。第一制冷剂在制冷系统中循环,在第二制冷剂量热器的蒸发器盘管中蒸发制冷;输入第二制冷剂量热器的热量主要是电加热管供给(量热器的漏热量应不超过5%),量热器内的第二制冷剂被加热汽化,形成的第 二制冷剂蒸汽在顶部蒸发器盘管外表面冷凝,重新回到液面。这样,制冷系统所产生的冷量被输入的热量通过第二制冷剂这中间介质间接消耗,当试验系统的热力状态趋于稳定,表明量热器内趋于动态热平衡。 当系统处于热平衡时,其热平衡方程式为: Q0=N h+?Q l (W) 式中:Q0──发器盘管制冷量,W; N h──加热功率,W; △Q l──第二制冷剂量热器的热损失(外界传入为正),W。 图1全封闭式制冷压缩机性能试验装置系统图 a、全封闭式制冷压缩机 b、冷凝器 c、节流阀 d、蒸发器盘管 e、第二制冷剂量热器 f、电加热管 g、静压水箱 h、第二制冷剂压力表 i、电功率表 j、制冷压缩机吸气压力表 k、制冷压缩机排气压力表l、冷凝压力水量调节阀

基于plc压缩机性能测试系统的控制器设计.doc

基于PLC压缩机性能测试系统的控制器设计 摘要: 控制器(PLC)具有编程灵活,可靠性高,控制功能强大的特点,以PLC为测控核心单元,建立了压缩机性能测控系统,能自动完成汽车空调压缩机的各项性能测试o 该设计包括该系统的基木特性、装置、控制流程和P L C软、硬件设计。以PLC为测控核心单元,建立了压缩机性能测控系统,实现了对压缩机试验台位及骊?动系统的选择,压缩机的启动、停机、转速调节、排气压力调节等的控制,以及对压缩机的各个运行参数实时采集和监控;并通过计算机将采集参数进行处理,实时获得压缩机各项性能指标并输出测试报告。设计了用PLC和触摸届实现的压缩机性能测试系统的控制,控制系统以可编程控制器为控制核心, 触摸屏为人机接曰,使系统控制界面友好,简单直观,便于操作。 Abstract: Controller (PLC) with programming flexibility, high reliability, control and powerful features to the core of PLC monitoring and control unit for the establishment of a compressor performance monitoring system that can automatically complete the automotive air conditioning compressor performance testing. The design includes the basic characteristics of the system, device, control flow and PLC software and hardware design. PLC core module for the monitoring and control to establish a compressor performance monitoring system, implemented on the compressor test rig and the choice of drive system, the compressor start, stop, speed regulation, regulation, control of discharge pressure and compression machine operating parameters of each real-time collection and monitoring; and the acquisition parameters by computer processing, real-time access to the compressor performance and output of the test report. Designed with the implementation of PLC and touch screen control system, the compressor performance test, the control system for the control of a programmable controller core, man-machine interface touch screen is so user-friendly system control, simple and intuitive, easy to operate. 1引言 Introduction 目前空调压缩机多为斜盘式压缩机或涡旋式压缩机,空调压缩机的几个关键质量指标有:高压泄漏情况、真空池露情况,填充效率和离合器性能,压缩机在出厂前必须对这几项性能进行严格的测试。随着通信和控制技术的飞速发展,人们对动控制设备的信任和依赖越来越重,各种具有高速通信和准确高效的H 动控制设备广泛应用在

SG-ZL81制冷压缩机性能测试实训装置

SG-ZL81制冷压缩机性能测试实训装置 "SG-ZL81制冷压缩机性能测试实训装置"采用蒸汽压缩式制冷循环系统,配备全封闭式制冷压缩机、冷凝器、蒸发器等制冷系统真实部件,并设有智能温度调节仪、流量计、压力表、电压表、电流表等测量仪表。不但能开设制冷压缩机性能参数的测定实训,还能进行制冷循环基本原理的演示实训。适用于职业院校制冷专业相关课程的教学实训。 一、装置特点 1.本实训装置按照国际标准GB/T 5773-2004容积式制冷压缩机性能实训方法建立,以"蒸发器液体载冷剂循环法"为主要测量,以"水冷冷凝器量热器法"作为辅助测量

2.采用1匹制冷机组,冷凝器和蒸发器均为壳管式水换热器,系统结构紧凑、布局合理,造型美观大方 3.设有电压型漏电保护、电流型漏电保护、过流保护、过载保护、接地保护,可对人身及设备进行有效保护 二、技术性能 1.输入电源:单相三线~220V±10% 50Hz 2.工作环境:温度-10℃~+40℃相对湿度<85%(25℃) 海拔<4000m 3.装置容量:<2.5kVA 4.制冷剂:R22 5.制冷量:1.3kW 6.重量:100kg 7.外形尺寸:120cm×60cm×142cm 三、基本配置及功能 1.控制屏 采用双层亚光密纹喷塑结构,造型新颖。最上层布置制冷系统,可直观展示制冷系统结构;正面设有电源控制及测量仪表功能板。底部装有四个带刹车的万向轮,便于移动和固定。 2.交流控制单元 单相三线220V交流电源供电,经漏电流保护器控制总电源,动作电流30mA 3.制冷系统 1匹全封闭压缩机、卧式壳管式冷凝器、视液镜、干燥过滤器、手动节流阀、储液器和干式蒸发器 4.循环水系统 (1)水泵2只 主要技术参数为: 额定功率:95W 额定扬程:6m 额定流量:1.08立方米/小时 (2)水箱2只 采用不锈钢材料制成,分别为冷凝器循环水箱和蒸发器循环水箱 (3)加热器1只(功率1000W) 输出功率可通过电位器进行调节,用于加热蒸发器循环水 5.测量仪表 (1)功率表2只(精度0.5级) 分别测量加热功率和压缩机功率。通过键控、数显窗口实现人机对话的智能控制模式,可测量负载的有功功率、无功功率、功率因数、电压、电流、频率及负载的性质;并可以贮存、查询15组功率和功率因数的测试数据 (2)数显温度表1只(精度0.5级)

空压机的性能检测

1空压机的概述 1.1 NPT5 空压机的组成结构和工作原理 (1)组成结构 NPT5空气压缩机是一种常用的空气压缩机,目前为止,它也是机车中使用最多的一种空气压缩机。当环境温度小于30 0C时,它能够连续稳定运转。前面也介绍了,它主要用于铁路机车的制动系统,还包括其它的气源部件,如鸣笛等。NPT5是三缸,立式,风冷,两级压缩的活塞式空气压缩机。其结构图如图1所示。 图1空压机的结构图 NPT5主要由运动部件,空气压缩系统,润滑系统和冷却系统组成,下面分别对各个部分作简单的介绍。 1)运动部件 曲轴是空压缩机中很重要的一个部件。原动机经由曲轴带动,使电机的旋转运动转换成活塞的上下来回运动。在曲轴的一端装有油泵的联轴器带动油泵旋转。连杆是受力部件。活塞环是个密封部件,主要负责布油和导热。 2)空气压缩系统 曲轴由原动机带动作规律的旋转,通过连杆使活塞作规律的往复运动。在活塞不断运动的过程中,气缸内工作容积也在随之不断变化。因为气阀的原因,空气也会按照一定规律在运动,从而形成对空气的压缩作用。 3)润滑系统 对于空压机的运行,润滑系统是一个必不可少也非常关键的系统分。NPT5空压机主要是采用压力润滑的解决办法。 4)冷却系统 压缩机的冷却系统是非常有必要的,不然超过了它的运行温度,会导致空压机不能正常的工作。空压机的冷去系统主要包括对压缩空气的冷却和受热机件的冷却。本压缩机采用了强迫通风的冷却装置,结构很简单,主要部件为风扇和冷却器。 ( 2) NPT5空压机的工作原理 电动机通过联轴器将动力输入,然后带动空压机的曲轴按指定的方向作旋转运动。由于

连杆的作用,然后带动装在连杆小端的活塞在气缸内做活塞运动。在活塞的不停运动中,活塞的顶部与气缸之间形成进气和排气的空气压缩过程。气阀的工作原理如图2所示。 图2气阀的工作原理 1.2 NPT5 空压机的主要参数 表1为NPT5 的主要参数 表1 NPT5 的主要参数

压缩机参数

QD压缩机的资料 输入功率(W)制冷量(W)电流(A)制冷剂电源(V)应用类型效能 QD2580680.65R12220V-50Hz LBP L QD3082780.65R12220V-50Hz LBP L QD3686880.68R12220V-50Hz LBP L QD431121180.88R12220V-50Hz LBP L QD521281380.98R12220V-50Hz LBP L QD551251321R12220V-50Hz LBP L QD591371461R12220V-50Hz LBP L QD65145158 1.1R12220V-50Hz LBP L QD66150R12220V-50Hz LBP L QD68R12220V-50Hz LBP L QD75162176 1.2R12220V-50Hz LBP L QD80180R12220V-50Hz LBP L QD85184202 1.3R12220V-50Hz LBP L QD91192216 1.4R12220V-50Hz LBP L QD110232271 1.6R12220V-50Hz LBP L QD1282603062R12220V-50Hz LBP QD142280333 2.1R12220V-50Hz LBP QD168330380 2.3R12220V-50Hz LBP L QD180380440 2.8R12220V-50Hz LBP L QD210435510 3.1R12220V-50Hz LBP L QD66D241232 1.4R22220V-50Hz LBP L QD76D252258 1.6R22220V-50Hz LBP L QD91D286300 2.2R22220V-50Hz LBP L QD100D340370 2.5R22220V-50Hz LBP L QD120D360400 2.5R22220V-50Hz LBP L QD150D460546 3.2R22220V-50Hz LBP L QD168D510580 3.55R22220V-50Hz LBP L QD180D550660 2.96R22220V-50Hz LBP L QD210D655790 3.12R22220V-50Hz LBP L QD238D1P R22220V-50Hz LBP L QD268D1+1/8P R22220V-50Hz LBP L QD308D1+1/4P R22220V-50Hz LBP L QD350D1+3/8P R22220V-50Hz LBP L QM238D1+1/8P R22220V-50Hz LBP H QM268D1+1/4P R22220V-50Hz LBP H QM308D1+1/2P R22220V-50Hz LBP H QM350D1+3/4P R22220V-50Hz LBP H

实验实训12 空调压缩机的性能测试实验

实验实训12 空调压缩机的性能测试实验 一、测试原理 压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。 二、设备概述 本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。 1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩 2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表: 三、测试软件使用说明 压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及

生成测试报告。 1.界面功能介绍 整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。 菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能; 状态栏用来指示当前系统的工作状态,用于提示; 调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值; 实时数据图形显示用来显示实时数据和整个过程的数据变化状况; 计算数据显示用来显示瞬态计算数据; 功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据; 页面显示用来选择实时数据的显示方式; 通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态; 2.菜单 菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。 2.1 系统菜单 系统菜单主要用于管理系统用户和控制测试开始、停止和退出,如下图所示: 高级用户登陆用于系统权限管理,高级用户登陆后可以使用用 户管理、硬件配置等高级功能。如右图所示,在未登陆前,用户 无权限进行用户管理,同时也无权限对硬件进行配置(系统设置菜 单内容),快捷键(Ctrl+L)。 用户管理用来管理使用该平台用户的权限,快捷键(Ctrl+M)。 注销用户用来退出当前使用者的权限设置功能。 开始测试用来启动、停止测试功能,和开始测试按钮具有完全相同的功能,快捷键(Ctrl+R)。退出菜单用来退出整个测试平台,快捷键(Ctrl+Q)。 2.2 系统配置菜单 注:本菜单只有在设备更换或测量不正常时使用,在设备正常使用时切无操作,不然可能会引起错误。 系统设置菜单包括工况设置、铭牌设置和硬件初始化设置(权限设置,有效登陆后激活)。 工况设定(Ctrl+T)用来设定工况控制的目 标值,自动更新调节器的设定值,和按钮工 况设定功能完全相同; 铭牌设定(Ctrl+N)用来设置压缩机铭牌,和 铭牌设定按钮功能完全相同; 硬件初始化菜单在测试进行过程中无效; 通讯端口配置(Ctrl+O)用来设置下位机设 备的通信端口; 冷凝温度(排气压力)调节器初始化、蒸发温 度(吸气压力)调节器初始化、过冷温度调节器初始化、吸气温度调节器初始化、环境温度调节器分别用来初始化相应的调节器; 电量表8902F初始化用来初始化压缩机电量采集仪; 电量表8905F初始化用来初始化量热器电量采集仪; 数据采集仪初始化用来初始化DA100数据采集仪,并恢复数据采集输入类型为系统默认值;

往复活塞式压缩机性能测定实验汇总

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

如何根据压缩机的制冷量计算冷凝器及蒸发器的面积

如何根据压缩机的制冷量配冷凝器散热面积? 帖子创建时间: 2013年03月04日08:34评论:1浏览:2520投稿 1)风冷凝器换热面积计算方法 制冷量+压缩机电机功率/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2 2)水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2 蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 3)制冷量的计算方法:=温差×重量/时间×比热×设备维护机构 例如:有一个速冻库 1)库温-35℃ 2)速冻量1T/H 3)时间2/H内 4)速冻物质(鲜鱼) 5)环境温度27℃ 6)设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266 kcal/n 可以查压缩机蒸发温度CT =40 CE-40℃制冷量=31266 kcal/n 冷凝器换热面积大于蒸发器换热面积有什么缺点 如果通过加大冷凝风扇的风量可以吗 rainbowyincai |浏览1306 次 发布于2015-06-07 10:19 最佳答案 冷凝器换热面积大于蒸发器换热面积的缺点: 1、高压压力过低;

2、压机走湿行程,易液击,通过加大蒸发器风扇的风量。风冷

冷凝器和蒸发器换热面积计算方法: 1、风冷凝器换热面积计算方法:制冷量+压缩机电机功率/200~250=冷凝器换热面积 例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527 W+压缩机电机功率11250W=23777/230=风冷凝器换热面积103m2。 2、水冷凝器换热面积与风冷凝器比例=概算1比18(103 /18)=6m2,蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度的休正系数查表)。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

Ⅱ型压缩机性能测定实验指导书

活塞式压缩机性能测定 实验指导书 V3.0 北京化工大学

活塞式压缩机性能测定实验 一、实验目的 1.活塞式压缩机性能曲线测试 压力比—排气量曲线(ε— Q ) 压力比—轴功率曲线(ε— Ne ) 压力比—效率曲线(ε—η) 2.活塞式压缩机闭式示功图 3.实验数据、实验曲线的显示存储和打印。 二、实验设备 1.实验装置如图1所示。 2.压缩机性能参数: 1)型号:TA-80型一级三缸风冷移动式空气压缩机; 2) 气缸直径:D=80毫米×3个 3) 活塞行程:S=60毫米 =0.5立方米/分(额定工况下) 4) 排气量:Q 5) 轴功率:Nz<4千瓦(额定工况下) 6) 回转速:n=875 rpm =0.8 Mpa(表) 7) 额定排气压力:P 2 3.三相交流异步电动机型号:Y112M-2FSY 1) 额定功率 4 kW 2) 转速 875 rpm 3) 额定电压 V=380V 4) 额定电流 I=8.2A 5) 频率 50Hz 6) 电机效率η=0.882 7) 功率因数 cosφ=0.88 =97% 8) 皮带传动效率η C 4.辅助装置 1) 控制箱和操作台 2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米 3) 低压箱及喷嘴喷嘴直径d=9.52 mm 4) 导管及调节阀 5.主要测量仪器及仪表 1)喷嘴流量测量装置

2)差压变送器 3)压力变送器 4)温度变送器 5)磁电式齿轮转速传感器 图1 空气压缩机性能实验装置简图 1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器 6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐 三、实验步骤 1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率; 根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。 2.步骤: 1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。点击“确认”按钮进入试验画面; 2) 压缩机启动:a.盘车——用手转动皮带轮一周以上;b.将储气罐出口调节阀完全打开;c.转动压缩机控制箱旋钮——启动压缩机; 3)点击“清空数据”按钮, 4)调储气罐出口调节阀,改变排气压力(间隔0.05Mpa),等试验系统稳定后,记录各项数据。(运转中,如发现有不正常现象应及时停车); 5)停车:转动压缩机控制箱旋钮——关闭压缩机(注意:此时不得转动储气罐出口调节阀)。 四、压缩机参数计算 1.实测排气量计算

汽车空调压缩机性能测试台

汽车空调压缩机性能测试台 林穗斌(广州电器科学研究所,广州市 5l0300) l 前言 衡量汽车空调压缩机性能的好坏,检验产品性能是否达到设计要求,汽车空调系统与压缩机的匹配,都必须准确知道压缩机的性能参数,即压缩机的制冷量、输入功率、COP 值和不同转速下其性能参数的变化。为满足产品检测的需要,我们研制出汽车空调压缩机性能测试台。 2 基本结构及工作原理 图l 结构框图 该测试台由动力系统、制冷系统、电气测 控系统、数据采集处理及计算机系统组成。 如图l 所示。2.l 动力系统 该测试台适用于依靠汽车发动机提供动力的非独立式汽车空调压缩机,与其它制冷压缩机不同之处在于它必须依靠外加动力来带动压缩机工作,在测试台中必须具备一套动力装置带动压缩机工作。动力系统由电动机、变频调速器、转矩测试仪组成。电动机提供压缩机所需要的动力,通过离合器带动压缩机工作,变频调速器通过调频来实现对电动机线性调速,从而改变压缩机的旋转速度,以适应检测不同转速下压缩机的性能参数的目的。通过转矩测试仪测量电动机的扭矩和转速,从而求出压缩机的输入功率。 ?2l ?200l 年第l 期 《电机电器技术》# ######################################################?测试技术?

2.2 制冷系统 本测试台采用第二制冷剂电量热器法作为主测,其原理是利用量热器内充注的与被测压缩机制冷系统相隔离的第二制冷剂作为热交换介质,将制冷系统产生的冷量与电加热器产生的热量相互交换,达到平衡时,通过测量加热电量而得出制冷量的一种间接试验方法;同时采用液体质量流量计法作为辅测,其原理是通过测量制冷系统单位时间内所流过的液态制冷剂的质量,计算出它在规定工况条件下转换成气态所必须吸收的热量,即制冷量。计算公式如下: O 0= l 3.6m f (1gl -1fl )V l /V gl O 0———制冷量;W m f ———制冷剂质量流量;kg /11gl — ——规定工况下压缩机吸入的制冷剂气体比焓;kJ /kg 1fl ———规定工况下对应于排气压力的膨胀阀前制冷剂液体比焓;kJ /kg V l ———压缩机吸气口制冷剂气体实际比容;m 3/kg V gl ———规定工况下压缩机吸入的制冷剂气体比容;m 3/kg 单级蒸气压缩式制冷循环的压焓图如图2所示。本测试台的制冷系统图如图3 所示。 图2 制冷循环压焓图 图3制冷系统图 压缩机吸入蒸发器内产生的过热低温低压制冷蒸气(l ’),经被测压缩机压缩成高温高压蒸汽排入冷凝器(l ’-2’ ),被冷却介质等压冷却,放出热量,凝结成液态(2’-3) ,液态制冷剂经过冷器进一步冷却成过冷液体(3-3’ ),高压制冷剂液体流过流量计后,经过? 3l ??测试技术?《电机电器技术》200l 年第l ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!期

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

压缩机制冷量、容积效率、能效比.

容积效率 容积效率(volumetric efficiency)指的是在进气行程时气缸真实吸入的混和气体积除以汽缸容积。这代表了引擎的吸气能力。容积效率对于扭力有决定性的影响,容积效率越大,引擎扭力越佳。影响容积效率的变因有很多,如引擎转速,汽缸头进气道的流量,气门截面积的大小,凸轮轴的设计,进气岐管的长度,燃料雾化的程度等等等。 现今采用喷射供油的四行程引擎,其容积效率皆已达到90%。若进气岐管的长度经过校调,便可以在特定的转速域达到超过100%的容积效率。在进气口处加装涡轮增压器(tu rbocharger),也可以增加容积效率。 某些汽车杂志常把容积效率定义为每升的排气量可以产生多少匹马力,这是错误的。真正的容积效率单位如同其他的效率单位,是百分比,而非hp/L。 容积效率表示液压泵或液压马达抵抗泄露的能力,等于泵(马达)的实际流量与泵(马达)的理论流量之比。它与工作压力、液压泵或马达腔中的摩擦副间隙大小、工作液体的粘度以及转速有关。 因液体的泄露、压缩等损失的能量称为容积损失。 活塞式压缩机的输气系数在一定意义上可以理解为容积效率。压缩机输气系数是这样定义的:压缩机实际容积流量与理论容积流量之比。 输气系数(λ)可以用下式表示: λ=λVλpλtλl 其中,λV——容积系数,与余隙容积有关; λp——压力系数,与吸气过程的压力损失有关; λt——温度系数,与压缩机气缸内温度有关; λl——气密系数,与压缩机的密封程度有关。 输气系数在一定意义上可以理解为容积效率。 能效比 能效比是在额定工况和规定条件下,空调进行制冷运行时实际制冷量与实际输入功率之比。这是一个综合性指标,反映了单位输入功率在空调运行过程中转换成的制冷量。空调能效比越大,在制冷量相等时节省的电能就越多。 1基本定义 1.1能效比数值定义 在制冷和降噪之外,在日益追求环保和节能的今天,用电量的多少也是大家所关注的。对于消费者来说,选择节能空调可将日后使用过程中的电费一点一滴的节省下来,无疑是精明的选择。在这方面涉及两个技术关键词:能效比和变频。能效比是指空调器在制冷运行时,

压缩机检测方法和参数

压缩机检测方法和参数—压缩机性能测试 一、前言 制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。 压缩机的作用可总结为: 1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。 2)提高压力(压缩)以创造在较高温度下冷凝的条件。 3) 输送制冷剂,使制冷剂完成制冷循环。 压缩机性能的好坏直接影响到整机的制冷效果。而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。 对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。 本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。 二、压缩机测试的相关规定 为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。 2.1 一般规定 2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏. 2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量. 2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计). 2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭 压缩机为距机壳体)0.3m的直管段处。 2.1.5 排气管道上应设置有效的油分离器. 2.1.6试验系统装置的周围不应有异常的空气流动。 2.1.7 试验装置环境温度为30±5℃。 2.1.8 提供测量含油量而抽取制冷剂??—油混合物样品的设备。 2.2 试验规定 2.2.1 压缩机性能试验包括主要试验和校核试验,二者应同时进行测量。 2.2.2 校核试验和主要试验的试验结果之间的偏差应在±4% 以内,并以主要试验的测量结果为计算依 据。 2.2.3 压 缩机试验时,系统应建立热平衡状态,试验时间一般不少于1.5h。测量数据的记录应在试验 工况稳定半小时后,每隔20min测量一次,直至连续四次的测量 数据符合规定为止。第一次测量到第四次测量记录的时间称为试验周期,在该周期内允许对压力、温度、流量和液面作微小的调节。 2.2.4 主要试验方法 a. 第二制冷剂量热器法 b. 满液式制冷剂量热器法 c. 干式制冷剂量热器法 d. 制冷剂气体流量计法 2.2.5 校核试验方法 a. 水冷冷凝器量热器法 b. 制冷剂液体流量计法 c. 压缩机排气管道量热器法 2.3 测量仪表和精度的规定 2.3.1 一般规定 2.3.1.1 试验用仪表的类型,可采用一种或数种进行测量。 2.3.1.2 试验用仪表应在有效使用期内,并应有近期经国家计量部门或有关部门校正的合格证明。 2.3.2 温度测量仪表和精度 2.3.2.1 仪表:玻璃水银温度计、热电偶、电阻温度计、半导体温度计和温差计。 2.3.2.2 精度: a. 量热器的加热或冷却介质和制冷剂的进、出口温度:准确度±0.1℃; b. 冷凝器用于校核试验时的冷却水温度:准确度±0.1℃; c. 压缩机吸气温度、流量节流装置前温度:准确度±0.1℃; d. 其它温度:准确度±0.2℃; 2.3.2.3 温度测量的规定:

制冷压缩机性能测试实验

制冷压缩机性能测试实验 试验台简介 本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。 制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。 冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。 水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。 水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

往复压缩机性能综合测试实验指导书综述

实验一往复压缩机性能综合测试 一、实验目的 1.通过实验掌握压缩机压力、温度、功率、排气量,转速等有关性能参数的测 量方法。研究空气压缩机在转速一定时各状态参数之间的相互关系,并给出压缩机在不同压力比时,压缩机的容积系数,等温效率以及轴功率的变化曲线。 2.指示图的录取方法(即气缸内变化压力的测量方法),并对录取的指示图进 行分析研究,深入了解单级压缩机实际工作过程的物理本质。利用录取的指示图计算压缩机的指示功率,压缩机的容积系数和气阀功率损失。通过实验分析影响气量、功率的各个因素。 3.熟悉位移传感器的特性要求和使用方法,掌握气阀运动规律的测试方法;对 所录取的气阀阀运动规律进行分析研究并计算提前和延后关闭角。 二、实验原理 1.压缩机性能实验 依据GB/T 3853-1998的附录A《一般用容积式空气压缩机性能试验》(规范性附录)的要求进行。对于移动式小型空气压缩机,多为风冷、单级压缩,被测系统只有压缩机和储气罐,没有独立的冷却器(储气罐兼作后冷器)。性能试验应在规定的保证工况(规定的环境压力、温度)下进行,最终测定或计算出空压机的排气压力、排气温度、标准容积流量、转速、轴功率、比功率和效率等7个指标。为此需对整个空压机系统的多个热力学参数和机械参数进行测量。其中空压机热力学参数包括:吸气温度、排气温度、吸气压力、排气压力、储气罐压力和出口容积流量。有些参数需要多个测点。其中,压力测量仪表的误差应在±0.4%以内,大气压力在±0.15%以内;吸排气温度和冷却水温度测量的绝对误差应在±0.2℃以内,由于空压机最高排气温度不高于200℃,相当于±0.1%。2.排气量的测定 我国多采用喷咀截流法测量压缩机的排气量,其测试装置和喷咀均应符合国家标准GB15478-1995的规定。

相关文档
最新文档