判断下列幂级数的收敛域

判断下列幂级数的收敛域
判断下列幂级数的收敛域

第八章 幂级数

1. 判断下列幂级数的收敛域

(1)1(3)3n

n n x n ∞

=-?∑ (2)2103n n n x ∞+=∑ 解:(1)这是不缺项的幂级数,可按公式来做。

11

1(1)3lim 3

3n n n

n n +→∞+=,所以收敛半径R=3,收敛区间为()0,6。 在0x =处,级数为1(1)n

n n ∞

=-∑,收敛。在6x =处,级数为11n n ∞=∑,发散。 故收敛域为[)0,6

(2)这是缺项的幂级数,按数项级数判别法来做。

1232221

3lim lim333n n n n n n x x x x +++→∞→∞==。 当231x <

,即x <时,幂级数收敛。

当x >21lim 30n n n x +→∞≠,从而21lim 30n n n x +→∞≠,幂级数发散。

当x =

时,原级数成为n ∞=±,发散。

该幂级数的收敛域为?

?

,收敛半径为R =。 2. 将函数1()arctan

1x f x x +=-展开成幂级数。 解:2211()arctan (1),(11)11n n n o

x f x x x x x ∞='+??'===--<< ?-+??∑,再逐项积分 22210002121(1)()(1)(1)1121(1)(1)()(0)1121421n

x x x n n n n n n o n o n o n

n

n n n o n o f x dx x dx x dx x x n f x f x x x n n π∞∞∞+===∞∞++==-??'=-=-=-<< ?+??

--=+=+-<<++∑∑∑???∑∑

但在1x =-处,右边级数收敛,所以和函数在1x =-处连续。 而1()arctan 1x f x x

+=-在1x =-处连续,于是 1

2111(1)(1)(1)lim ()lim 421421

n

n n x x n o n o f f x x n n ππ+++∞∞+→-→-==??---==+=+ ?++??∑∑ 所以有

211(1)arctan 111421n

n n o x x x x n π∞+=+-=+-≤<-+∑。

注:展开式在开区间内部可以逐项积分,逐项求导。但由此得到的信新的展开式在端点处是否成立?

要检查:若端点处级数收敛,被展开的函数在该端点连续(左端点处右连续,右端点处左连续)。

3. 求幂级数1112n n n x n ∞

-=∑的收敛域,并求其和函数。 解:1111(1)2lim lim 12

2

n n n n n n a n a n ++→∞→∞+==,所以收敛半径R=2。 在2x =处,1112122n n n n n n -∞∞===∑∑发散,在2x =-处,11

11

(2)(1)22n n n n n n n --∞∞==--=∑∑收敛,故幂级数11

12n n n x n ∞-=∑的收敛域为[)2,2-。 记111222

n n n S(x )x ,x n ∞-==-<<∑, 则112n n n xS(x )x n ∞==

∑,由逐项求导可得 []111111*********

222212

n n n n n n n n x xS(x )x x ,x x n x -∞∞∞-==='????'====?=-<< ? ?-????-∑∑∑ 两边从0到x 积分

[]0

0012222x x

x xS(x )dx dx ln(x )ln(x )ln x '==--=--+-??, 即 012x xS(x )ln()-=--,

故 112202102

x ln()x ,x x S(x )x ?---<<≠??=??=??, 其中0x =时S(x )的值来源于原始级数1112n n n S(x )x n ∞

-==∑。由于幂级数的逐项积分,逐项求导只能在收敛区间(开区间)内进行,所以上述右边的区间写的是开区间。

但是2x =-处原级数收敛,并且112

x ln()x --在2x =-连续,故在2x =-亦成立,即有 112202102

x ln()x ,x x S(x )x ?---≤<≠??=??=??

4. 设2

1010x arctan x x f (x )x x ?+≠?=??=?

,试将f (x )展开成x 的幂级数,并求级数

21114n

n ()n ∞

=--∑的和。 解:[]220

000221000111111121

x

x x n n n n x n n n n n arctan x arctan x dx dx ()x dx x ()()

x dx x ,x (,)n ∞=∞∞

+==??'===- ?+??-=-=∈-+∑???∑∑? 在1x =±处,上述级数收敛,arctanx 在1x =±处亦连续, 可知[]21011121n

n n ()arctan x x ,x ,n ∞

+=-=∈-+∑。

于是

()[]222222000

1

22201122221111111212121111111212121212121111104114n

n

n

n n n n n n n

n n n n n n n n n n n n n n x ()()()arctan x x x x x x n n n ()()x x ()x n n n n ()()x x ,x ,,x n n ∞∞∞+===-∞

∞∞===∞∞==+---=+=++++--??=+=+-- ?+-+-??--?=+-=+∈-≠--∑∑∑∑∑∑∑∑

但0x =时,上述右边级数收敛于01f ()=,故[]2211211114n n n ()f (x )x ,x ,n ∞

=-?=+∈--∑。 因此[]2211111114242n

n n ()x f ()n π∞

=-=-=--∑。

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

幂级数的收敛域是(

幂级数 1、幂级数()∑ ∞ =-?+112425n n n n x 的收敛域是( C ) (A )()2,2-(B )[)3,7--(C )()3,7--(D )()1,9-- 因4=R ,于是()452<+x ,所以3725-<<-?<+x x ,而幂级数()∑∞=-?+1 1 2425n n n n x 在7-=x 、 3-=x 处均发散,所以选(C )。 2、幂级数∑ ∞ =1ln n n x n n 的收敛域是( C ) (A )()1,1-(B )(]1,1-(C )[)1,1-(D )[]1,1- 因1=R ,所以1,所以级数发散;在1-=x 处,n n u n ln =单调递 减且趋近于零,所以级数收敛,故选(C ) 3、已知级数()∑∞ =-13n n n x a 在4=x 处发散,则在0=x 处( C ) (A ) 绝对收敛(B )条件收敛(C )发散(D )无法判断其敛散性 解:由阿贝尔定理得,级数()∑∞ =-13n n n x a 在区间()4,2以外都发散,所以它在0=x 处也发散 4、设级数∑∞=0n n n x a 、∑∞=0n n n x b 的收敛半径都是R ,级数()∑∞ =+0n n n n x b a 的收敛半径为1R ,则( C ) (A )R R =1(B )R R <1(C )R R ≤1(D )R R ≥1 5、幂级数()∑ ∞ =?+02425n n n n x 的收敛区间为( B ) (A )()2,2-(B )()3,7--(C )()2,8--(D )()1,9-- 解:因()44221421 lim 1 =+?+∞→n n n n n ,故24==R ,则当252<+<-x ,即37-<<-x 时级数收敛。 6、设,则() (A )(B )(C )(D ) 7、设,则()

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

漫谈正项级数的收敛性及收敛速度

漫谈正项级数的收敛性及收敛速度 ++++=∑∞ =n n n a a a a 211 称为无穷级数。当0≥n a 时,此级数称为正项级数。记 n n a a a S +++= 21, ,2,1=n ,则}{n S 为部分和数列。级数∑∞ =1 n n a 的敛散性是通过数列}{n S 的敛 散性来定义。显然,级数∑∞=1 n n a 时,有0lim =∞ →n n a 。因此,0lim ≠→∞ n n a 时,必有级数∑∞ =1 n n a 发散。但是 0lim =∞ →n n a 未必有∑∞=1n n a 收敛。只有当无穷小n a 的阶高到一定的程度时,∑∞ =1 n n a 才收敛。可以证明: 几何级数∑∞ =1 n n q ,当1||p 时收敛;当1≤p 时发散。 由p -级数∑ ∞ =1 1 n p n 的敛散性及比较判别法,可以看出,当n a 趋于0的速度快于n 1时,级数∑∞ =1n n a 收敛;而当n a 趋于0的速度不快于n 1时,级数∑∞=1n n a 发散。因而,无穷小n 1 是衡量级数∑∞ =1 n n a 敛散性的一把“尺子”。可是,这把“尺子”有点粗糙了。事实上,尽管无穷小 n n ln 1 趋于0的速度远远快于n 1,但是级数∑∞=1ln 1n n n 仍然发散。可以证明,级数∑∞ =1ln 1 n p n n ,当1>p 时收敛;当1≤p 时发散。于是,无穷小 n n ln 1 是衡量级数敛散性的一把精度较高的一把新“尺子”:当n a 趋于0的速度快于n n ln 1时,级数∑∞=1n n a 收敛;而当n a 趋于0的速度不快于n n ln 1 时,级数∑∞ =1n n a 发散。可是,马 上又面临新问题:无穷小n n n ln ln ln 1趋于0的速度远远快于n n ln 1,但是∑∞ =1ln ln ln 1 n n n n 仍然发散级 数。于是需要更为精细的判断级数敛散的“尺子”。这样,我们会得到一系列判断级数敛散的“尺 子”:n 1 ,n n ln 1, n n n ln ln ln 1。这些 “尺子”可以无限的精细,一直进行下去。实际上,按这种方式,只能够找到越来越精细的“尺子”,但是永远找不到最为精细的“尺子”——“没有最好,只有更好”。 由几何级数的∑∞ =-11n n q 的敛散性,可以看出,粗略的讲,当n 充分大时,正项级数的后一 项小于前一项时,该级数就收敛,否则就发散。在此基础上,有了判断正项级数敛散性的比值(达

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

高等数学基本公式整理(级数部分)

常数项级数: 是发散的 调和级数:等差数列:等比数列:n n n n q q q q q n n 1 312112 )1(3211111 2 +++++= ++++--= ++++-ΛΛΛ 级数审敛法: 散。 存在,则收敛;否则发、定义法: 时,不确定 时,级数发散 时,级数收敛 ,则设:、比值审敛法: 时,不确定时,级数发散 时,级数收敛 ,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞ →+∞→∞ →+++=?? ? ??=><=?? ? ??=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11 1 )1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ ΛΛΛ 幂级数:

01 0)3(lim )3(111 1111 221032=+∞=+∞ === ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρ ρρΛΛΛΛ函数展开成幂级数: Λ ΛΛ Λ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00 lim )(,)()!1() ()(! )()(!2)())(()()(2010)1(00)(2 0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: ) ()!12()1(!5!3sin )11(! )1()1(!2)1(1)1(1 21532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin ) sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞ =ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

任意项级数收敛性判别法

十五. 任意项级数收敛性判别法 判断∑a n 收敛性的线索: 1°a n 是否→0; 2°是否绝对收敛; 3°是否条件收敛. 绝对收敛判别方法: 对∑| a n | 用正项级数判别法. 注意∑|a n |发散时一般不能得到 ∑a n 发散, 但|n n a a 1+|或n n a ||≥1时∑| a n |和∑a n 都发散. a n 为连乘积时用检比法,和Raabe 法, a n 为n 次幂时考虑检根法和检比法, a n 单调时考虑积分法. 以上方法困难时考虑比较法(找a n 的阶或比较级数)、级数运算、收敛原理、定义、Cauchy 准则. Leibniz 判别法 若a n ↓0, 则交错级数∑(-1)n +1a n 收敛, 其和s < a 1, 余项| R n | < a n +1. 证 s 2n = (a 1 - a 2 ) + (a 3 - a 4 ) + … + (a 2n -1 - a 2n ), s 2n +1 = a 1 - (a 2 - a 3 ) - … - (a 2n - a 2n +1) = s 2n + a 2n +1, 故s 2n ↑, s 2n +1↓, 且0 < s 2n < s 2n +1< a 1 , lim s 2n 与lim s 2n +1存在, lim (s 2n +1- s 2n ) = 0. 因此?s = lim s n , 且s < a 1. 又, | R n | = | (-1) n (a n +1 - a n +2 + a n +3 - … ) = a n +1 - a n +2 + a n +3 - … < a n +1. Abel 变换 a 1 b 1 + a 2 b 2 + … + a n b n = s 1 b 1 + (s 2 - s 1 ) b 2 + … + (s n - s n -1)b n = s 1 (b 1 - b 2 ) + … + s n -1 (b n -1 - b n ) + s n b n =∑-=+-1 11)(n k k k k b b s + s n b n , 其中s n = a 1 + a 2 +…+ a n . 利用Abel 变换, 把∑a n b n 的收敛问题化为∑s n (b n - b n +1)与{s n b n }的收敛问题. Di 法 {s n }有界, b n ↓0 (或↑0)?∑a n b n 收敛. (对积分:?t a f 有界,g ↓0??b a fg 收敛.) A 法 ∑a n 收敛, {b n }单调有界?∑a n a n 收敛. (积分:?b a f 收敛, g 单调有界??b a fg 收 敛.) 证 D 法: 设 | s n |≤M , 则s n b n ↓0,∑-=+-111|)(|n k k k k b b s ≤M ∑=n k 1(b k - b k +1) = M (b 1 - b n )≤ Mb 1, 故∑s n (b n - b n +1)绝对收敛. A 法: 设s n →s , | s n |≤M , b n ↓b , 则s n b n →sb ,∑-=+-111|)(|n k k k k b b s ≤M (b 1 - b n )≤M (b 1 - b ). 注1. 用这三个判别法(L 法是D 法的特例)不能判断发散性. 当然, 如果已经用前面的方法得到∑| a n |发散, 用这三个方法就能判断∑a n 的条件收敛性, 但不能由此而误认为它们是条件收敛判别法 注2. 用D 法证A 法: ∑a n 收敛?{s n }有界; {b n }减、有界??b 使b n ↓b ? b n - b ↓0. 由D 法, ∑a n (b n -b )收敛, 而∑ba n 收敛, 故∑a n b n 收敛. 类似地可证上册p.276.10. *级数与广义积分 给定∑a n , 定义阶梯函数f :[1,∞)为f (x ) = a n (n ≤x 0时?t a f 关于t 增,?b a f =b t →lim ?t a f = I ?? b n ?[a , b ), b n →b : lim ?n b a f = I . 特别地, 有

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

2016考研数学:无穷级数敛散性判断方法

2016考研数学:无穷级数的敛散性判断方法无穷级数是高等数学的重要章节,是考研数学一和数学三的必考内容,其主要考点包括两个方面,一个是关于无穷级数的收敛或发散的判断,另一个是无穷级数的求和。关于级数的敛散性(即收敛或发散)判断,由于其方法较多,很多同学在学习和复习中感到有些困惑,为了帮助大家掌握好这些方法,文都网校的蔡老师对其做些分析总结,供各位参考,下面首先对用无穷级数的部分和来判断级数的敛散性方法做些分析。 一、通过部分和来判断级数的敛散性 通过无穷级数的部分和来判断级数的敛散性,是判断敛散性的最基本方法之一,因为按照级数收敛性的定义,收敛就是指其部分和的极限存在;对于正项级数而言,由于其部分和是单调增加的数列,所以只要其部分和是有界的,则部分和数列就是收敛的,因此级数就是收敛的. 无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。 一、交错级数的敛散性判别法 对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。 从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;

如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。 正项级数是无穷级数的一种基本类型,其敛散性的判断方法有多种,包括:比较判别法、比值判别法、根值判别法(数一要求)等,在不同的条件下,需要根据具体情况使用不同的判别法,下面我们来分析一下比较判别法及其典型题型,供广大考生参考。 一、正项级数的比较判别法 正项级数的比较判别法是一种基本的、常用的判别法,其基本用法如下: 从上面的典型题型分析看到,有些级数虽然不是正项级数,但却可以借助正项级数的敛散性判别法来分析或证明其是否收敛,如上面例2的情况;在具体正项级数中,p级数是一个十分有用的比较工具,我们常用它与需要判断敛散性的级数进行比较;对于需要判断是否绝对收敛的级数,也需要利用正项级数的判别法,如比较判别法。以上分析希望对大家有所帮助,最后预祝各位考研取得成功,金榜题名!

正项级数收敛性的一般判别原则

正项级数收敛性的一般判别原则 若级数各项的符号都相同,则称为同号级数。而对于同号级数,只须研究各项都由正数组成的级数——正项级数。因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性。 定理12.2.1 正项级数 ∑∞ =1 n n u 收敛?部分和数列{}n S 有界。 证明:由于对n ?,0>n u ,故{}n S 是递增的,因此,有 ∑∞ =1 n n u 收敛?{}n S 收敛?{}n S 有界。 定理12-2-2(比较原则) 设∑∞ =1 n n u 和 ∑∞ =1 n n v 均为正项级数,如果存在某个正数N ,使 得对 N n >?都有 n n v u ≤, 则 (1)若级数 ∑∞ =1n n v 收敛,则级数 ∑∞ =1n n u 也收敛; (2)若级数 ∑∞ =1 n n u 发散,则级数 ∑∞ =1 n n v 也发散。 证明:由定义及定理12-2-1即可得。 例1、考察 ∑∞ =+-1 2 11 n n n 的收敛性。 解:由于当2≥n 时,有 2 22)1(1)1(1111-≤-=-≤+-n n n n n n n , 因正项级数∑∞ =-22)1(1n n 收敛,故∑∞ =+-1 2 11 n n n 收敛。 推论(比较判别法的极限形式) 设 ∑∞ =1 n n u 和 ∑∞ =1 n n v 是两个正项级数,若

l v u n n n =∞→lim , 则 (1) 当+∞<

相关文档
最新文档