通过光纤传输USB信号的电路设计及应用

通过光纤传输USB信号的电路设计及应用
通过光纤传输USB信号的电路设计及应用

通过光纤传输USB信号的电路设计及应用

1 实现原理

本方案是一种光纤传输USB信号电路,成对使用,光强度三个等级(全亮、半亮、暗)分别代表USB数据线三种状态,当光强度为最低时(暗)代表USB数据线闲置状态。先发送USB信号一方其USB数据状态先改变,其状态改变光纤传输到对方电路接收电路产生一个下降沿(上升沿)触发一个单稳电路,此单稳电路输出控制USB信号“收/发”允许。先发送USB信号一方其USB数据状态先改变,其状态改变光纤传输到对方电路接收电路产生一个下降沿(上升沿)触发一个单稳电路,此单稳电路延时时间为USB 传输一帧数据时间。

2 具体实现方法

2.1 将USB信号(D+、D—)转换为光纤传输信号

图1

图1为将USB信号(D+、D-)转换为光纤传输信号——激光框图。USB 信号检测电路(1)将D+和D-变换为“或”门输出DOR1和差分比较器输出RCV1。一双可控三态缓冲器(2)控制端EN来控制逻辑“通”与“端”。当EN=“0”时,DOR=DOR1、RCV=RCV1。而当EN=“1”时,DOR和RCV为高阻状态。激光发射驱动电路(3)将DOR和RCV转换为三种激光强度(亮、半亮、暗)。激光接收电路(4)将接收到三种激光强度(亮、半亮、暗)恢复为D+和D-三种状态。激光接收电路(4)输出之一H状态变化触发单稳延时电路(5)。单稳延时电路(5)输出EN平时(即USB

信号处于闲置状态时)为“0”,当其输入H有下降延(即由“1”变为“0”)时输出EN由“0”变为“1”保持为“1”大约1000us,然后恢复为“0”。另一双可控三态缓冲器(2)控制端EN来控制来控制逻辑“通”与“断”,当EN=“1”时,VP=H、VM=L,而当EN=“0”时输出VP、VM为高阻状态。

2.2 将USB信号转换为便于光纤传输电路图

图2为将USB信号转换为便于光纤传输电路图。USB为全速状态(12M),此时D+大约1.5KΩ电阻接+5V电源。平时USB信号处于闲置(Idle)状态,此时D+为“1”(高电平,大约3至5V),D-为逻辑“0”(低电平,大约0至1.4V)。IC1为“或”门。IC2、IC4、IC5和IC6为可控三态缓冲器。其中,IC2和IC4是当其控制信号EN为“0”时导通,而IC5和IC6是当其控制信号EN为“1”时导通。IC2和IC4不导通时(即EN为“1”时)输出为高阻状态,

图2

IC2输出端加了上拉电阻R1、IC4输出端加了上拉电阻R2。IC3、IC10和IC11是比较器。IC7是单稳触发电路由输入端(信号VP)下降沿触发,输出EN平时为“0”。当IC7输入端出现一个下降沿时,其输出端将出现一个持续时间大约1000us“1”状态,然后恢复为“0”。IC7输出信号EN 控制IC2、IC4、IC5和IC6来控D+、D-“收/发”状态。EN平时为“0”,平时允许接收D+和D-(IC2、IC4导通),而禁止发送信号到D+和D-上(IC5和IC6输出为高阻态)。

3 信号处理方式

平时闲置状态(Idle)时D+为逻辑“1”、D-为逻辑“0”,IC1、IC2输出为“1”,IC3、IC4输出为“1”,输出激光强度为“暗”。当激光强度为“暗”时,对方电路激光接收器并对方电路IC9后输出为VP=“1”、VM=“0”。一旦USB开始传输数据,则D+和D-信号逻辑状态发生变化。全速USB信号状态变化为:D+由“1”变成为“0”,D—由“0”变成为“1”。上位机USB信号状态先出现变化,此时IC1和IC2输出仍然为“1”,IC3和IC4输出变成为“0”。激光发射二极管将由“暗”变成为“全亮”。“全亮”激光光纤传到对方电路激光接收管。对方电路VP由“1”变为“0”,VM 由“0”变为“1”。对方电路VP由“1”变为“0”就是说这个VP产生了一个下降沿,触发了对方电路IC7,使IC7输出EN由“0”变为“1”保持“1”大约1000us(然后又恢复为“0”)。对方电路VM由“0”变为“1”使对方电路USB信号由禁止发送(EN=“0”)变为禁止接收(EN=“1”)。此时对方电路VP和VM可以对方电路IC5和IC6传给对方电路D+和D-,使上位机USB信号1000us内光纤传到对方电路(即:下位机)D+和D-线上。这1000us内可以过光纤传输三种D+和D—状态:①、D+为“1”且D-为“0”(代表闲置状态以及数据“1”)②、D+为“0”且D-为“1”(代表数据“0”)③、D+为“0”且D-为“0”(代表数据传输结束标志)。这三种状态可以表达USB信号所有状态(D+为“1”且D-

为“1”状态是禁止)。大约1000us时间内,恰好上位机向下位机传输一帧USB数据完毕,等待下位机回传应答信号。1000us结束后,下位机IC7输出EN恢复为“0”,此时下位机USB数据状态先变化。下位机USB

数据传输到上位机过程与前面描述上位机USB数据传输到下位机过程原理完全一样。

4 实验与应用

系统设计完成后,电路中时序要求,经仿真调试远端可以复现USB信号。本电路可以用于各种USB外设,不改变原来驱动程序。某些USB外设目前还没有有效延长方案,比如USB鼠标,那么采用本电路后可以以成功实

现。

目前图像远程光纤传输方案往往需要专门硬件接口及专用图像处理软件,而采用本方案电路后,只需将普通USB摄像头延长即可实现。

音频信号光纤通信.

音频信号光纤传输实验 实验目的 1.了解音频信号光纤传输的方法、结构及选配各主要部件的原则。 2.熟悉半导体电光/光电器件的基本性能及其主要特性的测试方法。 3.学习分析音频信号集成运放电路的基本方法。 4.训练音频信号光纤传输系统的调试技术。 实验仪器 YOF-A音频信号光纤传输技术实验仪、光功率计、多波段收音机、音箱 实验原理 一、系统的组成 图1示出了一音频信号光纤传输系统的结构原理图,它由半导体发光二极管LED及其调制、驱动电路组成的光信号发送部分、传输光纤部分和由硅光电池、前置电路和功放电路组成的光信号接收三个部分组成。 图1 光纤传输系统原理图 塑料光纤很柔软,而且可以弯曲,加工很方便。在光信息处理技术、光学计量、短距离数据传输等方面已获得较好的应用。本系统中,我们采用的传输光纤是进口低损耗多模塑料光纤,它的纤维直径是lmm,芯径为990μm,包层厚度为5μm。半导体发光二极管是采用发光亮度很高的可见红色光发光二极管作为光源,光电转换采用高灵敏的硅光电池作为转换元件,整个传输过程一目了然。 为了避免或减少谐波失真,要求整个传输系统的频带宽度要能复盖被传信号的频谱范围,对于语音信号,其频谱在300--3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二、半导体发光二极管(LED)的结构及工作原理 光纤通讯系统中对光源器件在发光波长、电光功率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光器(LD)。光纤传输系统中常用的半导体发光二极管是一个如图2所示的N-p-P三层结构的半导体器件,中间层通常是由直接带隙的GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由AlGaAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结,在图2中,有源层与左侧的N层之间形成的是P-N异质结,而与右侧P层之间形成的是p-P异质结,敌这种结构又称N-p-P双异质结构,简称DH结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层内与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: (1) 其中h是普朗克常数,是光波的频率,E 1是有源层内导电电子的能量,E 2 是导电电子与空穴复合后处于价键束缚状态时的能量。两者的差值Eg与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些材料的选取和组份的控制适当,就可使得LED的发光中心波长与传输光纤的低损耗波长一致。所以为了减少损耗,LED发光波长应与传输光纤的低损耗波长一致,在实际通讯系统中,LED发出的光介于可见光的边远区域。 图2 半导体发光二极管的结构及工作原理 光纤通讯系统中使用的半导体发光二极管的光功率为光导纤维的尾纤输出功率,出纤光功率与LED驱动电流的关系称LED的电光特性,为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其修正等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰一峰值应位于电光特性的直线范围内。对于非线性失真要求不高的情况,也可把偏置电流选为LED最大允许工作电

语音放大器的设计(全面)

电子电工教学基地 实 验 报 告 实验课程:模拟电路实验及仿真实验名称:语音放大电路的设计设计人员: 完成日期: 2012年6月27日

0、引言在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 一、设计目的及要求 【设计目的】1.通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。 2.通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 【设计要求】 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试 测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。4)功率放大电路的组装与调试 测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输出电压、静态电源电流等技术指标。 5)整体电路的联调与试听 6)应用Multisim软件对电路进行仿真分析

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

光纤传输语音电路设计

东北石油大学课程设计 2015年3月13日

东北石油大学课程设计任务书 课程光电检测技术 题目光纤传输语音电路设计 专业电子科学与技术姓名学号 主要内容: 应用集成电路、光敏二极管、三极管,设计光电发射与接收电路,光纤传输语音信号的功能。 基本要求: 1)设计光纤传输语音信号的框图。 2)设计光信号发射电路及光信号接收电路。 3)传输距离200米左右。 4)调试安装。 5)完成课程设计总结报告。 主要参考资料: 1)李芳健编著.光纤通信相关技术[M].北京:机械工业出版社, 2010.11. 2) 雷御堂编著,光电信息技术[M].北京:电子工业出版社. 2006.4. 3) 黄继昌等编著.检测专用集成电路及应用[M]. 北京:人民邮电出版社,2006.10. 完成期限2015.3.9~2015.3.13 指导教师 专业负责人 2015年3月6日

第1章概述 1.1 选题背景 光电检测技术是一种非接触测量的高新技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高检测系统输出信号的信噪比。 光纤传输,即以光线为介质进行传输。光纤,不仅可用来传输模拟信号和数字信号,而且可以满足视频传输的需求。其数据传输率能达几千Mbps。如果在不使用中继器的情况下,传输范围能达到6-8km。 1.2 发展前景 光纤通信技术应用迅速增长,自1977年光纤系统首次商用安装以来,电话公司就开始使用光纤链路替代旧的铜线系统。今天的许多电话公司,在他们的系统中全面使用光纤作为干线结构和作为城市电话系统之间的长距离连接。提供商已开始用光纤/铜轴混合线路进行试验。这种混合线路允许在领域之间集成光纤和同轴电缆,这种被称为节点的位置,提供将光脉冲转换为电信号的光接收机,然后信号再经过同轴电缆被传送到各个家庭。近年来,作为一种通信信号传输的恰当手段,光纤稳步替代铜线是显而易见的,这些光缆在本地电话系统之间跨越很长的距离并为许多网络系统提供干线连接。 光纤是一种采用玻璃作为波导,以光的形式将信息从一端传送到另一端的技术。今天的低损耗玻璃光纤相对于早期发展的传输介质,几乎不受带宽限制并具有独一无二的优势,点到点的光学传输系统由三个基本部分构成:产生光信号的光发送机、携带光信号的光缆和接收光信号的光接收机。 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHz的速率,光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的

LED可见光音频信号传输系统设计

LED可见光音频信号传输系统设计 摘要:LED具有调制特性良好的优点,可以使LED光源在照明的同时传输音频信号,本设计发射端利用三极管将音频信号放大后驱动LED发光,LED 的发光强度受音频的调制,接收端利用光敏二极管接收调制信号,功率放大器进行功率放大,最后将音频信号输出,实现无失真音频传输。 标签:LED;调制;放大;音频传输 引言 LED具有高亮度、低功耗、灵敏度高、调制特点好等优点,利用这些特性可以实现在照明的同时,把信号调制到LED光中进行传输。实现利用可见光为信息载体,不使用光纤等有线传输介质,在空气中直接传送光信号的通信方式,即可见光通信技术(Visible Light Communication,VLC) 利用LED高速调试的特性将音频信号调制到LED可见光上进行信息传输,这传输方式减少了电磁辐射对环境的影响,适合对电磁信号敏感的区域使用。在当前节能和环保两大主题的前提下,随着世界各国对白光照明光源的大力推广,以及其光谱特性、一特性、调制特性等性能的提高,基于白光可见光通信正在逐渐发展起来。 1 系统设计 系统整体由发射端和接收端两部分组成,发射端由MP3或音频信号发生器输入音频信号,通过三极管放大电路将音频信号放大,并驱动LED发光。接收端将光信号转化为电信经放大电路放大,再由功率放大器进行功率放大,从扬声器输出。系统框图如图1所示。 图1 系统框图 2 电路设计 (1)电源设计。电源输入电压为220V工频交流电,三端稳压器采用电子设备中常用的线性稳压集成电路LM7812和LM7912。电路如图2所示,电路图中LM7812和LM7912接有一大一小两个滤波电容,大电容低频滤波,小电容高频滤波。跨接于LM7812和LM7912输入输出端的二极管D4、D5可以保护三端稳压器不被反向浪涌电流的冲击而烧毁。 (2)发射端设计。发射端电路如图3所示,当音频信号由A、B端输入,经耦合电容C1的隔直作用后会在三极管的基极加上一组和音频信号一样变化的电流,在由三极管的放大作用,驱动两个LED。因LED的发光强度与电流的大小成正比,所以LED的发光强度与音频信号的幅度大小同步调制,实现音频信

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

光纤通信optisystem实验

光纤通信大作业 1.选择一个你认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。 1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

光纤传输语音电路设计

东北石油大学 课程设计 课程光电检测技术 题目光纤传输语音电路设计 院系电子科学学院 专业班级 学生姓名 _________________________________ 学生学号 _________________________________ 指导教师 2015年3月13日

东北石油大学课程设计任务书 课程光电检测技术_______________________________________________________ 题目光纤传输语音电路设计_______________________________________________ 专业_________________________ 姓名__________________ 学号__________________ 主要内容: 应用集成电路、光敏二极管、三极管,设计光电发射与接收电路,光纤传输语音信号的功能。 基本要求: 1)设计光纤传输语音信号的框图。 2)设计光信号发射电路及光信号接收电路。 3)传输距离200米左右。 4)调试安装。 5)完成课程设计总结报告。 主要参考资料: 1)李芳健编著.光纤通信相关技术[M].北京:机械工业出版社,2010.11. 2)雷御堂编著,光电信息技术[M].北京:电子工业出版社.2006.4. 3)黄继昌等编著.检测专用集成电路及应用[M].北京:人民邮电出版社,2006.10. 完成期限2015.3.9~2015.3.13 指导教师_______________________ 专业负责人_____________________ 2015年3月9日

光纤通信optisystem实验

光纤通信大作业 1、选择一个您认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择您认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由就是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制与调解结构简单,在10G与一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理与终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制就是用信号直接调制激光器的驱动电流,使其输出功率随信号变化、这种方式设备相对简单,研究较早,现已成熟并商品化、外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8、3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)就是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性就是无法实现的,所有的设计只不过就是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管与low pass gauss filter构成的光纤通信系统。 1)、根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察与分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态与运行结果。整个光纤通信系统的架构如下图示: 完整的光纤通信系统

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

语音放大电路设计

内容摘要 本文介绍了一种语音放大电路,它由前置放大器、带通滤波器和功率放大器组成,能对300——3000Hz的语音信号进行放大,降低外来噪声。并用Multisim 进行仿真实验,以期达到所要求的效果。 关键字:前置放大器带通滤波器功率放大器

目录 一、设计目的 (1) 二、设计题目及分析 (1) 三、概要设计 (1) 四、详细设计 (1) 五、测试分析 (6) 六、附录 (7)

一、设计目的 在电子电路中,输入语音信号往往混杂着噪声和其他不同频率成分的干扰,因此我们设计该电路,使其尽可能减小噪声,滤除300——3000Hz以为的频率成分,同时,尽可能地放大有用信号,从而得到清晰的语音信号,并将它通过扬声器输出。 二、设计题目及分析 此语音放大器由三部分组成,原理框图如图2-1。 图2-1 语音放大器原理框图 其中,各级要求如下。 ①前置放大器的输入信号≤5mV,输入阻抗为10KΩ,可用元件741运算放大器。 ②带通滤波器3dB带通范围:300——3000Hz。 ③功率放大器输出功率Po≥0.5W,输出阻抗Ro=4Ω,输出功率连续可调,可用元件 LM386功率放大器。 ④电源电压为±12V。 三、概要设计 (1)假设带通滤波器通带增益为0dB,且功率放大器采用LM386的20倍接法,若要提供足够的功率(扬声器8Ω,输出功率≥0.5W),则可设功率放大器的输入信号有效值为100mV,此时8Ω的扬声器获得功率为0.5W,故在此前置放大器级,假设输入信号为5mV,至少需要对其放大30倍。在此前置放大器放大倍数选为50倍,若采用运算放大器的反向组态,则反馈电阻采用500KΩ的电阻,此时输入阻抗为10KΩ。(2)带通滤波器可由低通滤波器和高通滤波器串联组成。其中,低通滤波器截止频率为3KHz,高通滤波器截止频率为300Hz。为了确保通带增益为0dB,此处高通滤波器和低通滤波器均采用有源滤波器,由于运放数量的限制,此电路中仅使用二阶滤波器,相对于一阶滤波器,它能较快的收敛,滤波器设计可由Filter Solution软件辅助完成。 (3)该功率放大器可直接采用20倍放大的接法,为了能够达到输出功率连续可调,可在信号输入端与地之间接入可调电阻,输出阻抗可在电路正常工作后,能够输出不失真的情况下,通过在输出端串接电阻使输出阻抗Ro=4Ω。 四、详细设计 (1)前置放大器 前置放大器亦为小信号放大器。语音信号属于低频信号,多采用单端方式传输,其中混有噪声和其他频率分量,在此级应尽量一致低频分量和噪声等,放大有用信号。故在信号输入放大器前,接入一隔直电阻,去掉直流成分,由3中分析,放大器采用741的反相组态,放大倍数为50倍,反馈电阻为500KΩ,输入阻抗10KΩ。具体电路如图4-1所示。

光纤网络设计

光纤通信网络 西延高速公路光纤网络系统设计 学院: 专业: 姓名: 学号: 指导教师: 2015年1月

西延高速公路光纤系统网络设计 一西延高速公路概况 西延高速公路南起西安绕城高速吕小寨立交,途经西安、咸阳、铜川、延安、三原、宜君、黄陵、洛川、富县、甘泉3市6县,止于延安市西北的河庄坪,全长299.85km。全线共有22座隧道(单洞),隧道总长27km,是世界罕见的黄土隧道群;各式桥梁369座,其中洛河特大桥高达152.9m,被称为“亚洲第一高墩大桥”;沿线设有收费站9处、服务区5处,配备有完善的交通、通讯及收费系统等设施。 二网络设计传输业务 高速公路SDH传输系统中承载的业务及业务流向高速公路SDH传输系统中承载的业务大概分为语音、数据和图像三大部分,下面将分别加以说明。 2.1 语音业务 语音业务主要包括业务电话(BT)、指令电话(CT)等。业务电话和指令电话提供语音交换和专线电话服务,要求实时性强,其业务的开展一般采用基于电路交换技术实现或基于包换技术实现。整个专用电话网采用接入网技术,在通信分中心设置接入网局端设备,其无人通信站设置为远端接入模块,负责话音、数据业务的接入。 2.2 监控和收费数据传输业务 监控数据是指监控设备的控制信号,主要指路段管理中心对外场监控摄象机云台发出的控制信号,通常采用的数据接口为RS一232。传输通路分为二级,第一级为监控外场设备至通信站的数据传输通路,利用模拟视频光端机提供低速数据通道,第二级为通信站到路段监控中心数据传输通路,利用接入网的远端接入模块提供的低速数据通道。 收费数据传输通路分为三级,第一级为收费车道至收费站,第二级为收费站至路段管理中心,第三级为路段管理中心至区域中心(即省高速公路收费管理中心,其传输通路不在本设计范围)。收费系统网络通常基于TCP/IP技术组网,收费数据被封装到IP数据包中,在二层的网络结构组织上,一般采用以太网技术,网络互联采用数字电路专线。 2.3 监控和收费图像传输业务 监控系统在高速公路沿线设置一定数量的摄像机,各摄像机的图像和控制信号均要传至路段管理中心,外场监控摄像机的视频信号通过模拟视频光端机传输到相应收费站,然后通过数字光传输系统传送到路段管理中心。收费系统在各收费站广场出口均设置摄像机,各摄像机的图像信号先传到相应的收费站,再传到路段管理中心。为便于视频图象的上传,减少网络带宽,同时要保证有足够的图象质量,视频图象采用MPEG一2压缩算法,视频数据流的带宽控制在2Mbps。 三光纤通信传输系统设计 3.1 采用SDH方案的可行性分析

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

语音放大电路设计精编版

语音放大电路设计精编 版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

一、语音放大电路的设计 通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 要求: (1)采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路; 假设语音信号的为一正弦波信号,峰峰值为5mV,频率范围为100Hz~1KHz,电路总体原理图如下所示; 具体 设计 方案 可以 参照 以下 电路: 图4 语音放大电路 前置放大电路: 采用同相比例放大器,放大倍数为: A V=1+100KΩ 10KΩ =11

带通滤波电路为: 带通滤波器A1的放大倍数计算: A vf1=1+ 27KΩ 100KΩ =1.27 A vf2=1+ 27KΩ 100KΩ =1.27 则带通滤波器的放大倍数为: A V=A vf1?A vf2 =1.272=1.6129 采用低通和高通二阶有源巴特沃斯滤波器器串联连接,按照设计要求低通滤波器截止频率为1KHz,高通滤波器截止频率大于100Hz: f high= 1 2πRC = 1 2π15K?0.1μ =106Hz f low= 1 2πRC = 1 2π15K?0.01μ =1061Hz 功率放大电路: 是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级为准互补输出级功放电路。 外接元件最少的用法: 静态时输出电容上电压为V CC2 ?,最大不失真输出电压的峰-峰值为电压V CC,最大输出 P=(CC √2 ) 2 R L = V CC2 R L = (1)仔细分析以上电路,弄清电路构成,指出前置放大器的增益为多少dB?通带滤波器的增益为多少dB? 前级放大器的增益为21dB,带通滤波器的增益为 (2)参照以上电路,焊接电路并进行调试。 a、将输入信号的峰峰值固定在5mV,分别在频率为100Hz和1KHz的条件下测 试前置放大的输出和通带滤波器的输出电压值,计算其增益,将计算结果同上面分析的理论值进行比较。 经过实际测量,前级放大器的实际增益约为20dB,带通滤波器的增益约为 0dB。 b、能过改变10K殴的可调电阻,得到不同的输出,在波形不失真的条件下,测 试集成功放LM386在如图接法时的增益; 调节电位器,可得功放的实际增益约为25dB。 c、将与LM386的工作电源引脚即6引脚相连的10uF电容断开,观察对波形的 影响,其作用是什么?

音频信号光纤传输技术

音频信号光纤传输技术实验 实验目的 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3.学习分析集成运放电路的基本方法 4.训练音频信号光纤传输系统的调试技术 实验仪器 YOF—B型音频信号光纤传输技术实验仪(由四川大学物理系研制); 音频信号发生器; 示波器; 数字万用表 实验原理 一.系统的组成 图(1)给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电 路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件L ED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。 此电路的工作原理如下: 音频信号经IC1放大电路传到LED调制电路。W2调节发光管LED工作(偏置)电流,音频电流调制此工作电流,并经LED转换成音频调制的光信号,经光纤传至光电二极管SPD 再复原成原始音频电流信号,经由IC2构成的I—V变换电路转换成电压信号,最后通过功率放大电路输出声音功率信号,推动扬声器发出声音。这样就完成了音频信号通过光纤的传输过程。 二、半导体发光二极管的驱动、调制电路

光纤音频信号传输技术实验

TKGT-1型音信号传输仪器 评 价 报 告 学院:工业制造学院 专业:测控技术与仪器 班级:2010级2班 报告人:邱兆芳 学号:201010114201

光纤音频信号传输技术实验 1.引言 随着Internet网络时代的到来,人们对数据通讯的带宽、速度的要求越来越高,光纤通讯具有频带宽、高速、不受电磁干扰影响等一系列优点,正在得到不断发展和应用。通过使用THKGT-1型光纤音频信号传输实验仪做音频信号光纤传输实验,让学生熟悉了解信号光纤传输的基本原理。同时学生可以了解光纤传输系统的基本结构及各部件选配原则,初步认识光发送器件LED的电光特性及使用方法,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯原理基本实验。 光纤即为光导纤维的简称。光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式,由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。 光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。 通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。 [实验目的] 1.学习音频信号光纤传输系统的基本结构及各部件选配原则。 2.熟悉光纤传输系统中电光/光电转换器件的基本性能。 3.训练如何在音频光纤传输系统中获得较好信号传输质量。 [实验仪器] THKGT-1型光纤音频信号传输实验仪,函数信号发生器,双踪示波器。 [实验原理] 光纤传输系统如图1所示,一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,目前,发送端电光转换器件一般采用发光二极管或半导体激光管。发光二极管的输出光功率较小,信号调制速率相对低,但价格便宜,其输出光功率与驱动电流在一定范围内基本上呈线性关系,比较适宜于短距离、低速、模拟信号的传输;激光二极管输出功率大,信号调制速率高,但价格较高,适宜于远距离、高速、数字信号的传输。光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。本实验发送端电光转换器件采用中心发光波长为0.84μm的高亮度近红外半导体发光二极管,传输光纤采用多模石英光纤,接收端光电转换器件采用峰值响应波长为0.8~0.9μm的硅光电二极管。下面对各部分作进一步介绍。

专设—语音控制放大器及原理图

目录 1、课程设计目的 (1) 2、课程设计内容和要求 (1) 2.1、设计内容 (1) 2.2、设计要求 (1) 3、设计方案 (2) 3.1、设计思路 (2) 3.2、工作原理及硬件框图 (3) 3.3、硬件电路原理图 (6) 4、课程设计总结 (7) 5、参考文献 (8)

1、设计目的: ①掌握电子电路的一般设计方法和设计流程; ②学习使用PROTEL软件绘制电路原理图及印刷板图; 2、设计内容和要求(包括原始数据、技术参数、条件、设计要求等):2.1、设计内容 在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 2.2、设计要求 查阅语音识别的相关资料,掌握低频小信号放大电路和功放电路的设计方法,设计一个由集成运算放大器组成的语音放大电路。 电路要求: (1)前置放大器 输入信号:Uid <=10mv, 输入阻抗:Ri>=10k. (2)有源带通滤波器 带通频率范围:300~3000Hz (3)功率放大器 最大不失真输出功率:Pom>=5w 负载阻抗:RL==4. 根据设计要求和已知条件进行下面的分析,并计算和选取单电路的元件数:

相关文档
最新文档