九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案

一、锐角三角函数

1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.

(1)求之间的距离

(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3

5

. 【解析】 【分析】

(1)解直角三角形即可得到结论;

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,

'30CE AA ==3Rt △ABC 中,求得DC=

3

3

3,然后根据三角函数的定义即可得到结论. 【详解】

解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,

∴AB=sin 30AC

=6012

=120(m )

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3

在Rt △ABC 中, AC=60m ,∠ADC=60°,

∴DC=333∴3

∴tan ∠A 'A D= tan ∠'A DC=

'A E DE 5032

35

答:从无人机'A 上看目标D 2

35

【点睛】

本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.

2.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.

(1)求观察哨所A 与走私船所在的位置C 的距离;

(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】

(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】

(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =

,所以3sin 3725155

AC AB ︒

=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4

sin 15125

CM AC CAM =⋅∠=⨯

=,

3

cos 1595

AM AC CAM =⋅∠=⨯=.

在Rt ADM △中,tan MD

DAM AM

∠=,

所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =

+=+==-=,.

设缉私艇的速度为v 海里/小时,则有24917

16v

=

,解得617v =. 经检验,617v =是原方程的解.

答:当缉私艇以每小时617海里的速度行驶时,恰好在D 处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

3.小红将笔记本电脑水平放置在桌子上,显示屏OB 与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO '后,电脑转到AO 'B '位置(如图3),侧面示意图为图4.已知OA=OB=24cm ,O 'C ⊥OA 于点C ,O 'C=12cm . (1)求∠CAO '的度数.

(2)显示屏的顶部B '比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O 'B '与水平线的夹角仍保持120°,则显示屏O 'B '应绕点O '按顺时针方向旋转多少度?

【答案】(1)∠CAO′=30°;(2)(36﹣12)cm ;(3)显示屏O′B′应绕点O′按顺时针

方向旋转30°.

【解析】

试题分析:(1)通过解直角三角形即可得到结果;

(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得

BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.

试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,

∴sin∠CAO′=,

∴∠CAO′=30°;

(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,

∠CAO′=30°,

∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,

∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,

∴显示屏的顶部B′比原来升高了(36﹣12)cm;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,

理由:∵显示屏O′B与水平线的夹角仍保持120°,

∴∠EO′F=120°,

∴∠FO′A=∠CAO′=30°,

∵∠AO′B′=120°,

∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°.

考点:解直角三角形的应用;旋转的性质.

4.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),

∠BPE=1

∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.

2

(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;

(2)通过观察、测量、猜想:BF

PE

=,并结合图2证明你的猜想;

(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)

【答案】(1)证明见解析(2)

1

2

BF

PE

=(3)

1

tan

2

BF

PE

α

=

【解析】

解:(1)证明:∵四边形ABCD是正方形,P与C重合,

∴OB="OP" ,∠BOC=∠BOG=90°.

∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).

(2)BF1

PE2

=.证明如下:

如图,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=900,∠BPN=∠OCB.

∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.

∴NB=NP.

∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.

∵∠BPE=1

2

∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.

∵PF⊥BM,∴∠BFP=∠MFP=900.

又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=1

2 BM.

∴BF=

12PE , 即

BF 1

PE 2

=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,

∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.

由(2)同理可得BF=1

2

BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .

BM BN

PE PN

=. 在Rt △BNP 中,BN tan =PN α, ∴

BM =tan PE α,即2BF

=tan PE

α. ∴

BF 1

=tan PE 2

α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .

(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出

BF 1

PE 2

=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1

2

BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN

tan =PN

α即可求得

BF 1

=tan PE 2

α.

5.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE•cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

6.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,

∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:

(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.

(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.

(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

【答案】(1)∠BME=15°;

(2BC=4;

(3)h≤2时,S=﹣h2+4h+8,

当h≥2时,S=18﹣3h.

【解析】

试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;

(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;

(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.

试题解析:解:(1)如图2,

∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).

∴OA=OB,

∴∠OAB=45°,

∵∠CDE=90°,CD=4,DE=4,

∴∠OCE=60°,

∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,

∴∠BME=∠CMA=15°;

如图3,

∵∠CDE=90°,CD=4,DE=4,

∴∠OBC=∠DEC=30°,

∵OB=6,

∴BC=4;

(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,

∵CD=4,DE=4,AC=h,AN=NM,

∴CN=4﹣FM,AN=MN=4+h﹣FM,

∵△CMN∽△CED,

∴,

∴,

解得FM=4﹣,

∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,

S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.

考点:1、三角形的外角定理;2、相似;3、解直角三角形

7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;

(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.

【答案】(1)45

2

;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、

32 669-. 【解析】 【分析】

(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=

'''''

=A B CE

A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤

115时和当11

5

<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】

解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,

根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′=

'''''

=A B CE A D CD ∴

682

=CE ∴CE =3

2

cm ,

∴S ABCE =S ABD ′﹣S CED ′=86345

22222

⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =3

2

(x +1), ∴S △CD ′E =32x 2+3x +32

, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当

115≤x ≤4时,B ′C =8﹣2x ,CE =4

3

(8﹣2x )

∴()214y 8223x =⨯-=83x 2﹣643x +1283

. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +

185,A ′M =NB =245, ∵AN 2+A ′N 2=36,

∴(6﹣245)2+(2x +185

)2=36, 解得:x =

6695-,x =6695--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +

185,A ′M =NB =245, ∵AB 2+BB ′2=AN 2+A ′N 2

∴36+4x 2=(6﹣

245)2+(2x +185)2 解得:x =32

. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32秒、6695

-.

【点睛】

本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.

8.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,40),直线AB :y =13

x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作

EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.

(1)求边EF的长;

(2)将正方形EFGH沿射线FB 的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).

①当点F1移动到点B时,求t的值;

②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.

【答案】(1)EF=15;(2)①10;②120;

【解析】

【分析】

(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4

3

x+40,可

求出P点坐标,进而求出F点坐标即可;

(2)①易求B(0,5),当点F1移动到点B时,1010=10;

②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE

上时,在Rt△F'NF中,NF

NF'

=

1

3

,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,

4

3

MH

EM

'

=,

t=4,S=1

2

×(12+

45

4

)×11=

1023

8

;当点G运动到直线DE上时,在Rt△F'PK中,

PK

F K'

=

1

3

PK=t-3,F'K=3t-9,在Rt△PKG'中,PK

KG'

3

1539

t

t

-

-+

4

3

,t=7,S=15×(15-7)=120.

【详解】

(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),

300

40

k b

b

+=

=

4

3

40

k

b

=-

⎪=

∴y =﹣43x+40, 直线AB 与直线DE 的交点P (21,12),

由题意知F (30,15),

∴EF =15;

(2)①易求B (0,5),

∴BF =1010,

∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,

F 点移动到F'10,

在Rt △F'NF 中,NF NF '=1

3,

∴FN =t ,F'N =3t ,

∵MH'=FN =t ,

EM =NG'=15﹣F'N =15﹣3t ,

在Rt △DMH'中,

4

3MH EM '=,

∴4

1533t

t =-,

∴t =4,

∴EM =3,MH'=4,

∴S =1

45

1023

(12)11248⨯+⨯=;

当点G 运动到直线DE 上时,

F 点移动到F'的距离是10t , ∵PF =310,

∴PF'=10t ﹣310,

在Rt △F'PK 中,

13

PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,

在Rt △PKG'中,

PK KG '=31539t t --+=43

, ∴t =7,

∴S =15×(15﹣7)=120.

【点睛】

本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.

9.如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-x -与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .

(1)请直接写出OE 、⊙M 的半径r 、CH 的长;

(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 : 2,求cos ∠QHC 的值;

(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT

交x 轴于点N .是否存在一个常数a ,始终满足MN·

MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.

【答案】(1)OE=5,r=2,CH=2

(2);

(3)a=4

【解析】

【分析】

(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;

(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;

(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,

∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.

【详解】

(1)OE=5,r=2,CH=2

(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,

易知△CHP∽△DQP,故,得DQ=3,由于CD=4,

(3)如图2,连接AK,AM,延长AM,

与圆交于点G,连接TG,则

由于,故,;

而,故

在和中,;

故△AMK∽△NMA

;

即:

故存在常数,始终满足

常数a="4"

解法二:连结BM,证明∽

10.如图,公路AB为东西走向,在点A北偏东36.5︒方向上,距离5千米处是村庄M,在点A北偏东53.5︒方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:

(1)M,N两村庄之间的距离;

(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)

【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米.

【解析】

【分析】

(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.

【详解】

解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.

(1)在Rt△ANE中,AN=10,∠NAB=36.5°

∴NE=AN•sin∠NAB=10•sin36.5°=6,

AE=AN•cos∠NAB=10•cos36.5°=8,

过M作MC⊥AB于点C,

在Rt△MAC中,AM=5,∠MAB=53.5°

∴AC=MA•sin∠AMB=MA•sin36.5°=3,

MC=MA•cos∠AMC=MA•cos36.5°=4,

过点M作MD⊥NE于点D,

在Rt△MND中,MD=AE-AC=5,

ND=NE-MC=2,

∴MN=22

+=29,

52

即M,N两村庄之间的距离为29千米.

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.

DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得

MN′=22

510

+=55(千米)

∴村庄M、N到P站的最短距离和是55千米.

【点睛】

本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.

11.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.

(1)用含t的代数式表示线段DC的长:_________________;

(2)当t =__________时,点Q与点C重合时;

(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.

【答案】(1);(2)1;(3)t的值为或或.

【解析】

【分析】

(1)先求出AC,用三角函数求出AD,即可得出结论;

(2)利用AQ=AC,即可得出结论;

(3)分三种情况,利用锐角三角函数,即可得出结论.

【详解】

(1)∵AP= , AB=4,∠A=30°

∴AC= , AD=

∴CD=;

(2)AQ=2AD=

当AQ=AC时,Q与C重合

即=

∴t=1;

(3)①如图,当PQ的垂直平分线过AB的中点F时,

∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.

∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,

∴AP+PF=2t+2t=2,∴t=

②如图,当PQ的垂直平分线过AC的中点N时,

∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.

在Rt△NMQ中,

∵AN+NQ=AQ,∴

③如图,当PQ的垂直平分线过BC的中点F时,

∴BF=BC=1,PE=PQ=t,∠H=30°.

∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.

在Rt△PEH中,PH=2PE=2t.

∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.

即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.

【点睛】

此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.

12.如图,建筑物上有一旗杆,从与相距的处观测旗杆顶部的仰角为

,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:,,)

【答案】旗杆的高度约为.

【解析】

【分析】

在Rt△BDC中,根据tan∠BDC=求出BC,接着在Rt△ADC中,根据tan∠ADC==即可求出AB的长度

【详解】

解:∵在Rt△BDC中,tan∠BDC==1,∴BC=CD= 40m 在Rt△ADC中,tan∠ADC==

∴tan50°= =1.19

∴AB7.6m

答:旗杆AB的高度约为7.6m.

【点睛】

此题主要考查了三角函数的应用

13.已知抛物线y=﹣1

6

x2﹣

2

3

x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对

称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.

(1)求直线AC的解析式;

(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.

(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.

中考数学锐角三角函数-经典压轴题含答案解析

中考数学锐角三角函数-经典压轴题含答案解析 一、锐角三角函数 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中, 3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D. (1)求证:PA是☉O的切线; (2)若=,且OC=4,求PA的长和tan D的值. 【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】 试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线; (2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值. 试题解析:(1)连接OB,则OA=OB, ∵OP⊥AB,∴AC=BC, ∴OP是AB的垂直平分线,∴PA=PB, 在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS) ∴∠PBO=∠PAO,PB=PA, ∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA, ∴PA是⊙O的切线; (2)连接BE,

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学锐角三角函数-经典压轴题含详细答案

中考数学锐角三角函数-经典压轴题含详细答案 一、锐角三角函数 1.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC. (1) 试判断BE与FH的数量关系,并说明理由; (2) 求证:∠ACF=90°; (3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长. 图1 图2 【答案】(1)BE="FH" ;理由见解析 (2)证明见解析 (3)=2π 【解析】 试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH (2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明 (3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长 试题解析:(1)BE=FH.理由如下: ∵四边形ABCD是正方形∴∠B=90°, ∵FH⊥BC ∴∠FHE=90° 又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90° ∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF ∴△ABE≌△EHF(SAS) ∴BE=FH (2)∵△ABE≌△EHF ∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH" ∴CH=FH ∴∠FCH=45°,∴∠FCM=45° ∵AC是正方形对角线,∴∠ACD=45° ∴∠ACF=∠FCM +∠ACD =90° (3)∵AE=EF,∴△AEF是等腰直角三角形 △AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°

中考数学压轴题专题复习——锐角三角函数的综合附详细答案

中考数学压轴题专题复习——锐角三角函数的综合附详细答案 一、锐角三角函数 1.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数: (1)如图1,若k=1,则∠APE的度数为; (2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数. (3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由. 【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析. 【解析】 分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论; (2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △FAE∽△ACD,再判断出∠EFB=90°,即可得出结论; (3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △ACD∽△HEA,再判断出∠EFB=90°,即可得出结论; 详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF, ∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形, ∴BD=AF,BF=AD. ∵AC=BD,CD=AE, ∴AF=AC. ∵∠FAC=∠C=90°,

∴△FAE ≌△ACD , ∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°. (2)(1)中结论不成立,理由如下: 如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF , ∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE , ∴ 3AC CD BD AE ==. ∵BD=AF , ∴ 3AC CD AF AE ==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD , ∴ 3AC AD BF AF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=3 EF BF = ∴∠FBE=30°, ∴∠APE=30°, (3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,

中考数学—锐角三角函数的综合压轴题专题复习及详细答案

中考数学—锐角三角函数的综合压轴题专题复习及详细答案 一、锐角三角函数 1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=2CD•OE; (3)若 314 cos, 53 BAD BE ∠==,求OE的长. 【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35 6 . 【解析】 试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线; (2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得; (3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得. 试题解析:(1)DE为⊙O的切线,理由如下: 连接OD,BD, ∵AB为⊙O的直径, ∴∠ADB=90°, 在Rt△BDC中,E为斜边BC的中点, ∴CE=DE=BE=BC,

∴∠C=∠CDE , ∵OA=OD , ∴∠A=∠ADO , ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°, ∴DE ⊥OD ,又OD 为圆的半径, ∴DE 为⊙O 的切线; (2)∵E 是BC 的中点,O 点是AB 的中点, ∴OE 是△ABC 的中位线, ∴AC=2OE , ∵∠C=∠C ,∠ABC=∠BDC , ∴△ABC ∽△BDC , ∴,即BC 2=AC•CD . ∴BC 2=2CD•OE ; (3)解:∵cos ∠BAD= , ∴sin ∠BAC= , 又∵BE= ,E 是BC 的中点,即BC=, ∴AC=. 又∵AC=2OE , ∴OE=AC=. 考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数 2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分) 已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5 AOC ∠=.设OP x =,CPF ∆的面积为y .

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案.doc

九年级中考数学锐角三角函数解答题压轴题提高专题练习附详细答案 一、锐角三角函数 1.如图,某无人机于空中 A 处探测到目标 B 、D 的俯角分别是 30 、60 ,此时无人机的飞行高度 AC 为 60m ,随后无人机从 A 处继续水平飞行 30 3 m 到达 A ' 处 . (1)求 之间的距离 (2)求从无人机 A ' 上看目标 的俯角的正切值 . 【答案】( 1) 120 米;( 2) 2 3 . 5 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过 A ' 作 A ' E BC 交 BC 的延长线于 E ,连接 A' D ,于是得到 A 'E AC 60 , CE AA' 30 3 ,在 Rt △ ABC 中,求得 DC= 3 AC=20 3 ,然后根据三角函数的定义 3 即可得到结论. 【详解】 解:( 1)由题意得: ∠ ABD=30°, ∠ADC=60°, 在 Rt △ ABC 中, AC=60m , 60 AC = 1 =120( m ) AB= sin30 2 (2)过 A '作 A ' E BC 交 BC 的延长线于 E ,连接 A' D , 则 A' E AC 60 , CE AA' 30 3 , 在 Rt △ ABC 中, AC=60m , ∠ ADC=60°, DC= 3 AC=20 3 3 DE=50 3 tan ∠ A A ' D= tan ∠ A' DC= A ' E = 60 2 3 = DE 50 3 5 答:从无人机 A ' 上看目标 D 的俯角的正切值是 2 3 . 5

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键 . 2.如图,海上观察哨所 B 位于观察哨所 A 正北方向,距离为 25 海里.在某时刻,哨所 A 与哨所 B 同时发现一走私船,其位置 C 位于哨所 A 北偏东 53°的方向上,位于哨所 B 南偏东 37°的方向上. ( 1)求观察哨所 A 与走私船所在的位置 C 的距离; ( 2)若观察哨所 A 发现走私船从 C 处以 16 海里 / 小时的速度向正东方向逃窜,并立即派缉 私艇沿北偏东 76°的方向前去拦截.求缉私艇的速度为多少时,恰好在 D 处成功拦 截.(结果保留根号) (参考数据: sin37 °= cos53°≈,cos37 =sin53 °≈去, tan37 °≈2,tan76 °≈) 【答案】( 1)观察哨所 A 与走私船所在的位置 C 的距离为 15 海里;( 2)当缉私艇以每小时 6 1 7 海里的速度行驶时,恰好在 D 处成功拦截 . 【解析】 【分析】 (1)先根据三角形内角和定理求出 ∠ ACB =90°,再解 Rt △ ABC ,利用正弦函数定义得出 AC 即可; (2)过点 C 作 CM ⊥AB 于点 M ,易知, D 、 C 、 M 在一条直线上.解 Rt △ AMC ,求出 CM 、 AM .解 Rt △ AMD 中,求出 DM 、 AD ,得出 CD .设缉私艇的速度为 x 海里 / 小时,根据走私船行驶 CD 所用的时间等于缉私艇行驶 AD 所用的时间列出方程,解方程即可. 【详解】 (1)在 △ ABC 中, ACB 180 B BAC 180 37 53 90 . 在 RtVABC 中, sin B AC ,所以 AC AB sin 37 25 3 15 (海里) . AB 5 答:观察哨所 A 与走私船所在的位置 C 的距离为 15 海里 . (2)过点 C 作 CM AB ,垂足为 M ,由题意易知, D 、 C 、 M 在一条直线上 . 在 RtVACM 中, CM AC sin CAM 15 4 12 , 5

2020-2021九年级中考数学锐角三角函数解答题压轴题提高专题练习含详细答案

2020-2021九年级中考数学锐角三角函数解答题压轴题提高专题练习含详细答案 一、锐角三角函数 1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°. ∴DC=BC•cos30°=3 ==米, 639 ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF中, BG=GF•tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,3△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62 或23 3 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE; (2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE; (3)分点P在AO上与CO上两种情况分别画图进行解答即可得. 【详解】(1)如图1中,延长EO交CF于K, ∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO, ∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK, ∵△EFK是直角三角形,∴OF=1 2 EK=OE; (2)如图2中,延长EO交CF于K, ∵∠ABC=∠AEB=∠CFB=90°,

初三数学锐角三角函数的专项培优 易错 难题练习题(含答案)附详细答案

初三数学锐角三角函数的专项培优易错难题练习题(含答案)附详细答案 一、锐角三角函数 1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°. ∴DC=BC•cos30°=3 639 ==米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF中, BG=GF•tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高 2.如图,在△ABC中,AB=7.5,AC=9,S△ABC=81 4 .动点P从A点出发,沿AB方向以每秒 5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM (P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值; (2)当△PQM与△QCN的面积满足S△PQM=9 5 S△QCN时,求t的值; (3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.

2020-2021中考数学锐角三角函数-经典压轴题及详细答案

2020-2021中考数学锐角三角函数-经典压轴题及详细答案 一、锐角三角函数 1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数. (2)显示屏的顶部B'比原来升高了多少? (3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度? 【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】 试题分析:(1)通过解直角三角形即可得到结果; (2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得 BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°. 试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=, ∴∠CAO′=30°; (2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD, ∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA, ∠CAO′=30°, ∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°, ∴O′B′+O′C﹣BD=24+12﹣12=36﹣12, ∴显示屏的顶部B′比原来升高了(36﹣12)cm;

九年级数学锐角三角函数的专项培优练习题(含答案)含答案

九年级数学锐角三角函数的专项培优练习题(含答案)含答案 一、锐角三角函数 1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°. ∴DC=BC•cos30°=3 ==米, 639 ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF中, BG=GF•tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高 2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).

【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==, ∴BC=.故该船与B港口之间的距离CB的长为海里. 考点:解直角三角形的应用-方向角问题. 3.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.

2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案

2020-2021中考数学压轴题专题锐角三角函数的经典综合题含详细答案 一、锐角三角函数 1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且 10 cos B =. (1)求AB 的长度; (2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由. (3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+. 【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】 【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长; (2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG= 1 3 ,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G , ∵AB=AC ,AF ⊥BC ,∴BF=CF=1 2BC=1, 在RtΔAFB 中,BF=1,∴AB=10 cos 10 BF B == (2)连接DG , ∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG , 连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3, ∴FG= 13 ,

中考数学锐角三角函数-经典压轴题及答案

中考数学锐角三角函数-经典压轴题及答案 一、锐角三角函数 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

九年级中考数学锐角三角函数解答题压轴题提高专题练习含答案

九年级中考数学锐角三角函数解答题压轴题提高专题练习含答案 一、锐角三角函数 1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且 10 cos B =. (1)求AB 的长度; (2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出A D•AE 的值;若变化,请说明理由. (3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+. 【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】 【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长; (2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG= 1 3 ,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G , ∵AB=AC ,AF ⊥BC ,∴BF=CF=1 2BC=1, 在RtΔAFB 中,BF=1,∴AB=10 cos 10 BF B == (2)连接DG , ∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG , 连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3, ∴FG= 13 ,

备战中考数学——锐角三角函数的综合压轴题专题复习及详细答案

备战中考数学一一锐角三角函数的综合压轴题专题复习及详细答案 —、锐角三角函数 1•图1是一种折叠式晾衣架•晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚0C= 0D= 10分米,展开角 / COD= 60°晾衣臂0A= OB= 10分米,晾衣臂支架HG =FE= 6分米,且H0= F0= 4分米.当/ AOC= 90°时,点A离地面的距离AM为______________ 分米;当OB从水平状态旋转到OB (在CO延长线上)时,点E绕点F随之旋转至OB上 【解析】 【分析】 如图,作OP丄CD于P, OQ丄AM于Q, FK丄OB于K, FJL OC于J.解直角三角形求出MQ , AQ 即可求出AM,再分别求出BE, B'即可. 【详解】 解:如图,作OP丄CD于P, OQ丄AM于Q, FK丄OB于K, FJ丄OC于J. •/ AM 丄CD, ••• / QMP= / MPO = / OQM = 90 ° •••四边形OQMP是矩形, •- QM = OP, •/ OC= OD= 10, / COD= 60; •△ COD是等边三角形, T OP 丄CD, 1 •/ COP= / COD= 30 ; 2 • QM = OP= OC?cos30 =°、、3 (分米), •/ / AOC= / QOP= 90 ; •/ AOQ= / COP= 30 : 1 • AQ= — OA= 5 (分米), 2 • AM = AQ + MQ = 5+ 5 ■::.

•「OB// CD, •/ BOD= / ODC= 60 °

在Rt A OFK中,KO= OF?cos60= 2 (分米),FK= OF?sin60°= 2 3 (分米), 在Rt A PKE中,EK= EF2―FK2 = 2、百(分米), BE= 10-2-2,6 =( 8-2 6 )(分米), 在Rt A OFJ中,OJ= OF?cos60= 2 (分米),FJ= 2 3 (分米), 在Rt A FJE中,E J62(2后=2晶, ••• B' =10- (2 .6 -2)= 12-2 6 , • B' E'=4E r 故答案为:5 + 5 3 , 4. M

2021年九年级数学中考一轮复习锐角三角函数相关填空压轴题 培优提升专题训练(附答案)

2021年九年级数学中考一轮复习锐角三角函数相关填空压轴题培优提升专题训练(附答 案) 1.如图,在△ABC中,AB=AC,点D为△ABC内部一点,且∠ADB+∠BAC=240°,∠ADC=2∠ABC,若3BD=2CD,则tan∠ADC的值为. 2.如图2,有一块四边形的铁板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tan B=tan C=,若要从这块余料中裁出顶点M、N在边BC上且面积最大的矩形PQMN,则该矩形的面积为cm2. 3.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=. 4.如图,在平面直角坐标系xOy中,已知Rt△ABC可运动(平移或旋转),且∠C=90°,BC=+4,tan A=,若以点M(3,6)为圆心,2为半径的⊙M始终在△ABC的内部,则△ABC的顶点C到原点O的距离的最小值为. 5.如图,△ABC为等边三角形,点D在△ABC外,连接BD、CD.若∠ABD=2∠ACD,tan∠ACD=,BD=,则CD=.

6.如图,Rt△ABC,∠C=90°,tan A=,D是AC中点,∠ABD=∠FBD,BC=6,CF ∥AB,则DF=. 7.如图,C为射线AM上一点,以点C为直角顶点作∠BCD交射线AN于D,B两点,当tan A=时,的最大值为. 8.如图,线段AC,BD交于点P,∠A=30°,∠ACD=120°,∠D=15°,AB=1,CD =,则BD的长为. 9.如图,在等腰△ABC中,AB=AC,AD平分∠BAC,点E在BA的延长线上,ED=EC,DE交AC于点K,若EC=10,tan∠AED=,则AK=.

2020-2021中考数学与锐角三角函数有关的压轴题附详细答案

2020-2021中考数学与锐角三角函数有关的压轴题附详细答案 一、锐角三角函数 1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且 10 cos B =. (1)求AB 的长度; (2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由. (3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+. 【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】 【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长; (2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG= 1 3 ,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G , ∵AB=AC ,AF ⊥BC ,∴BF=CF=1 2BC=1, 在RtΔAFB 中,BF=1,∴AB=10 cos 10 BF B == (2)连接DG , ∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG , 连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3, ∴FG= 13 ,

相关文档
最新文档